mlx/mlx/backend/common/binary.h

652 lines
18 KiB
C++

// Copyright © 2023 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
namespace {
enum class BinaryOpType {
ScalarScalar,
ScalarVector,
VectorScalar,
VectorVector,
General,
};
BinaryOpType get_binary_op_type(const array& a, const array& b) {
BinaryOpType bopt;
if (a.data_size() == 1 && b.data_size() == 1) {
bopt = BinaryOpType::ScalarScalar;
} else if (a.data_size() == 1 && b.flags().contiguous) {
bopt = BinaryOpType::ScalarVector;
} else if (b.data_size() == 1 && a.flags().contiguous) {
bopt = BinaryOpType::VectorScalar;
} else if (
a.flags().row_contiguous && b.flags().row_contiguous ||
a.flags().col_contiguous && b.flags().col_contiguous) {
bopt = BinaryOpType::VectorVector;
} else {
bopt = BinaryOpType::General;
}
return bopt;
}
void set_binary_op_output_data(
const array& a,
const array& b,
array& out,
BinaryOpType bopt,
bool donate_with_move = false) {
switch (bopt) {
case BinaryOpType::ScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
break;
case BinaryOpType::ScalarVector:
if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
out.copy_shared_buffer(b);
}
} else {
out.set_data(
allocator::malloc_or_wait(b.data_size() * out.itemsize()),
b.data_size(),
b.strides(),
b.flags());
}
break;
case BinaryOpType::VectorScalar:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else {
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
}
break;
case BinaryOpType::VectorVector:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
out.copy_shared_buffer(b);
}
} else {
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
}
break;
case BinaryOpType::General:
if (a.is_donatable() && a.flags().row_contiguous &&
a.itemsize() == out.itemsize() && a.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (
b.is_donatable() && b.flags().row_contiguous &&
b.itemsize() == out.itemsize() && b.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
out.copy_shared_buffer(b);
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
break;
}
}
struct UseDefaultBinaryOp {
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
// Should we throw? This should normally never be called.
assert(false);
}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
// Should we throw? This should normally never be called.
assert(false);
}
};
template <typename T, typename U, typename Op>
struct DefaultVectorScalar {
Op op;
DefaultVectorScalar(Op op_) : op(op_) {}
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *b;
while (size-- > 0) {
*dst = op(*a, scalar);
dst++;
a++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *b;
while (size-- > 0) {
auto dst = op(*a, scalar);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
}
}
};
template <typename T, typename U, typename Op>
struct DefaultScalarVector {
Op op;
DefaultScalarVector(Op op_) : op(op_) {}
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *a;
while (size-- > 0) {
*dst = op(scalar, *b);
dst++;
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *a;
while (size-- > 0) {
auto dst = op(scalar, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
b++;
}
}
};
template <typename T, typename U, typename Op>
struct DefaultVectorVector {
Op op;
DefaultVectorVector(Op op_) : op(op_) {}
void operator()(const T* a, const T* b, U* dst, int size) {
while (size-- > 0) {
*dst = op(*a, *b);
dst++;
a++;
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
while (size-- > 0) {
auto dst = op(*a, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op>
void binary_op_dims1(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < out.size(); ++i) {
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; i++) {
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
dst += stride;
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
dst += stride;
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims3(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[2];
b_idx += b.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims4(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[3];
b_idx += b.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op) {
switch (out.ndim()) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out, op);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out, op);
return;
case 3:
binary_op_dims3<T, U, Op>(a, b, out, op);
return;
case 4:
binary_op_dims4<T, U, Op>(a, b, out, op);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op,
int dim,
int stride) {
// Number of dimensions to loop over for vectorized ops
switch (dim) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out, op, stride);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out, op, stride);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i += stride) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
dst += stride;
}
}
template <
typename T,
typename U,
typename Op,
typename OpSV,
typename OpVS,
typename OpVV>
void binary_op(
const array& a,
const array& b,
array& out,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::ScalarScalar) {
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
opsv(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
opvs(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
opvv(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
return;
}
// General computation so let's try to optimize
// Get the left-most dim such that the array is row contiguous after
auto& strides = out.strides();
auto leftmost_rc_dim = [&strides](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a);
auto b_rc_dim = leftmost_rc_dim(b);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a);
auto b_s_dim = leftmost_s_dim(b);
auto ndim = out.ndim();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out, opvv, dim, stride);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out, opvs, dim, stride);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out, opsv, dim, stride);
break;
default:
binary_op_dispatch_dims<T, U>(a, b, out, op);
break;
}
}
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
void binary_op(
const array& a,
const array& b,
array& out,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
// TODO: The following mess of constexpr evaluations can probably be achieved
// with template specializations and overloading. Would it be simpler?
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
binary_op<T, T>(
a,
b,
out,
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv and opvs were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
out,
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opsv and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
out,
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, DefaultScalarVector<T, T, Op>(op), opvs, opvv);
}
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvs and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
out,
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opvs was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, opsv, DefaultVectorScalar<T, T, Op>(op), opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvv was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, opsv, opvs, DefaultVectorVector<T, T, Op>(op));
} else {
// All ops provided
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
}
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
DefaultScalarVector<T, T, Op> opsv(op);
DefaultVectorScalar<T, T, Op> opvs(op);
DefaultVectorVector<T, T, Op> opvv(op);
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
}
template <typename... Ops>
void binary(const array& a, const array& b, array& out, Ops... ops) {
switch (out.dtype()) {
case bool_:
binary_op<bool>(a, b, out, ops...);
break;
case uint8:
binary_op<uint8_t>(a, b, out, ops...);
break;
case uint16:
binary_op<uint16_t>(a, b, out, ops...);
break;
case uint32:
binary_op<uint32_t>(a, b, out, ops...);
break;
case uint64:
binary_op<uint64_t>(a, b, out, ops...);
break;
case int8:
binary_op<int8_t>(a, b, out, ops...);
break;
case int16:
binary_op<int16_t>(a, b, out, ops...);
break;
case int32:
binary_op<int32_t>(a, b, out, ops...);
break;
case int64:
binary_op<int64_t>(a, b, out, ops...);
break;
case float16:
binary_op<float16_t>(a, b, out, ops...);
break;
case float32:
binary_op<float>(a, b, out, ops...);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, out, ops...);
break;
case complex64:
binary_op<complex64_t>(a, b, out, ops...);
break;
}
}
} // namespace
} // namespace mlx::core