mlx/docs/build/html/usage/compile.html
2025-06-04 01:01:51 +00:00

1331 lines
122 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<title>Compilation &#8212; MLX 0.16.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=5b4479735964841361fd" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=fa44fd50" />
<link rel="stylesheet" type="text/css" href="../_static/styles/sphinx-book-theme.css?v=384b581d" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=5b4479735964841361fd" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=5b4479735964841361fd" />
<script src="../_static/vendor/fontawesome/6.1.2/js/all.min.js?digest=5b4479735964841361fd"></script>
<script src="../_static/documentation_options.js?v=179565df"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/scripts/sphinx-book-theme.js?v=efea14e4"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'usage/compile';</script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Conversion to NumPy and Other Frameworks" href="numpy.html" />
<link rel="prev" title="Function Transforms" href="function_transforms.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<a class="skip-link" href="#main-content">Skip to main content</a>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>
Back to top
</button>
<input type="checkbox"
class="sidebar-toggle"
name="__primary"
id="__primary"/>
<label class="overlay overlay-primary" for="__primary"></label>
<input type="checkbox"
class="sidebar-toggle"
name="__secondary"
id="__secondary"/>
<label class="overlay overlay-secondary" for="__secondary"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search..."
aria-label="Search..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<nav class="bd-header navbar navbar-expand-lg bd-navbar">
</nav>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.16.1 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.16.1 documentation - Home"/>`);</script>
</a></div>
<div class="sidebar-primary-item">
<script>
document.write(`
<button class="btn navbar-btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
`);
</script></div>
<div class="sidebar-primary-item"><nav class="bd-links bd-docs-nav" aria-label="Main">
<div class="bd-toc-item navbar-nav active">
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Install</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../install.html">Build and Install</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Usage</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="quick_start.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="lazy_evaluation.html">Lazy Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="unified_memory.html">Unified Memory</a></li>
<li class="toctree-l1"><a class="reference internal" href="indexing.html">Indexing Arrays</a></li>
<li class="toctree-l1"><a class="reference internal" href="saving_and_loading.html">Saving and Loading Arrays</a></li>
<li class="toctree-l1"><a class="reference internal" href="function_transforms.html">Function Transforms</a></li>
<li class="toctree-l1 current active"><a class="current reference internal" href="#">Compilation</a></li>
<li class="toctree-l1"><a class="reference internal" href="numpy.html">Conversion to NumPy and Other Frameworks</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">Distributed Communication</a></li>
<li class="toctree-l1"><a class="reference internal" href="using_streams.html">Using Streams</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../examples/linear_regression.html">Linear Regression</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/mlp.html">Multi-Layer Perceptron</a></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/llama-inference.html">LLM inference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Python API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/array.html">Array</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-1"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.html">mlx.core.array</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.astype.html">mlx.core.array.astype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.at.html">mlx.core.array.at</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.item.html">mlx.core.array.item</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.tolist.html">mlx.core.array.tolist</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.dtype.html">mlx.core.array.dtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.itemsize.html">mlx.core.array.itemsize</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.nbytes.html">mlx.core.array.nbytes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.ndim.html">mlx.core.array.ndim</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.shape.html">mlx.core.array.shape</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.size.html">mlx.core.array.size</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.abs.html">mlx.core.array.abs</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.all.html">mlx.core.array.all</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.any.html">mlx.core.array.any</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.argmax.html">mlx.core.array.argmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.argmin.html">mlx.core.array.argmin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.conj.html">mlx.core.array.conj</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cos.html">mlx.core.array.cos</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cummax.html">mlx.core.array.cummax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cummin.html">mlx.core.array.cummin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cumprod.html">mlx.core.array.cumprod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.cumsum.html">mlx.core.array.cumsum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.diag.html">mlx.core.array.diag</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.diagonal.html">mlx.core.array.diagonal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.exp.html">mlx.core.array.exp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.flatten.html">mlx.core.array.flatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log.html">mlx.core.array.log</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log10.html">mlx.core.array.log10</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log1p.html">mlx.core.array.log1p</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.log2.html">mlx.core.array.log2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.logsumexp.html">mlx.core.array.logsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.max.html">mlx.core.array.max</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.mean.html">mlx.core.array.mean</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.min.html">mlx.core.array.min</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.moveaxis.html">mlx.core.array.moveaxis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.prod.html">mlx.core.array.prod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.reciprocal.html">mlx.core.array.reciprocal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.reshape.html">mlx.core.array.reshape</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.round.html">mlx.core.array.round</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.rsqrt.html">mlx.core.array.rsqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.sin.html">mlx.core.array.sin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.split.html">mlx.core.array.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.sqrt.html">mlx.core.array.sqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.square.html">mlx.core.array.square</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.squeeze.html">mlx.core.array.squeeze</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.swapaxes.html">mlx.core.array.swapaxes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.sum.html">mlx.core.array.sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.transpose.html">mlx.core.array.transpose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.T.html">mlx.core.array.T</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.var.html">mlx.core.array.var</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array.view.html">mlx.core.array.view</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/data_types.html">Data Types</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-2"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.Dtype.html">mlx.core.Dtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.DtypeCategory.html">mlx.core.DtypeCategory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.issubdtype.html">mlx.core.issubdtype</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/devices_and_streams.html">Devices and Streams</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-3"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.Device.html">mlx.core.Device</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/stream_class.html">mlx.core.Stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.default_device.html">mlx.core.default_device</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.set_default_device.html">mlx.core.set_default_device</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.default_stream.html">mlx.core.default_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.new_stream.html">mlx.core.new_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.set_default_stream.html">mlx.core.set_default_stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.stream.html">mlx.core.stream</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.synchronize.html">mlx.core.synchronize</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/ops.html">Operations</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-4"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.abs.html">mlx.core.abs</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.add.html">mlx.core.add</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.addmm.html">mlx.core.addmm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.all.html">mlx.core.all</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.allclose.html">mlx.core.allclose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.any.html">mlx.core.any</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arange.html">mlx.core.arange</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arccos.html">mlx.core.arccos</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arccosh.html">mlx.core.arccosh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arcsin.html">mlx.core.arcsin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arcsinh.html">mlx.core.arcsinh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arctan.html">mlx.core.arctan</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arctan2.html">mlx.core.arctan2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.arctanh.html">mlx.core.arctanh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argmax.html">mlx.core.argmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argmin.html">mlx.core.argmin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argpartition.html">mlx.core.argpartition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.argsort.html">mlx.core.argsort</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.array_equal.html">mlx.core.array_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.as_strided.html">mlx.core.as_strided</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.atleast_1d.html">mlx.core.atleast_1d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.atleast_2d.html">mlx.core.atleast_2d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.atleast_3d.html">mlx.core.atleast_3d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.bitwise_and.html">mlx.core.bitwise_and</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.bitwise_or.html">mlx.core.bitwise_or</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.bitwise_xor.html">mlx.core.bitwise_xor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.block_masked_mm.html">mlx.core.block_masked_mm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.broadcast_to.html">mlx.core.broadcast_to</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.ceil.html">mlx.core.ceil</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.clip.html">mlx.core.clip</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.concatenate.html">mlx.core.concatenate</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conj.html">mlx.core.conj</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conjugate.html">mlx.core.conjugate</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.convolve.html">mlx.core.convolve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv1d.html">mlx.core.conv1d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv2d.html">mlx.core.conv2d</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.conv_general.html">mlx.core.conv_general</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cos.html">mlx.core.cos</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cosh.html">mlx.core.cosh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cummax.html">mlx.core.cummax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cummin.html">mlx.core.cummin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cumprod.html">mlx.core.cumprod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.cumsum.html">mlx.core.cumsum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.degrees.html">mlx.core.degrees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.dequantize.html">mlx.core.dequantize</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.diag.html">mlx.core.diag</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.diagonal.html">mlx.core.diagonal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.divide.html">mlx.core.divide</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.divmod.html">mlx.core.divmod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.einsum.html">mlx.core.einsum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.einsum_path.html">mlx.core.einsum_path</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.equal.html">mlx.core.equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.erf.html">mlx.core.erf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.erfinv.html">mlx.core.erfinv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.exp.html">mlx.core.exp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.expm1.html">mlx.core.expm1</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.expand_dims.html">mlx.core.expand_dims</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.eye.html">mlx.core.eye</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.flatten.html">mlx.core.flatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.floor.html">mlx.core.floor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.floor_divide.html">mlx.core.floor_divide</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.full.html">mlx.core.full</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.gather_mm.html">mlx.core.gather_mm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.gather_qmm.html">mlx.core.gather_qmm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.greater.html">mlx.core.greater</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.greater_equal.html">mlx.core.greater_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.hadamard_transform.html">mlx.core.hadamard_transform</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.identity.html">mlx.core.identity</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.inner.html">mlx.core.inner</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isclose.html">mlx.core.isclose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isinf.html">mlx.core.isinf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isnan.html">mlx.core.isnan</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isneginf.html">mlx.core.isneginf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.isposinf.html">mlx.core.isposinf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.issubdtype.html">mlx.core.issubdtype</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.left_shift.html">mlx.core.left_shift</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.less.html">mlx.core.less</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.less_equal.html">mlx.core.less_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linspace.html">mlx.core.linspace</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.load.html">mlx.core.load</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log.html">mlx.core.log</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log2.html">mlx.core.log2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log10.html">mlx.core.log10</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.log1p.html">mlx.core.log1p</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logaddexp.html">mlx.core.logaddexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logical_not.html">mlx.core.logical_not</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logical_and.html">mlx.core.logical_and</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logical_or.html">mlx.core.logical_or</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.logsumexp.html">mlx.core.logsumexp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.matmul.html">mlx.core.matmul</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.max.html">mlx.core.max</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.maximum.html">mlx.core.maximum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.mean.html">mlx.core.mean</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.meshgrid.html">mlx.core.meshgrid</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.min.html">mlx.core.min</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.minimum.html">mlx.core.minimum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.moveaxis.html">mlx.core.moveaxis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.multiply.html">mlx.core.multiply</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.nan_to_num.html">mlx.core.nan_to_num</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.negative.html">mlx.core.negative</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.not_equal.html">mlx.core.not_equal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.ones.html">mlx.core.ones</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.ones_like.html">mlx.core.ones_like</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.outer.html">mlx.core.outer</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.partition.html">mlx.core.partition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.pad.html">mlx.core.pad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.power.html">mlx.core.power</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.prod.html">mlx.core.prod</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.quantize.html">mlx.core.quantize</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.quantized_matmul.html">mlx.core.quantized_matmul</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.radians.html">mlx.core.radians</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.reciprocal.html">mlx.core.reciprocal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.remainder.html">mlx.core.remainder</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.repeat.html">mlx.core.repeat</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.reshape.html">mlx.core.reshape</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.right_shift.html">mlx.core.right_shift</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.round.html">mlx.core.round</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.rsqrt.html">mlx.core.rsqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.save.html">mlx.core.save</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.savez.html">mlx.core.savez</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.savez_compressed.html">mlx.core.savez_compressed</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.save_gguf.html">mlx.core.save_gguf</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.save_safetensors.html">mlx.core.save_safetensors</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sigmoid.html">mlx.core.sigmoid</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sign.html">mlx.core.sign</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sin.html">mlx.core.sin</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sinh.html">mlx.core.sinh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.softmax.html">mlx.core.softmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sort.html">mlx.core.sort</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.split.html">mlx.core.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sqrt.html">mlx.core.sqrt</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.square.html">mlx.core.square</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.squeeze.html">mlx.core.squeeze</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.stack.html">mlx.core.stack</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.std.html">mlx.core.std</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.stop_gradient.html">mlx.core.stop_gradient</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.subtract.html">mlx.core.subtract</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.sum.html">mlx.core.sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.swapaxes.html">mlx.core.swapaxes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.take.html">mlx.core.take</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.take_along_axis.html">mlx.core.take_along_axis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tan.html">mlx.core.tan</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tanh.html">mlx.core.tanh</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tensordot.html">mlx.core.tensordot</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tile.html">mlx.core.tile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.topk.html">mlx.core.topk</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.trace.html">mlx.core.trace</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.transpose.html">mlx.core.transpose</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tri.html">mlx.core.tri</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.tril.html">mlx.core.tril</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.triu.html">mlx.core.triu</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.var.html">mlx.core.var</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.view.html">mlx.core.view</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.where.html">mlx.core.where</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.zeros.html">mlx.core.zeros</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.zeros_like.html">mlx.core.zeros_like</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/random.html">Random</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-5"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.bernoulli.html">mlx.core.random.bernoulli</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.categorical.html">mlx.core.random.categorical</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.gumbel.html">mlx.core.random.gumbel</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.key.html">mlx.core.random.key</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.normal.html">mlx.core.random.normal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.multivariate_normal.html">mlx.core.random.multivariate_normal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.randint.html">mlx.core.random.randint</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.seed.html">mlx.core.random.seed</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.split.html">mlx.core.random.split</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.truncated_normal.html">mlx.core.random.truncated_normal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.uniform.html">mlx.core.random.uniform</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.random.laplace.html">mlx.core.random.laplace</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/transforms.html">Transforms</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-6"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.eval.html">mlx.core.eval</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.compile.html">mlx.core.compile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.custom_function.html">mlx.core.custom_function</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.disable_compile.html">mlx.core.disable_compile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.enable_compile.html">mlx.core.enable_compile</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.grad.html">mlx.core.grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.value_and_grad.html">mlx.core.value_and_grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.jvp.html">mlx.core.jvp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.vjp.html">mlx.core.vjp</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.vmap.html">mlx.core.vmap</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/fast.html">Fast</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-7"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.rms_norm.html">mlx.core.fast.rms_norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.layer_norm.html">mlx.core.fast.layer_norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.rope.html">mlx.core.fast.rope</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fast.scaled_dot_product_attention.html">mlx.core.fast.scaled_dot_product_attention</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/fft.html">FFT</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-8"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.fft.html">mlx.core.fft.fft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.ifft.html">mlx.core.fft.ifft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.fft2.html">mlx.core.fft.fft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.ifft2.html">mlx.core.fft.ifft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.fftn.html">mlx.core.fft.fftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.ifftn.html">mlx.core.fft.ifftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.rfft.html">mlx.core.fft.rfft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.irfft.html">mlx.core.fft.irfft</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.rfft2.html">mlx.core.fft.rfft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.irfft2.html">mlx.core.fft.irfft2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.rfftn.html">mlx.core.fft.rfftn</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.fft.irfftn.html">mlx.core.fft.irfftn</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/linalg.html">Linear Algebra</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.inv.html">mlx.core.linalg.inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.norm.html">mlx.core.linalg.norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky.html">mlx.core.linalg.cholesky</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.qr.html">mlx.core.linalg.qr</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.svd.html">mlx.core.linalg.svd</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/metal.html">Metal</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-10"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.is_available.html">mlx.core.metal.is_available</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.device_info.html">mlx.core.metal.device_info</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.get_active_memory.html">mlx.core.metal.get_active_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.get_peak_memory.html">mlx.core.metal.get_peak_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.reset_peak_memory.html">mlx.core.metal.reset_peak_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.get_cache_memory.html">mlx.core.metal.get_cache_memory</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.set_memory_limit.html">mlx.core.metal.set_memory_limit</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.set_cache_limit.html">mlx.core.metal.set_cache_limit</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.clear_cache.html">mlx.core.metal.clear_cache</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.start_capture.html">mlx.core.metal.start_capture</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.metal.stop_capture.html">mlx.core.metal.stop_capture</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/nn.html">Neural Networks</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-11"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.nn.value_and_grad.html">mlx.nn.value_and_grad</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.nn.quantize.html">mlx.nn.quantize</a></li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/module.html">Module</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-12"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.training.html">mlx.nn.Module.training</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.state.html">mlx.nn.Module.state</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.apply.html">mlx.nn.Module.apply</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.apply_to_modules.html">mlx.nn.Module.apply_to_modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.children.html">mlx.nn.Module.children</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.eval.html">mlx.nn.Module.eval</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.filter_and_map.html">mlx.nn.Module.filter_and_map</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.freeze.html">mlx.nn.Module.freeze</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.leaf_modules.html">mlx.nn.Module.leaf_modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.load_weights.html">mlx.nn.Module.load_weights</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.modules.html">mlx.nn.Module.modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.named_modules.html">mlx.nn.Module.named_modules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.parameters.html">mlx.nn.Module.parameters</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.save_weights.html">mlx.nn.Module.save_weights</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.set_dtype.html">mlx.nn.Module.set_dtype</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.train.html">mlx.nn.Module.train</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.trainable_parameters.html">mlx.nn.Module.trainable_parameters</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.unfreeze.html">mlx.nn.Module.unfreeze</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.update.html">mlx.nn.Module.update</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Module.update_modules.html">mlx.nn.Module.update_modules</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/layers.html">Layers</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-13"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ALiBi.html">mlx.nn.ALiBi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.AvgPool1d.html">mlx.nn.AvgPool1d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.AvgPool2d.html">mlx.nn.AvgPool2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.BatchNorm.html">mlx.nn.BatchNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Conv1d.html">mlx.nn.Conv1d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Conv2d.html">mlx.nn.Conv2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Conv3d.html">mlx.nn.Conv3d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Dropout.html">mlx.nn.Dropout</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Dropout2d.html">mlx.nn.Dropout2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Dropout3d.html">mlx.nn.Dropout3d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Embedding.html">mlx.nn.Embedding</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GELU.html">mlx.nn.GELU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GLU.html">mlx.nn.GLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GroupNorm.html">mlx.nn.GroupNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.GRU.html">mlx.nn.GRU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.HardShrink.html">mlx.nn.HardShrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.HardTanh.html">mlx.nn.HardTanh</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Hardswish.html">mlx.nn.Hardswish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.InstanceNorm.html">mlx.nn.InstanceNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LayerNorm.html">mlx.nn.LayerNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LeakyReLU.html">mlx.nn.LeakyReLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Linear.html">mlx.nn.Linear</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.LSTM.html">mlx.nn.LSTM</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.MaxPool1d.html">mlx.nn.MaxPool1d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.MaxPool2d.html">mlx.nn.MaxPool2d</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Mish.html">mlx.nn.Mish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.MultiHeadAttention.html">mlx.nn.MultiHeadAttention</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.PReLU.html">mlx.nn.PReLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.QuantizedEmbedding.html">mlx.nn.QuantizedEmbedding</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.QuantizedLinear.html">mlx.nn.QuantizedLinear</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.RMSNorm.html">mlx.nn.RMSNorm</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ReLU.html">mlx.nn.ReLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.ReLU6.html">mlx.nn.ReLU6</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.RNN.html">mlx.nn.RNN</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.RoPE.html">mlx.nn.RoPE</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.SELU.html">mlx.nn.SELU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Sequential.html">mlx.nn.Sequential</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.SiLU.html">mlx.nn.SiLU</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.SinusoidalPositionalEncoding.html">mlx.nn.SinusoidalPositionalEncoding</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softmin.html">mlx.nn.Softmin</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softshrink.html">mlx.nn.Softshrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softsign.html">mlx.nn.Softsign</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softmax.html">mlx.nn.Softmax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Softplus.html">mlx.nn.Softplus</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Step.html">mlx.nn.Step</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Tanh.html">mlx.nn.Tanh</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Transformer.html">mlx.nn.Transformer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Upsample.html">mlx.nn.Upsample</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/functions.html">Functions</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-14"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.elu.html">mlx.nn.elu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.gelu.html">mlx.nn.gelu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.gelu_approx.html">mlx.nn.gelu_approx</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.gelu_fast_approx.html">mlx.nn.gelu_fast_approx</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.glu.html">mlx.nn.glu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.hard_shrink.html">mlx.nn.hard_shrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.hard_tanh.html">mlx.nn.hard_tanh</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.hardswish.html">mlx.nn.hardswish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.leaky_relu.html">mlx.nn.leaky_relu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.log_sigmoid.html">mlx.nn.log_sigmoid</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.log_softmax.html">mlx.nn.log_softmax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.mish.html">mlx.nn.mish</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.prelu.html">mlx.nn.prelu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.relu.html">mlx.nn.relu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.relu6.html">mlx.nn.relu6</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.selu.html">mlx.nn.selu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.sigmoid.html">mlx.nn.sigmoid</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.silu.html">mlx.nn.silu</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softmax.html">mlx.nn.softmax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softmin.html">mlx.nn.softmin</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softplus.html">mlx.nn.softplus</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.softshrink.html">mlx.nn.softshrink</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.step.html">mlx.nn.step</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.tanh.html">mlx.nn.tanh</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/losses.html">Loss Functions</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-15"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.binary_cross_entropy.html">mlx.nn.losses.binary_cross_entropy</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.cosine_similarity_loss.html">mlx.nn.losses.cosine_similarity_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.cross_entropy.html">mlx.nn.losses.cross_entropy</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.gaussian_nll_loss.html">mlx.nn.losses.gaussian_nll_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.hinge_loss.html">mlx.nn.losses.hinge_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.huber_loss.html">mlx.nn.losses.huber_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.kl_div_loss.html">mlx.nn.losses.kl_div_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.l1_loss.html">mlx.nn.losses.l1_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.log_cosh_loss.html">mlx.nn.losses.log_cosh_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.margin_ranking_loss.html">mlx.nn.losses.margin_ranking_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.mse_loss.html">mlx.nn.losses.mse_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.nll_loss.html">mlx.nn.losses.nll_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.smooth_l1_loss.html">mlx.nn.losses.smooth_l1_loss</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.losses.triplet_loss.html">mlx.nn.losses.triplet_loss</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/nn/init.html">Initializers</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-16"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.constant.html">mlx.nn.init.constant</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.normal.html">mlx.nn.init.normal</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.uniform.html">mlx.nn.init.uniform</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.identity.html">mlx.nn.init.identity</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.glorot_normal.html">mlx.nn.init.glorot_normal</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.glorot_uniform.html">mlx.nn.init.glorot_uniform</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.he_normal.html">mlx.nn.init.he_normal</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/nn/_autosummary/mlx.nn.init.he_uniform.html">mlx.nn.init.he_uniform</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/optimizers.html">Optimizers</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-17"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/optimizers/optimizer.html">Optimizer</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-18"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.state.html">mlx.optimizers.Optimizer.state</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.apply_gradients.html">mlx.optimizers.Optimizer.apply_gradients</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.init.html">mlx.optimizers.Optimizer.init</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Optimizer.update.html">mlx.optimizers.Optimizer.update</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/optimizers/common_optimizers.html">Common Optimizers</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-19"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.SGD.html">mlx.optimizers.SGD</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.RMSprop.html">mlx.optimizers.RMSprop</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adagrad.html">mlx.optimizers.Adagrad</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adafactor.html">mlx.optimizers.Adafactor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.AdaDelta.html">mlx.optimizers.AdaDelta</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adam.html">mlx.optimizers.Adam</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.AdamW.html">mlx.optimizers.AdamW</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Adamax.html">mlx.optimizers.Adamax</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.Lion.html">mlx.optimizers.Lion</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../python/optimizers/schedulers.html">Schedulers</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-20"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.cosine_decay.html">mlx.optimizers.cosine_decay</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.exponential_decay.html">mlx.optimizers.exponential_decay</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.join_schedules.html">mlx.optimizers.join_schedules</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.linear_schedule.html">mlx.optimizers.linear_schedule</a></li>
<li class="toctree-l3"><a class="reference internal" href="../python/optimizers/_autosummary/mlx.optimizers.step_decay.html">mlx.optimizers.step_decay</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.optimizers.clip_grad_norm.html">mlx.optimizers.clip_grad_norm</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/distributed.html">Distributed Communication</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-21"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.Group.html">mlx.core.distributed.Group</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.is_available.html">mlx.core.distributed.is_available</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.init.html">mlx.core.distributed.init</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.all_sum.html">mlx.core.distributed.all_sum</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.distributed.all_gather.html">mlx.core.distributed.all_gather</a></li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/tree_utils.html">Tree Utils</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-22"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_flatten.html">mlx.utils.tree_flatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_unflatten.html">mlx.utils.tree_unflatten</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_map.html">mlx.utils.tree_map</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_map_with_path.html">mlx.utils.tree_map_with_path</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.utils.tree_reduce.html">mlx.utils.tree_reduce</a></li>
</ul>
</li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../cpp/ops.html">Operations</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Further Reading</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../dev/extensions.html">Custom Extensions in MLX</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/metal_debugger.html">Metal Debugger</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main">
<div class="sbt-scroll-pixel-helper"></div>
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item"><label class="sidebar-toggle primary-toggle btn btn-sm" for="__primary" title="Toggle primary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-bars"></span>
</label></div>
</div>
<div class="header-article-items__end">
<div class="header-article-item">
<div class="article-header-buttons">
<a href="https://github.com/ml-explore/mlx" target="_blank"
class="btn btn-sm btn-source-repository-button"
title="Source repository"
data-bs-placement="bottom" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fab fa-github"></i>
</span>
</a>
<div class="dropdown dropdown-download-buttons">
<button class="btn dropdown-toggle" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download this page">
<i class="fas fa-download"></i>
</button>
<ul class="dropdown-menu">
<li><a href="../_sources/usage/compile.rst" target="_blank"
class="btn btn-sm btn-download-source-button dropdown-item"
title="Download source file"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file"></i>
</span>
<span class="btn__text-container">.rst</span>
</a>
</li>
<li>
<button onclick="window.print()"
class="btn btn-sm btn-download-pdf-button dropdown-item"
title="Print to PDF"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file-pdf"></i>
</span>
<span class="btn__text-container">.pdf</span>
</button>
</li>
</ul>
</div>
<button onclick="toggleFullScreen()"
class="btn btn-sm btn-fullscreen-button"
title="Fullscreen mode"
data-bs-placement="bottom" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-expand"></i>
</span>
</button>
<script>
document.write(`
<button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
<span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
<span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
</button>
`);
</script>
<script>
document.write(`
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
<label class="sidebar-toggle secondary-toggle btn btn-sm" for="__secondary"title="Toggle secondary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-list"></span>
</label>
</div></div>
</div>
</div>
</div>
<div id="jb-print-docs-body" class="onlyprint">
<h1>Compilation</h1>
<!-- Table of contents -->
<div id="print-main-content">
<div id="jb-print-toc">
<div>
<h2> Contents </h2>
</div>
<nav aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#basics-of-compile">Basics of Compile</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#example-speedup">Example Speedup</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#debugging">Debugging</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#pure-functions">Pure Functions</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#compiling-training-graphs">Compiling Training Graphs</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#transformations-with-compile">Transformations with Compile</a></li>
</ul>
</nav>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article" role="main">
<section id="compilation">
<span id="compile"></span><h1>Compilation<a class="headerlink" href="#compilation" title="Link to this heading">#</a></h1>
<p>MLX has a <a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a> function transformation which compiles computation
graphs. Function compilation results in smaller graphs by merging common work
and fusing certain operations. In many cases this can lead to big improvements
in run-time and memory use.</p>
<p>Getting started with <a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a> is simple, but there are some edge cases
that are good to be aware of for more complex graphs and advanced usage.</p>
<section id="basics-of-compile">
<h2>Basics of Compile<a class="headerlink" href="#basics-of-compile" title="Link to this heading">#</a></h2>
<p>Lets start with a simple example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">x</span><span class="p">)</span> <span class="o">+</span> <span class="n">y</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span>
<span class="c1"># Regular call, no compilation</span>
<span class="c1"># Prints: array(2.36788, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">))</span>
<span class="c1"># Compile the function</span>
<span class="n">compiled_fun</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">fun</span><span class="p">)</span>
<span class="c1"># Prints: array(2.36788, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">compiled_fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">))</span>
</pre></div>
</div>
<p>The output of both the regular function and the compiled function is the same
up to numerical precision.</p>
<p>The first time you call a compiled function, MLX will build the compute
graph, optimize it, and generate and compile code. This can be relatively
slow. However, MLX will cache compiled functions, so calling a compiled
function multiple times will not initiate a new compilation. This means you
should typically compile functions that you plan to use more than once.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">x</span><span class="p">)</span> <span class="o">+</span> <span class="n">y</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span>
<span class="n">compiled_fun</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">fun</span><span class="p">)</span>
<span class="c1"># Compiled here</span>
<span class="n">compiled_fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="c1"># Not compiled again</span>
<span class="n">compiled_fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="c1"># Not compiled again</span>
<span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">fun</span><span class="p">)(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
<p>There are some important cases to be aware of that can cause a function to
be recompiled:</p>
<ul class="simple">
<li><p>Changing the shape or number of dimensions</p></li>
<li><p>Changing the type of any of the inputs</p></li>
<li><p>Changing the number of inputs to the function</p></li>
</ul>
<p>In certain cases only some of the compilation stack will be rerun (for
example when changing the shapes) and in other cases the full compilation
stack will be rerun (for example when changing the types). In general you
should avoid compiling functions too frequently.</p>
<p>Another idiom to watch out for is compiling functions which get created and
destroyed frequently. This can happen, for example, when compiling an anonymous
function in a loop:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span>
<span class="c1"># Don&#39;t do this, compiles lambda at each iteration</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">5</span><span class="p">):</span>
<span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">x</span><span class="p">)))(</span><span class="n">a</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="example-speedup">
<h2>Example Speedup<a class="headerlink" href="#example-speedup" title="Link to this heading">#</a></h2>
<p>The <a class="reference internal" href="../python/nn/_autosummary_functions/mlx.nn.gelu.html#mlx.nn.gelu" title="mlx.nn.gelu"><code class="xref py py-func docutils literal notranslate"><span class="pre">mlx.nn.gelu()</span></code></a> is a nonlinear activation function commonly used with
Transformer-based models. The implementation involves several unary and binary
element-wise operations:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">gelu</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="n">x</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">mx</span><span class="o">.</span><span class="n">erf</span><span class="p">(</span><span class="n">x</span> <span class="o">/</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="p">)))</span> <span class="o">/</span> <span class="mi">2</span>
</pre></div>
</div>
<p>If you use this function with small arrays, it will be overhead bound. If you
use it with large arrays it will be memory bandwidth bound. However, all of
the operations in the <code class="docutils literal notranslate"><span class="pre">gelu</span></code> are fusible into a single kernel with
<a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a>. This can speedup both cases considerably.</p>
<p>Lets compare the runtime of the regular function versus the compiled
function. Well use the following timing helper which does a warm up and
handles synchronization:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">time</span>
<span class="k">def</span> <span class="nf">timeit</span><span class="p">(</span><span class="n">fun</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># warm up</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">):</span>
<span class="n">mx</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">fun</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">tic</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">perf_counter</span><span class="p">()</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">):</span>
<span class="n">mx</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">fun</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">toc</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">perf_counter</span><span class="p">()</span>
<span class="n">tpi</span> <span class="o">=</span> <span class="mf">1e3</span> <span class="o">*</span> <span class="p">(</span><span class="n">toc</span> <span class="o">-</span> <span class="n">tic</span><span class="p">)</span> <span class="o">/</span> <span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Time per iteration </span><span class="si">{</span><span class="n">tpi</span><span class="si">:</span><span class="s2">.3f</span><span class="si">}</span><span class="s2"> (ms)&quot;</span><span class="p">)</span>
</pre></div>
</div>
<p>Now make an array, and benchmark both functions:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">1000</span><span class="p">,</span> <span class="mi">4096</span><span class="p">))</span>
<span class="n">timeit</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">gelu</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
<span class="n">timeit</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">gelu</span><span class="p">),</span> <span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<p>On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled <code class="docutils literal notranslate"><span class="pre">gelu</span></code> is
five times faster.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
functions can still be helpful, but wont typically result in as large a
speedup as compiling operations that run on the GPU.</p>
</div>
</section>
<section id="debugging">
<h2>Debugging<a class="headerlink" href="#debugging" title="Link to this heading">#</a></h2>
<p>When a compiled function is first called, it is traced with placeholder
inputs. This means you cant evaluate arrays (for example to print their
contents) inside compiled functions.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="nd">@mx</span><span class="o">.</span><span class="n">compile</span>
<span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">z</span> <span class="o">=</span> <span class="o">-</span><span class="n">x</span>
<span class="nb">print</span><span class="p">(</span><span class="n">z</span><span class="p">)</span> <span class="c1"># Crash</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">5.0</span><span class="p">))</span>
</pre></div>
</div>
<p>For debugging, inspecting arrays can be helpful. One way to do that is to
globally disable compilation using the <a class="reference internal" href="../python/_autosummary/mlx.core.disable_compile.html#mlx.core.disable_compile" title="mlx.core.disable_compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">disable_compile()</span></code></a> function or
<code class="docutils literal notranslate"><span class="pre">MLX_DISABLE_COMPILE</span></code> flag. For example the following is okay even though
<code class="docutils literal notranslate"><span class="pre">fun</span></code> is compiled:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="nd">@mx</span><span class="o">.</span><span class="n">compile</span>
<span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">z</span> <span class="o">=</span> <span class="o">-</span><span class="n">x</span>
<span class="nb">print</span><span class="p">(</span><span class="n">z</span><span class="p">)</span> <span class="c1"># Okay</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="n">mx</span><span class="o">.</span><span class="n">disable_compile</span><span class="p">()</span>
<span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">5.0</span><span class="p">))</span>
</pre></div>
</div>
</section>
<section id="pure-functions">
<h2>Pure Functions<a class="headerlink" href="#pure-functions" title="Link to this heading">#</a></h2>
<p>Compiled functions are intended to be <em>pure</em>; that is they should not have side
effects. For example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">state</span> <span class="o">=</span> <span class="p">[]</span>
<span class="nd">@mx</span><span class="o">.</span><span class="n">compile</span>
<span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span>
<span class="n">state</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">),</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">2.0</span><span class="p">))</span>
<span class="c1"># Crash!</span>
<span class="nb">print</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
</pre></div>
</div>
<p>After the first call of <code class="docutils literal notranslate"><span class="pre">fun</span></code>, the <code class="docutils literal notranslate"><span class="pre">state</span></code> list will hold a placeholder
array. The placeholder does not have any data; it is only used to build the
computation graph. Printing such an array results in a crash.</p>
<p>You have two options to deal with this. The first option is to simply return
<code class="docutils literal notranslate"><span class="pre">state</span></code> as an output:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">state</span> <span class="o">=</span> <span class="p">[]</span>
<span class="nd">@mx</span><span class="o">.</span><span class="n">compile</span>
<span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span>
<span class="n">state</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">),</span> <span class="n">state</span>
<span class="n">_</span><span class="p">,</span> <span class="n">state</span> <span class="o">=</span> <span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">),</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">2.0</span><span class="p">))</span>
<span class="c1"># Prints [array(3, dtype=float32)]</span>
<span class="nb">print</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
</pre></div>
</div>
<p>In some cases returning updated state can be pretty inconvenient. Hence,
<a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a> has a parameter to capture implicit outputs:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">partial</span>
<span class="n">state</span> <span class="o">=</span> <span class="p">[]</span>
<span class="c1"># Tell compile to capture state as an output</span>
<span class="nd">@partial</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">,</span> <span class="n">outputs</span><span class="o">=</span><span class="n">state</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span>
<span class="n">state</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">),</span> <span class="n">state</span>
<span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">),</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">2.0</span><span class="p">))</span>
<span class="c1"># Prints [array(3, dtype=float32)]</span>
<span class="nb">print</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
</pre></div>
</div>
<p>This is particularly useful for compiling a function which includes an update
to a container of arrays, as is commonly done when training the parameters of a
<a class="reference internal" href="../python/nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">mlx.nn.Module</span></code></a>.</p>
<p>Compiled functions will also treat any inputs not in the parameter list as
constants. For example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">state</span> <span class="o">=</span> <span class="p">[</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)]</span>
<span class="nd">@mx</span><span class="o">.</span><span class="n">compile</span>
<span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="n">x</span> <span class="o">+</span> <span class="n">state</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># Prints array(2, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)))</span>
<span class="c1"># Update state</span>
<span class="n">state</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">5.0</span><span class="p">)</span>
<span class="c1"># Still prints array(2, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)))</span>
</pre></div>
</div>
<p>In order to have the change of state reflected in the outputs of <code class="docutils literal notranslate"><span class="pre">fun</span></code> you
again have two options. The first option is to simply pass <code class="docutils literal notranslate"><span class="pre">state</span></code> as input
to the function. In some cases this can be pretty inconvenient. Hence,
<a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a> also has a parameter to capture implicit inputs:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">partial</span>
<span class="n">state</span> <span class="o">=</span> <span class="p">[</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)]</span>
<span class="c1"># Tell compile to capture state as an input</span>
<span class="nd">@partial</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">,</span> <span class="n">inputs</span><span class="o">=</span><span class="n">state</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">fun</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="n">x</span> <span class="o">+</span> <span class="n">state</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># Prints array(2, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)))</span>
<span class="c1"># Update state</span>
<span class="n">state</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">5.0</span><span class="p">)</span>
<span class="c1"># Prints array(6, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">fun</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)))</span>
</pre></div>
</div>
</section>
<section id="compiling-training-graphs">
<h2>Compiling Training Graphs<a class="headerlink" href="#compiling-training-graphs" title="Link to this heading">#</a></h2>
<p>This section will step through how to use <a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a> with a simple example
of a common setup: training a model with <a class="reference internal" href="../python/nn/module.html#mlx.nn.Module" title="mlx.nn.Module"><code class="xref py py-obj docutils literal notranslate"><span class="pre">mlx.nn.Module</span></code></a> using an
<a class="reference internal" href="../python/optimizers/optimizer.html#mlx.optimizers.Optimizer" title="mlx.optimizers.Optimizer"><code class="xref py py-obj docutils literal notranslate"><span class="pre">mlx.optimizers.Optimizer</span></code></a> with state. We will show how to compile the
full forward, backward, and update with <a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a>.</p>
<p>To start, here is the simple example without any compilation:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">mlx.core</span> <span class="k">as</span> <span class="nn">mx</span>
<span class="kn">import</span> <span class="nn">mlx.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">mlx.optimizers</span> <span class="k">as</span> <span class="nn">optim</span>
<span class="c1"># 4 examples with 10 features each</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="c1"># 0, 1 targets</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="c1"># Simple linear model</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="c1"># SGD with momentum</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">loss_fn</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">logits</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">losses</span><span class="o">.</span><span class="n">binary_cross_entropy</span><span class="p">(</span><span class="n">logits</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">loss_and_grad_fn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">value_and_grad</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">loss_fn</span><span class="p">)</span>
<span class="c1"># Perform 10 steps of gradient descent</span>
<span class="k">for</span> <span class="n">it</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">):</span>
<span class="n">loss</span><span class="p">,</span> <span class="n">grads</span> <span class="o">=</span> <span class="n">loss_and_grad_fn</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">grads</span><span class="p">)</span>
<span class="n">mx</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">state</span><span class="p">)</span>
</pre></div>
</div>
<p>To compile the update we can put it all in a function and compile it with the
appropriate input and output captures. Heres the same example but compiled:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">mlx.core</span> <span class="k">as</span> <span class="nn">mx</span>
<span class="kn">import</span> <span class="nn">mlx.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">mlx.optimizers</span> <span class="k">as</span> <span class="nn">optim</span>
<span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">partial</span>
<span class="c1"># 4 examples with 10 features each</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="c1"># 0, 1 targets</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="c1"># Simple linear model</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="c1"># SGD with momentum</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">loss_fn</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">logits</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">losses</span><span class="o">.</span><span class="n">binary_cross_entropy</span><span class="p">(</span><span class="n">logits</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="c1"># The state that will be captured as input and output</span>
<span class="n">state</span> <span class="o">=</span> <span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">state</span><span class="p">,</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">state</span><span class="p">]</span>
<span class="nd">@partial</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">,</span> <span class="n">inputs</span><span class="o">=</span><span class="n">state</span><span class="p">,</span> <span class="n">outputs</span><span class="o">=</span><span class="n">state</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="n">loss_and_grad_fn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">value_and_grad</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">loss_fn</span><span class="p">)</span>
<span class="n">loss</span><span class="p">,</span> <span class="n">grads</span> <span class="o">=</span> <span class="n">loss_and_grad_fn</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">grads</span><span class="p">)</span>
<span class="k">return</span> <span class="n">loss</span>
<span class="c1"># Perform 10 steps of gradient descent</span>
<span class="k">for</span> <span class="n">it</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">):</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">step</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="c1"># Evaluate the model and optimizer state</span>
<span class="n">mx</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>If you are using a module which performs random sampling such as
<a class="reference internal" href="../python/nn/_autosummary/mlx.nn.Dropout.html#mlx.nn.Dropout" title="mlx.nn.Dropout"><code class="xref py py-func docutils literal notranslate"><span class="pre">mlx.nn.Dropout()</span></code></a>, make sure you also include <code class="docutils literal notranslate"><span class="pre">mx.random.state</span></code> in the
<code class="docutils literal notranslate"><span class="pre">state</span></code> captured by <a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a>, i.e. <code class="docutils literal notranslate"><span class="pre">state</span> <span class="pre">=</span> <span class="pre">[model.state,</span>
<span class="pre">optimizer.state,</span> <span class="pre">mx.random.state]</span></code>.</p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>For more examples of compiling full training graphs checkout the <a class="reference external" href="https://github.com/ml-explore/mlx-examples">MLX
Examples</a> GitHub repo.</p>
</div>
</section>
<section id="transformations-with-compile">
<h2>Transformations with Compile<a class="headerlink" href="#transformations-with-compile" title="Link to this heading">#</a></h2>
<p>In MLX function transformations are composable. You can apply any function
transformation to the output of any other function transformation. For more on
this, see the documentation on <a class="reference internal" href="function_transforms.html#function-transforms"><span class="std std-ref">function transforms</span></a>.</p>
<p>Compiling transformed functions works just as expected:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">grad_fn</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">grad</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">)</span>
<span class="n">compiled_grad_fn</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">grad_fn</span><span class="p">)</span>
<span class="c1"># Prints: array(2.71828, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">grad_fn</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)))</span>
<span class="c1"># Also prints: array(2.71828, dtype=float32)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">compiled_grad_fn</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)))</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>In order to compile as much as possible, a transformation of a compiled
function will not by default be compiled. To compile the transformed
function simply pass it through <a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a>.</p>
</div>
<p>You can also compile functions which themselves call compiled functions. A
good practice is to compile the outer most function to give <a class="reference internal" href="../python/_autosummary/mlx.core.compile.html#mlx.core.compile" title="mlx.core.compile"><code class="xref py py-func docutils literal notranslate"><span class="pre">compile()</span></code></a>
the most opportunity to optimize the computation graph:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="nd">@mx</span><span class="o">.</span><span class="n">compile</span>
<span class="k">def</span> <span class="nf">inner</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">mx</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">outer</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">inner</span><span class="p">(</span><span class="n">inner</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="c1"># Compiling the outer function is good to do as it will likely</span>
<span class="c1"># be faster even though the inner functions are compiled</span>
<span class="n">fun</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">outer</span><span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</article>
<footer class="prev-next-footer">
<div class="prev-next-area">
<a class="left-prev"
href="function_transforms.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Function Transforms</p>
</div>
</a>
<a class="right-next"
href="numpy.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Conversion to NumPy and Other Frameworks</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> Contents
</div>
<nav class="bd-toc-nav page-toc">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#basics-of-compile">Basics of Compile</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#example-speedup">Example Speedup</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#debugging">Debugging</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#pure-functions">Pure Functions</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#compiling-training-graphs">Compiling Training Graphs</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#transformations-with-compile">Transformations with Compile</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
<div class="bd-footer-content__inner container">
<div class="footer-item">
<p class="component-author">
By MLX Contributors
</p>
</div>
<div class="footer-item">
<p class="copyright">
© Copyright 2023, MLX Contributors.
<br/>
</p>
</div>
<div class="footer-item">
</div>
<div class="footer-item">
</div>
</div>
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script src="../_static/scripts/bootstrap.js?digest=5b4479735964841361fd"></script>
<script src="../_static/scripts/pydata-sphinx-theme.js?digest=5b4479735964841361fd"></script>
<footer class="bd-footer">
</footer>
</body>
</html>