mlx/mlx/backend/metal/normalization.cpp

444 lines
15 KiB
C++

// Copyright © 2024 Apple Inc.
#include <algorithm>
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/reduce.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/fast_primitives.h"
namespace mlx::core::fast {
bool RMSNorm::use_fallback(Stream s) {
return s.device == Device::cpu;
}
void RMSNorm::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& s = stream();
auto& d = metal::device(s.device);
auto& out = outputs[0];
// Make sure that the last dimension is contiguous
auto set_output = [&s, &out](const array& x) {
bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1;
if (no_copy && x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back() || x.shape(-2) == 1);
}
if (no_copy) {
if (x.is_donatable()) {
out.copy_shared_buffer(x);
} else {
out.set_data(
allocator::malloc(x.data_size() * x.itemsize()),
x.data_size(),
x.strides(),
x.flags());
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
};
const array x = set_output(inputs[0]);
const array& w = inputs[1];
auto axis_size = static_cast<uint32_t>(x.shape().back());
int n_rows = x.data_size() / axis_size;
const int simd_size = 32;
const int n_reads = RMS_N_READS;
const int looped_limit = RMS_LOOPED_LIMIT;
std::string op_name = "rms";
if (axis_size > looped_limit) {
op_name += "_looped";
}
op_name += type_to_name(out);
auto& compute_encoder = d.get_command_encoder(s.index);
{
auto kernel = d.get_kernel(op_name);
MTL::Size grid_dims, group_dims;
if (axis_size <= looped_limit) {
size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
size_t threadgroup_size = simd_size * simds_needed;
assert(threadgroup_size <= kernel->maxTotalThreadsPerThreadgroup());
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
} else {
size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
}
uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(
x.data_shared_ptr() == nullptr ? out : x, 0);
compute_encoder.set_input_array(w, 1);
compute_encoder.set_output_array(out, 2);
compute_encoder.set_bytes(eps_, 3);
compute_encoder.set_bytes(axis_size, 4);
compute_encoder.set_bytes(w_stride, 5);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void RMSNormVJP::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& s = stream();
auto& d = metal::device(s.device);
// Ensure row contiguity. We could relax this step by checking that the array
// is contiguous (no broadcasts or holes) and that the input strides are the
// same as the cotangent strides but for now this is simpler.
auto check_input = [&d, &s](const array& x) -> std::pair<array, bool> {
if (x.flags().row_contiguous) {
return {x, false};
}
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
return {x_copy, true};
};
bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[2].is_donatable();
auto [x, copied] = check_input(inputs[0]);
donate_x |= copied;
const array& w = inputs[1];
auto [g, g_copied] = check_input(inputs[2]);
donate_g |= g_copied;
array& gx = outputs[0];
array& gw = outputs[1];
// Check whether we had a weight
bool has_w = w.ndim() != 0;
// Allocate space for the outputs
bool g_in_gx = false;
if (x.is_donatable()) {
gx.copy_shared_buffer(x);
} else if (g.is_donatable()) {
gx.copy_shared_buffer(g);
g_in_gx = true;
} else {
gx.set_data(allocator::malloc(gx.nbytes()));
}
if (g_copied && !g_in_gx) {
d.add_temporary(g, s.index);
}
auto axis_size = static_cast<uint32_t>(x.shape().back());
int n_rows = x.data_size() / axis_size;
// Allocate the gradient accumulator gw and a temporary to store the
// gradients before they are accumulated.
array gw_temp =
(has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
if (has_w) {
if (!g_in_gx && donate_g) {
gw_temp.copy_shared_buffer(g);
} else {
gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
d.add_temporary(gw_temp, s.index);
}
}
gw.set_data(allocator::malloc(gw.nbytes()));
const int simd_size = 32;
const int n_reads = RMS_N_READS;
const int looped_limit = RMS_LOOPED_LIMIT;
std::string op_name = "vjp_rms";
if (axis_size > looped_limit) {
op_name += "_looped";
}
op_name += type_to_name(gx);
std::string hash_name = op_name + ((has_w) ? "_w" : "_now");
metal::MTLFCList func_consts = {
{&has_w, MTL::DataType::DataTypeBool, 20},
};
auto& compute_encoder = d.get_command_encoder(s.index);
{
auto kernel = d.get_kernel(op_name, hash_name, func_consts);
MTL::Size grid_dims, group_dims;
if (axis_size <= looped_limit) {
size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
size_t threadgroup_size = simd_size * simds_needed;
assert(threadgroup_size <= kernel->maxTotalThreadsPerThreadgroup());
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
} else {
size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
}
uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(w, 1);
compute_encoder.set_input_array(g, 2);
compute_encoder.set_output_array(gx, 3);
compute_encoder.set_output_array(gw_temp, 4);
compute_encoder.set_bytes(eps_, 5);
compute_encoder.set_bytes(axis_size, 6);
compute_encoder.set_bytes(w_stride, 7);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
if (has_w) {
ReductionPlan plan(
ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
strided_reduce_general_dispatch(
gw_temp, gw, "sum", plan, {0}, compute_encoder, d, s);
}
}
bool LayerNorm::use_fallback(Stream s) {
return s.device == Device::cpu;
}
void LayerNorm::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& s = stream();
auto& d = metal::device(s.device);
auto& out = outputs[0];
// Make sure that the last dimension is contiguous
auto set_output = [&s, &out](const array& x) {
bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1;
if (no_copy && x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back() || x.shape(-2) == 1);
}
if (no_copy) {
if (x.is_donatable()) {
out.copy_shared_buffer(x);
} else {
out.set_data(
allocator::malloc(x.data_size() * x.itemsize()),
x.data_size(),
x.strides(),
x.flags());
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
};
const array x = set_output(inputs[0]);
const array& w = inputs[1];
const array& b = inputs[2];
auto axis_size = static_cast<uint32_t>(x.shape().back());
int n_rows = x.data_size() / axis_size;
int simd_size = 32;
int n_reads = 8;
int looped_limit = 6656;
std::string op_name = "layer_norm";
if (axis_size > looped_limit) {
op_name += "_looped";
n_reads = 4;
}
op_name += type_to_name(out);
auto& compute_encoder = d.get_command_encoder(s.index);
{
auto kernel = d.get_kernel(op_name);
MTL::Size grid_dims, group_dims;
if (axis_size <= looped_limit) {
size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
size_t threadgroup_size = simd_size * simds_needed;
if (threadgroup_size > kernel->maxTotalThreadsPerThreadgroup()) {
std::ostringstream msg;
msg << "[layer_norm] Threadgroup size " << threadgroup_size
<< " is larger than the maximum allowed threadgroup size "
<< kernel->maxTotalThreadsPerThreadgroup();
throw std::runtime_error(msg.str());
}
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
} else {
size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
}
uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
uint32_t b_stride = (b.ndim() == 1) ? b.strides()[0] : 0;
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(
x.data_shared_ptr() == nullptr ? out : x, 0);
compute_encoder.set_input_array(w, 1);
compute_encoder.set_input_array(b, 2);
compute_encoder.set_output_array(out, 3);
compute_encoder.set_bytes(eps_, 4);
compute_encoder.set_bytes(axis_size, 5);
compute_encoder.set_bytes(w_stride, 6);
compute_encoder.set_bytes(b_stride, 7);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void LayerNormVJP::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& s = stream();
auto& d = metal::device(s.device);
// Ensure row contiguity. We could relax this step by checking that the array
// is contiguous (no broadcasts or holes) and that the input strides are the
// same as the cotangent strides but for now this is simpler.
auto check_input = [&s](const array& x) -> std::pair<array, bool> {
if (x.flags().row_contiguous) {
return {x, false};
}
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
return {x_copy, true};
};
bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[3].is_donatable();
auto [x, copied] = check_input(inputs[0]);
donate_x |= copied;
const array& w = inputs[1];
const array& b = inputs[2];
auto [g, g_copied] = check_input(inputs[3]);
donate_g |= g_copied;
array& gx = outputs[0];
array& gw = outputs[1];
array& gb = outputs[2];
// Check whether we had a weight
bool has_w = w.ndim() != 0;
// Allocate space for the outputs
bool g_in_gx = false;
if (donate_x) {
gx.copy_shared_buffer(x);
} else if (donate_g) {
gx.copy_shared_buffer(g);
g_in_gx = true;
} else {
gx.set_data(allocator::malloc(gx.nbytes()));
}
if (g_copied && !g_in_gx) {
d.add_temporary(g, s.index);
}
auto axis_size = static_cast<uint32_t>(x.shape().back());
int n_rows = x.data_size() / axis_size;
// Allocate a temporary to store the gradients for w and allocate the output
// gradient accumulators.
array gw_temp =
(has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
if (has_w) {
if (!g_in_gx && donate_g) {
gw_temp.copy_shared_buffer(g);
} else {
gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
d.add_temporary(gw_temp, s.index);
}
}
gw.set_data(allocator::malloc(gw.nbytes()));
gb.set_data(allocator::malloc(gb.nbytes()));
// Finish with the gradient for b in case we had a b
auto& compute_encoder = d.get_command_encoder(s.index);
if (gb.ndim() == 1 && gb.size() == axis_size) {
ReductionPlan plan(
ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
strided_reduce_general_dispatch(
g, gb, "sum", plan, {0}, compute_encoder, d, s);
}
int simd_size = 32;
int n_reads = 8;
int looped_limit = 8192;
std::string op_name = "vjp_layer_norm";
if (axis_size > looped_limit) {
op_name += "_looped";
n_reads = 4;
}
op_name += type_to_name(gx);
std::string hash_name = op_name + ((has_w) ? "_w" : "_now");
metal::MTLFCList func_consts = {
{&has_w, MTL::DataType::DataTypeBool, 20},
};
{
auto kernel = d.get_kernel(op_name, hash_name, func_consts);
MTL::Size grid_dims, group_dims;
if (axis_size <= looped_limit) {
size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
size_t threadgroup_size = simd_size * simds_needed;
if (threadgroup_size > kernel->maxTotalThreadsPerThreadgroup()) {
std::ostringstream msg;
msg << "[vjp_layer_norm] Threadgroup size " << threadgroup_size
<< " is larger than the maximum allowed threadgroup size "
<< kernel->maxTotalThreadsPerThreadgroup();
throw std::runtime_error(msg.str());
}
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
} else {
size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
}
uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(w, 1);
compute_encoder.set_input_array(g, 2);
compute_encoder.set_output_array(gx, 3);
compute_encoder.set_output_array(gw_temp, 4);
compute_encoder.set_bytes(eps_, 5);
compute_encoder.set_bytes(axis_size, 6);
compute_encoder.set_bytes(w_stride, 7);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
if (has_w) {
ReductionPlan plan(
ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
strided_reduce_general_dispatch(
gw_temp, gw, "sum", plan, {0}, compute_encoder, d, s);
}
}
} // namespace mlx::core::fast