590 lines
19 KiB
Python
590 lines
19 KiB
Python
![]() |
from copy import deepcopy
|
||
|
import datetime
|
||
|
import pydoc
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
Categorical,
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
SparseDataFrame,
|
||
|
SparseDtype,
|
||
|
compat,
|
||
|
date_range,
|
||
|
timedelta_range,
|
||
|
)
|
||
|
import pandas.util.testing as tm
|
||
|
from pandas.util.testing import (
|
||
|
assert_almost_equal,
|
||
|
assert_frame_equal,
|
||
|
assert_series_equal,
|
||
|
)
|
||
|
|
||
|
|
||
|
class SharedWithSparse:
|
||
|
"""
|
||
|
A collection of tests DataFrame and SparseDataFrame can share.
|
||
|
|
||
|
In generic tests on this class, use ``self._assert_frame_equal()`` and
|
||
|
``self._assert_series_equal()`` which are implemented in sub-classes
|
||
|
and dispatch correctly.
|
||
|
"""
|
||
|
|
||
|
def _assert_frame_equal(self, left, right):
|
||
|
"""Dispatch to frame class dependent assertion"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def _assert_series_equal(self, left, right):
|
||
|
"""Dispatch to series class dependent assertion"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def test_copy_index_name_checking(self, float_frame):
|
||
|
# don't want to be able to modify the index stored elsewhere after
|
||
|
# making a copy
|
||
|
for attr in ("index", "columns"):
|
||
|
ind = getattr(float_frame, attr)
|
||
|
ind.name = None
|
||
|
cp = float_frame.copy()
|
||
|
getattr(cp, attr).name = "foo"
|
||
|
assert getattr(float_frame, attr).name is None
|
||
|
|
||
|
def test_getitem_pop_assign_name(self, float_frame):
|
||
|
s = float_frame["A"]
|
||
|
assert s.name == "A"
|
||
|
|
||
|
s = float_frame.pop("A")
|
||
|
assert s.name == "A"
|
||
|
|
||
|
s = float_frame.loc[:, "B"]
|
||
|
assert s.name == "B"
|
||
|
|
||
|
s2 = s.loc[:]
|
||
|
assert s2.name == "B"
|
||
|
|
||
|
def test_get_value(self, float_frame):
|
||
|
for idx in float_frame.index:
|
||
|
for col in float_frame.columns:
|
||
|
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
|
||
|
result = float_frame.get_value(idx, col)
|
||
|
expected = float_frame[col][idx]
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def test_add_prefix_suffix(self, float_frame):
|
||
|
with_prefix = float_frame.add_prefix("foo#")
|
||
|
expected = pd.Index(["foo#{c}".format(c=c) for c in float_frame.columns])
|
||
|
tm.assert_index_equal(with_prefix.columns, expected)
|
||
|
|
||
|
with_suffix = float_frame.add_suffix("#foo")
|
||
|
expected = pd.Index(["{c}#foo".format(c=c) for c in float_frame.columns])
|
||
|
tm.assert_index_equal(with_suffix.columns, expected)
|
||
|
|
||
|
with_pct_prefix = float_frame.add_prefix("%")
|
||
|
expected = pd.Index(["%{c}".format(c=c) for c in float_frame.columns])
|
||
|
tm.assert_index_equal(with_pct_prefix.columns, expected)
|
||
|
|
||
|
with_pct_suffix = float_frame.add_suffix("%")
|
||
|
expected = pd.Index(["{c}%".format(c=c) for c in float_frame.columns])
|
||
|
tm.assert_index_equal(with_pct_suffix.columns, expected)
|
||
|
|
||
|
def test_get_axis(self, float_frame):
|
||
|
f = float_frame
|
||
|
assert f._get_axis_number(0) == 0
|
||
|
assert f._get_axis_number(1) == 1
|
||
|
assert f._get_axis_number("index") == 0
|
||
|
assert f._get_axis_number("rows") == 0
|
||
|
assert f._get_axis_number("columns") == 1
|
||
|
|
||
|
assert f._get_axis_name(0) == "index"
|
||
|
assert f._get_axis_name(1) == "columns"
|
||
|
assert f._get_axis_name("index") == "index"
|
||
|
assert f._get_axis_name("rows") == "index"
|
||
|
assert f._get_axis_name("columns") == "columns"
|
||
|
|
||
|
assert f._get_axis(0) is f.index
|
||
|
assert f._get_axis(1) is f.columns
|
||
|
|
||
|
with pytest.raises(ValueError, match="No axis named"):
|
||
|
f._get_axis_number(2)
|
||
|
|
||
|
with pytest.raises(ValueError, match="No axis.*foo"):
|
||
|
f._get_axis_name("foo")
|
||
|
|
||
|
with pytest.raises(ValueError, match="No axis.*None"):
|
||
|
f._get_axis_name(None)
|
||
|
|
||
|
with pytest.raises(ValueError, match="No axis named"):
|
||
|
f._get_axis_number(None)
|
||
|
|
||
|
def test_keys(self, float_frame):
|
||
|
getkeys = float_frame.keys
|
||
|
assert getkeys() is float_frame.columns
|
||
|
|
||
|
def test_column_contains_raises(self, float_frame):
|
||
|
with pytest.raises(TypeError, match="unhashable type: 'Index'"):
|
||
|
float_frame.columns in float_frame
|
||
|
|
||
|
def test_tab_completion(self):
|
||
|
# DataFrame whose columns are identifiers shall have them in __dir__.
|
||
|
df = pd.DataFrame([list("abcd"), list("efgh")], columns=list("ABCD"))
|
||
|
for key in list("ABCD"):
|
||
|
assert key in dir(df)
|
||
|
assert isinstance(df.__getitem__("A"), pd.Series)
|
||
|
|
||
|
# DataFrame whose first-level columns are identifiers shall have
|
||
|
# them in __dir__.
|
||
|
df = pd.DataFrame(
|
||
|
[list("abcd"), list("efgh")],
|
||
|
columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))),
|
||
|
)
|
||
|
for key in list("ABCD"):
|
||
|
assert key in dir(df)
|
||
|
for key in list("EFGH"):
|
||
|
assert key not in dir(df)
|
||
|
assert isinstance(df.__getitem__("A"), pd.DataFrame)
|
||
|
|
||
|
def test_not_hashable(self):
|
||
|
empty_frame = DataFrame()
|
||
|
|
||
|
df = self.klass([1])
|
||
|
msg = "'(Sparse)?DataFrame' objects are mutable, thus they cannot be hashed"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
hash(df)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
hash(empty_frame)
|
||
|
|
||
|
def test_new_empty_index(self):
|
||
|
df1 = self.klass(np.random.randn(0, 3))
|
||
|
df2 = self.klass(np.random.randn(0, 3))
|
||
|
df1.index.name = "foo"
|
||
|
assert df2.index.name is None
|
||
|
|
||
|
def test_array_interface(self, float_frame):
|
||
|
with np.errstate(all="ignore"):
|
||
|
result = np.sqrt(float_frame)
|
||
|
assert isinstance(result, type(float_frame))
|
||
|
assert result.index is float_frame.index
|
||
|
assert result.columns is float_frame.columns
|
||
|
|
||
|
self._assert_frame_equal(result, float_frame.apply(np.sqrt))
|
||
|
|
||
|
def test_get_agg_axis(self, float_frame):
|
||
|
cols = float_frame._get_agg_axis(0)
|
||
|
assert cols is float_frame.columns
|
||
|
|
||
|
idx = float_frame._get_agg_axis(1)
|
||
|
assert idx is float_frame.index
|
||
|
|
||
|
msg = r"Axis must be 0 or 1 \(got 2\)"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
float_frame._get_agg_axis(2)
|
||
|
|
||
|
def test_nonzero(self, float_frame, float_string_frame):
|
||
|
empty_frame = DataFrame()
|
||
|
assert empty_frame.empty
|
||
|
|
||
|
assert not float_frame.empty
|
||
|
assert not float_string_frame.empty
|
||
|
|
||
|
# corner case
|
||
|
df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3))
|
||
|
del df["A"]
|
||
|
assert not df.empty
|
||
|
|
||
|
def test_iteritems(self):
|
||
|
df = self.klass([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
|
||
|
for k, v in df.items():
|
||
|
assert isinstance(v, self.klass._constructor_sliced)
|
||
|
|
||
|
def test_items(self):
|
||
|
# GH 17213, GH 13918
|
||
|
cols = ["a", "b", "c"]
|
||
|
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
|
||
|
for c, (k, v) in zip(cols, df.items()):
|
||
|
assert c == k
|
||
|
assert isinstance(v, Series)
|
||
|
assert (df[k] == v).all()
|
||
|
|
||
|
def test_iter(self, float_frame):
|
||
|
assert tm.equalContents(list(float_frame), float_frame.columns)
|
||
|
|
||
|
def test_iterrows(self, float_frame, float_string_frame):
|
||
|
for k, v in float_frame.iterrows():
|
||
|
exp = float_frame.loc[k]
|
||
|
self._assert_series_equal(v, exp)
|
||
|
|
||
|
for k, v in float_string_frame.iterrows():
|
||
|
exp = float_string_frame.loc[k]
|
||
|
self._assert_series_equal(v, exp)
|
||
|
|
||
|
def test_iterrows_iso8601(self):
|
||
|
# GH 19671
|
||
|
if self.klass == SparseDataFrame:
|
||
|
pytest.xfail(reason="SparseBlock datetime type not implemented.")
|
||
|
|
||
|
s = self.klass(
|
||
|
{
|
||
|
"non_iso8601": ["M1701", "M1802", "M1903", "M2004"],
|
||
|
"iso8601": date_range("2000-01-01", periods=4, freq="M"),
|
||
|
}
|
||
|
)
|
||
|
for k, v in s.iterrows():
|
||
|
exp = s.loc[k]
|
||
|
self._assert_series_equal(v, exp)
|
||
|
|
||
|
def test_iterrows_corner(self):
|
||
|
# gh-12222
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"a": [datetime.datetime(2015, 1, 1)],
|
||
|
"b": [None],
|
||
|
"c": [None],
|
||
|
"d": [""],
|
||
|
"e": [[]],
|
||
|
"f": [set()],
|
||
|
"g": [{}],
|
||
|
}
|
||
|
)
|
||
|
expected = Series(
|
||
|
[datetime.datetime(2015, 1, 1), None, None, "", [], set(), {}],
|
||
|
index=list("abcdefg"),
|
||
|
name=0,
|
||
|
dtype="object",
|
||
|
)
|
||
|
_, result = next(df.iterrows())
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_itertuples(self, float_frame):
|
||
|
for i, tup in enumerate(float_frame.itertuples()):
|
||
|
s = self.klass._constructor_sliced(tup[1:])
|
||
|
s.name = tup[0]
|
||
|
expected = float_frame.iloc[i, :].reset_index(drop=True)
|
||
|
self._assert_series_equal(s, expected)
|
||
|
|
||
|
df = self.klass(
|
||
|
{"floats": np.random.randn(5), "ints": range(5)}, columns=["floats", "ints"]
|
||
|
)
|
||
|
|
||
|
for tup in df.itertuples(index=False):
|
||
|
assert isinstance(tup[1], int)
|
||
|
|
||
|
df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
|
||
|
dfaa = df[["a", "a"]]
|
||
|
|
||
|
assert list(dfaa.itertuples()) == [(0, 1, 1), (1, 2, 2), (2, 3, 3)]
|
||
|
|
||
|
# repr with int on 32-bit/windows
|
||
|
if not (compat.is_platform_windows() or compat.is_platform_32bit()):
|
||
|
assert (
|
||
|
repr(list(df.itertuples(name=None)))
|
||
|
== "[(0, 1, 4), (1, 2, 5), (2, 3, 6)]"
|
||
|
)
|
||
|
|
||
|
tup = next(df.itertuples(name="TestName"))
|
||
|
assert tup._fields == ("Index", "a", "b")
|
||
|
assert (tup.Index, tup.a, tup.b) == tup
|
||
|
assert type(tup).__name__ == "TestName"
|
||
|
|
||
|
df.columns = ["def", "return"]
|
||
|
tup2 = next(df.itertuples(name="TestName"))
|
||
|
assert tup2 == (0, 1, 4)
|
||
|
assert tup2._fields == ("Index", "_1", "_2")
|
||
|
|
||
|
df3 = DataFrame({"f" + str(i): [i] for i in range(1024)})
|
||
|
# will raise SyntaxError if trying to create namedtuple
|
||
|
tup3 = next(df3.itertuples())
|
||
|
assert not hasattr(tup3, "_fields")
|
||
|
assert isinstance(tup3, tuple)
|
||
|
|
||
|
def test_sequence_like_with_categorical(self):
|
||
|
|
||
|
# GH 7839
|
||
|
# make sure can iterate
|
||
|
df = DataFrame(
|
||
|
{"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]}
|
||
|
)
|
||
|
df["grade"] = Categorical(df["raw_grade"])
|
||
|
|
||
|
# basic sequencing testing
|
||
|
result = list(df.grade.values)
|
||
|
expected = np.array(df.grade.values).tolist()
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
# iteration
|
||
|
for t in df.itertuples(index=False):
|
||
|
str(t)
|
||
|
|
||
|
for row, s in df.iterrows():
|
||
|
str(s)
|
||
|
|
||
|
for c, col in df.items():
|
||
|
str(s)
|
||
|
|
||
|
def test_len(self, float_frame):
|
||
|
assert len(float_frame) == len(float_frame.index)
|
||
|
|
||
|
def test_values(self, float_frame, float_string_frame):
|
||
|
frame = float_frame
|
||
|
arr = frame.values
|
||
|
|
||
|
frame_cols = frame.columns
|
||
|
for i, row in enumerate(arr):
|
||
|
for j, value in enumerate(row):
|
||
|
col = frame_cols[j]
|
||
|
if np.isnan(value):
|
||
|
assert np.isnan(frame[col][i])
|
||
|
else:
|
||
|
assert value == frame[col][i]
|
||
|
|
||
|
# mixed type
|
||
|
arr = float_string_frame[["foo", "A"]].values
|
||
|
assert arr[0, 0] == "bar"
|
||
|
|
||
|
df = self.klass({"complex": [1j, 2j, 3j], "real": [1, 2, 3]})
|
||
|
arr = df.values
|
||
|
assert arr[0, 0] == 1j
|
||
|
|
||
|
# single block corner case
|
||
|
arr = float_frame[["A", "B"]].values
|
||
|
expected = float_frame.reindex(columns=["A", "B"]).values
|
||
|
assert_almost_equal(arr, expected)
|
||
|
|
||
|
def test_to_numpy(self):
|
||
|
df = pd.DataFrame({"A": [1, 2], "B": [3, 4.5]})
|
||
|
expected = np.array([[1, 3], [2, 4.5]])
|
||
|
result = df.to_numpy()
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_to_numpy_dtype(self):
|
||
|
df = pd.DataFrame({"A": [1, 2], "B": [3, 4.5]})
|
||
|
expected = np.array([[1, 3], [2, 4]], dtype="int64")
|
||
|
result = df.to_numpy(dtype="int64")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_to_numpy_copy(self):
|
||
|
arr = np.random.randn(4, 3)
|
||
|
df = pd.DataFrame(arr)
|
||
|
assert df.values.base is arr
|
||
|
assert df.to_numpy(copy=False).base is arr
|
||
|
assert df.to_numpy(copy=True).base is None
|
||
|
|
||
|
def test_transpose(self, float_frame):
|
||
|
frame = float_frame
|
||
|
dft = frame.T
|
||
|
for idx, series in dft.items():
|
||
|
for col, value in series.items():
|
||
|
if np.isnan(value):
|
||
|
assert np.isnan(frame[col][idx])
|
||
|
else:
|
||
|
assert value == frame[col][idx]
|
||
|
|
||
|
# mixed type
|
||
|
index, data = tm.getMixedTypeDict()
|
||
|
mixed = self.klass(data, index=index)
|
||
|
|
||
|
mixed_T = mixed.T
|
||
|
for col, s in mixed_T.items():
|
||
|
assert s.dtype == np.object_
|
||
|
|
||
|
def test_swapaxes(self):
|
||
|
df = self.klass(np.random.randn(10, 5))
|
||
|
self._assert_frame_equal(df.T, df.swapaxes(0, 1))
|
||
|
self._assert_frame_equal(df.T, df.swapaxes(1, 0))
|
||
|
self._assert_frame_equal(df, df.swapaxes(0, 0))
|
||
|
msg = (
|
||
|
"No axis named 2 for object type"
|
||
|
r" <class 'pandas.core(.sparse)?.frame.(Sparse)?DataFrame'>"
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.swapaxes(2, 5)
|
||
|
|
||
|
def test_axis_aliases(self, float_frame):
|
||
|
f = float_frame
|
||
|
|
||
|
# reg name
|
||
|
expected = f.sum(axis=0)
|
||
|
result = f.sum(axis="index")
|
||
|
assert_series_equal(result, expected)
|
||
|
|
||
|
expected = f.sum(axis=1)
|
||
|
result = f.sum(axis="columns")
|
||
|
assert_series_equal(result, expected)
|
||
|
|
||
|
def test_class_axis(self):
|
||
|
# GH 18147
|
||
|
# no exception and no empty docstring
|
||
|
assert pydoc.getdoc(DataFrame.index)
|
||
|
assert pydoc.getdoc(DataFrame.columns)
|
||
|
|
||
|
def test_more_values(self, float_string_frame):
|
||
|
values = float_string_frame.values
|
||
|
assert values.shape[1] == len(float_string_frame.columns)
|
||
|
|
||
|
def test_repr_with_mi_nat(self, float_string_frame):
|
||
|
df = self.klass(
|
||
|
{"X": [1, 2]}, index=[[pd.NaT, pd.Timestamp("20130101")], ["a", "b"]]
|
||
|
)
|
||
|
result = repr(df)
|
||
|
expected = " X\nNaT a 1\n2013-01-01 b 2"
|
||
|
assert result == expected
|
||
|
|
||
|
def test_items_names(self, float_string_frame):
|
||
|
for k, v in float_string_frame.items():
|
||
|
assert v.name == k
|
||
|
|
||
|
def test_series_put_names(self, float_string_frame):
|
||
|
series = float_string_frame._series
|
||
|
for k, v in series.items():
|
||
|
assert v.name == k
|
||
|
|
||
|
def test_empty_nonzero(self):
|
||
|
df = self.klass([1, 2, 3])
|
||
|
assert not df.empty
|
||
|
df = self.klass(index=[1], columns=[1])
|
||
|
assert not df.empty
|
||
|
df = self.klass(index=["a", "b"], columns=["c", "d"]).dropna()
|
||
|
assert df.empty
|
||
|
assert df.T.empty
|
||
|
empty_frames = [
|
||
|
self.klass(),
|
||
|
self.klass(index=[1]),
|
||
|
self.klass(columns=[1]),
|
||
|
self.klass({1: []}),
|
||
|
]
|
||
|
for df in empty_frames:
|
||
|
assert df.empty
|
||
|
assert df.T.empty
|
||
|
|
||
|
def test_with_datetimelikes(self):
|
||
|
|
||
|
df = self.klass(
|
||
|
{
|
||
|
"A": date_range("20130101", periods=10),
|
||
|
"B": timedelta_range("1 day", periods=10),
|
||
|
}
|
||
|
)
|
||
|
t = df.T
|
||
|
|
||
|
result = t.dtypes.value_counts()
|
||
|
if self.klass is DataFrame:
|
||
|
expected = Series({np.dtype("object"): 10})
|
||
|
else:
|
||
|
expected = Series({SparseDtype(dtype=object): 10})
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestDataFrameMisc(SharedWithSparse):
|
||
|
|
||
|
klass = DataFrame
|
||
|
# SharedWithSparse tests use generic, klass-agnostic assertion
|
||
|
_assert_frame_equal = staticmethod(assert_frame_equal)
|
||
|
_assert_series_equal = staticmethod(assert_series_equal)
|
||
|
|
||
|
def test_values(self, float_frame):
|
||
|
float_frame.values[:, 0] = 5.0
|
||
|
assert (float_frame.values[:, 0] == 5).all()
|
||
|
|
||
|
def test_as_matrix_deprecated(self, float_frame):
|
||
|
# GH 18458
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
cols = float_frame.columns.tolist()
|
||
|
result = float_frame.as_matrix(columns=cols)
|
||
|
expected = float_frame.values
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_deepcopy(self, float_frame):
|
||
|
cp = deepcopy(float_frame)
|
||
|
series = cp["A"]
|
||
|
series[:] = 10
|
||
|
for idx, value in series.items():
|
||
|
assert float_frame["A"][idx] != value
|
||
|
|
||
|
def test_transpose_get_view(self, float_frame):
|
||
|
dft = float_frame.T
|
||
|
dft.values[:, 5:10] = 5
|
||
|
|
||
|
assert (float_frame.values[5:10] == 5).all()
|
||
|
|
||
|
def test_inplace_return_self(self):
|
||
|
# GH 1893
|
||
|
|
||
|
data = DataFrame(
|
||
|
{"a": ["foo", "bar", "baz", "qux"], "b": [0, 0, 1, 1], "c": [1, 2, 3, 4]}
|
||
|
)
|
||
|
|
||
|
def _check_f(base, f):
|
||
|
result = f(base)
|
||
|
assert result is None
|
||
|
|
||
|
# -----DataFrame-----
|
||
|
|
||
|
# set_index
|
||
|
f = lambda x: x.set_index("a", inplace=True)
|
||
|
_check_f(data.copy(), f)
|
||
|
|
||
|
# reset_index
|
||
|
f = lambda x: x.reset_index(inplace=True)
|
||
|
_check_f(data.set_index("a"), f)
|
||
|
|
||
|
# drop_duplicates
|
||
|
f = lambda x: x.drop_duplicates(inplace=True)
|
||
|
_check_f(data.copy(), f)
|
||
|
|
||
|
# sort
|
||
|
f = lambda x: x.sort_values("b", inplace=True)
|
||
|
_check_f(data.copy(), f)
|
||
|
|
||
|
# sort_index
|
||
|
f = lambda x: x.sort_index(inplace=True)
|
||
|
_check_f(data.copy(), f)
|
||
|
|
||
|
# fillna
|
||
|
f = lambda x: x.fillna(0, inplace=True)
|
||
|
_check_f(data.copy(), f)
|
||
|
|
||
|
# replace
|
||
|
f = lambda x: x.replace(1, 0, inplace=True)
|
||
|
_check_f(data.copy(), f)
|
||
|
|
||
|
# rename
|
||
|
f = lambda x: x.rename({1: "foo"}, inplace=True)
|
||
|
_check_f(data.copy(), f)
|
||
|
|
||
|
# -----Series-----
|
||
|
d = data.copy()["c"]
|
||
|
|
||
|
# reset_index
|
||
|
f = lambda x: x.reset_index(inplace=True, drop=True)
|
||
|
_check_f(data.set_index("a")["c"], f)
|
||
|
|
||
|
# fillna
|
||
|
f = lambda x: x.fillna(0, inplace=True)
|
||
|
_check_f(d.copy(), f)
|
||
|
|
||
|
# replace
|
||
|
f = lambda x: x.replace(1, 0, inplace=True)
|
||
|
_check_f(d.copy(), f)
|
||
|
|
||
|
# rename
|
||
|
f = lambda x: x.rename({1: "foo"}, inplace=True)
|
||
|
_check_f(d.copy(), f)
|
||
|
|
||
|
def test_tab_complete_warning(self, ip):
|
||
|
# GH 16409
|
||
|
pytest.importorskip("IPython", minversion="6.0.0")
|
||
|
from IPython.core.completer import provisionalcompleter
|
||
|
|
||
|
code = "import pandas as pd; df = pd.DataFrame()"
|
||
|
ip.run_code(code)
|
||
|
with tm.assert_produces_warning(None):
|
||
|
with provisionalcompleter("ignore"):
|
||
|
list(ip.Completer.completions("df.", 1))
|
||
|
|
||
|
def test_get_values_deprecated(self):
|
||
|
df = DataFrame({"a": [1, 2], "b": [0.1, 0.2]})
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
res = df.get_values()
|
||
|
tm.assert_numpy_array_equal(res, df.values)
|