mlx/mlx/random.h
Luca Arnaboldi fffe072028
Implementation of mlx.random.multivariate_normal (#502) (#877)
* Implementation of mlx.random.multivariate_normal (#502)

* Update python/src/random.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/random.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/random.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Updated typo in docstring

* Restricted multivariate_normal to  float32

* Generic mean and variance shapes

* Review edits

* Update mlx/random.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/random.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/random.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/random.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Test for ndim of mean and cov

* nits

* smaller size for test

* fix broadcasted sampling

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-04-09 13:50:12 -07:00

227 lines
5.8 KiB
C++

// Copyright © 2023 Apple Inc.
#pragma once
#include <chrono>
#include <optional>
#include "mlx/array.h"
#include "mlx/stream.h"
namespace mlx::core::random {
class KeySequence {
public:
explicit KeySequence(uint64_t seed);
void seed(uint64_t seed);
array next();
// static default
static KeySequence& default_() {
static KeySequence ks(get_current_time_seed());
return ks;
}
private:
array key_;
static uint64_t get_current_time_seed() {
auto now = std::chrono::system_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(
now.time_since_epoch())
.count();
}
};
/** Get a PRNG key from a seed. */
array key(uint64_t seed);
/** Seed the default PRNG key. */
void seed(uint64_t seed);
/** Generate an array with type uint32 filled with random bits. */
array bits(
const std::vector<int>& shape,
int width,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array bits(
const std::vector<int>& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return bits(shape, 4, key, s);
}
/** Split the rng key into a pair of keys. */
std::pair<array, array> split(const array& key, StreamOrDevice s = {});
/** Split the rng key into `num` keys. */
array split(const array& key, int num, StreamOrDevice s = {});
/** Generate uniform random numbers between low and high. */
array uniform(
const array& low,
const array& high,
const std::vector<int>& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
template <typename T, typename U>
array uniform(
T low,
U high,
const std::vector<int>& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return uniform(array(low), array(high), shape, dtype, key, to_stream(s));
}
/** Generate uniform random numbers between 0 and 1. */
array uniform(
const std::vector<int>& shape,
Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array uniform(
const std::vector<int>& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return uniform(shape, float32, key);
}
/** Generate samples from the standard normal distribution. */
array normal(
const std::vector<int>& shape,
Dtype dtype,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array normal(
const std::vector<int>& shape,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return normal(shape, float32, loc, scale, key, s);
}
inline array normal(
const std::vector<int>& shape,
const Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return normal(shape, dtype, 0.0, 1.0, key, s);
}
inline array normal(
const std::vector<int>& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return normal(shape, float32, 0.0, 1.0, key, s);
}
/** Generate samples from a multivariate normal distribution. **/
array multivariate_normal(
const array& mean,
const array& cov,
const std::vector<int>& shape,
Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
/** Generate integer samples uniformly at random */
array randint(
const array& low,
const array& high,
const std::vector<int>& shape,
Dtype dtype = int32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
template <typename T, typename U>
array randint(
T low,
U high,
const std::vector<int>& shape,
Dtype dtype = int32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return randint(array(low), array(high), shape, dtype, key, to_stream(s));
};
/** Generate binary variables with probability to be true equal to p */
array bernoulli(
const array& p,
const std::vector<int>& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array bernoulli(
const array& p,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
template <typename T>
array bernoulli(
T p,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return bernoulli(array(p), key, s);
};
template <typename T>
array bernoulli(
T p,
const std::vector<int>& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return bernoulli(array(p), shape, key, s);
};
array bernoulli(
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array truncated_normal(
const array& lower,
const array& upper,
const std::vector<int>& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array truncated_normal(
const array& lower,
const array& upper,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array gumbel(
const std::vector<int>& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array categorical(
const array& logits,
int axis,
const std::vector<int>& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array categorical(
const array& logits_,
int axis,
int num_samples,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array categorical(
const array& logits,
int axis = -1,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
} // namespace mlx::core::random