python-by-example-150-chall.../venv/lib/python3.6/site-packages/pandas/tests/io/test_pickle.py

395 lines
12 KiB
Python
Raw Normal View History

2019-08-04 20:26:35 +08:00
"""
manage legacy pickle tests
How to add pickle tests:
1. Install pandas version intended to output the pickle.
2. Execute "generate_legacy_storage_files.py" to create the pickle.
$ python generate_legacy_storage_files.py <output_dir> pickle
3. Move the created pickle to "data/legacy_pickle/<version>" directory.
"""
import bz2
import glob
import gzip
import lzma
import os
import pickle
import shutil
from warnings import catch_warnings, simplefilter
import zipfile
import pytest
from pandas.compat import is_platform_little_endian
import pandas as pd
from pandas import Index
import pandas.util.testing as tm
from pandas.tseries.offsets import Day, MonthEnd
@pytest.fixture(scope="module")
def current_pickle_data():
# our current version pickle data
from pandas.tests.io.generate_legacy_storage_files import create_pickle_data
return create_pickle_data()
# ---------------------
# comparison functions
# ---------------------
def compare_element(result, expected, typ, version=None):
if isinstance(expected, Index):
tm.assert_index_equal(expected, result)
return
if typ.startswith("sp_"):
comparator = getattr(tm, "assert_{typ}_equal".format(typ=typ))
comparator(result, expected, exact_indices=False)
elif typ == "timestamp":
if expected is pd.NaT:
assert result is pd.NaT
else:
assert result == expected
assert result.freq == expected.freq
else:
comparator = getattr(
tm, "assert_{typ}_equal".format(typ=typ), tm.assert_almost_equal
)
comparator(result, expected)
def compare(data, vf, version):
data = pd.read_pickle(vf)
m = globals()
for typ, dv in data.items():
for dt, result in dv.items():
expected = data[typ][dt]
# use a specific comparator
# if available
comparator = "compare_{typ}_{dt}".format(typ=typ, dt=dt)
comparator = m.get(comparator, m["compare_element"])
comparator(result, expected, typ, version)
return data
def compare_sp_series_ts(res, exp, typ, version):
tm.assert_sp_series_equal(res, exp)
def compare_series_ts(result, expected, typ, version):
# GH 7748
tm.assert_series_equal(result, expected)
assert result.index.freq == expected.index.freq
assert not result.index.freq.normalize
tm.assert_series_equal(result > 0, expected > 0)
# GH 9291
freq = result.index.freq
assert freq + Day(1) == Day(2)
res = freq + pd.Timedelta(hours=1)
assert isinstance(res, pd.Timedelta)
assert res == pd.Timedelta(days=1, hours=1)
res = freq + pd.Timedelta(nanoseconds=1)
assert isinstance(res, pd.Timedelta)
assert res == pd.Timedelta(days=1, nanoseconds=1)
def compare_series_dt_tz(result, expected, typ, version):
tm.assert_series_equal(result, expected)
def compare_series_cat(result, expected, typ, version):
tm.assert_series_equal(result, expected)
def compare_frame_dt_mixed_tzs(result, expected, typ, version):
tm.assert_frame_equal(result, expected)
def compare_frame_cat_onecol(result, expected, typ, version):
tm.assert_frame_equal(result, expected)
def compare_frame_cat_and_float(result, expected, typ, version):
compare_frame_cat_onecol(result, expected, typ, version)
def compare_index_period(result, expected, typ, version):
tm.assert_index_equal(result, expected)
assert isinstance(result.freq, MonthEnd)
assert result.freq == MonthEnd()
assert result.freqstr == "M"
tm.assert_index_equal(result.shift(2), expected.shift(2))
def compare_sp_frame_float(result, expected, typ, version):
tm.assert_sp_frame_equal(result, expected)
files = glob.glob(
os.path.join(os.path.dirname(__file__), "data", "legacy_pickle", "*", "*.pickle")
)
@pytest.fixture(params=files)
def legacy_pickle(request, datapath):
return datapath(request.param)
# ---------------------
# tests
# ---------------------
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_pickles(current_pickle_data, legacy_pickle):
if not is_platform_little_endian():
pytest.skip("known failure on non-little endian")
version = os.path.basename(os.path.dirname(legacy_pickle))
with catch_warnings(record=True):
simplefilter("ignore")
compare(current_pickle_data, legacy_pickle, version)
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_round_trip_current(current_pickle_data):
def python_pickler(obj, path):
with open(path, "wb") as fh:
pickle.dump(obj, fh, protocol=-1)
def python_unpickler(path):
with open(path, "rb") as fh:
fh.seek(0)
return pickle.load(fh)
data = current_pickle_data
for typ, dv in data.items():
for dt, expected in dv.items():
for writer in [pd.to_pickle, python_pickler]:
if writer is None:
continue
with tm.ensure_clean() as path:
# test writing with each pickler
writer(expected, path)
# test reading with each unpickler
result = pd.read_pickle(path)
compare_element(result, expected, typ)
result = python_unpickler(path)
compare_element(result, expected, typ)
def test_pickle_v0_14_1(datapath):
cat = pd.Categorical(
values=["a", "b", "c"], ordered=False, categories=["a", "b", "c", "d"]
)
pickle_path = datapath("io", "data", "categorical_0_14_1.pickle")
# This code was executed once on v0.14.1 to generate the pickle:
#
# cat = Categorical(labels=np.arange(3), levels=['a', 'b', 'c', 'd'],
# name='foobar')
# with open(pickle_path, 'wb') as f: pickle.dump(cat, f)
#
tm.assert_categorical_equal(cat, pd.read_pickle(pickle_path))
def test_pickle_v0_15_2(datapath):
# ordered -> _ordered
# GH 9347
cat = pd.Categorical(
values=["a", "b", "c"], ordered=False, categories=["a", "b", "c", "d"]
)
pickle_path = datapath("io", "data", "categorical_0_15_2.pickle")
# This code was executed once on v0.15.2 to generate the pickle:
#
# cat = Categorical(labels=np.arange(3), levels=['a', 'b', 'c', 'd'],
# name='foobar')
# with open(pickle_path, 'wb') as f: pickle.dump(cat, f)
#
tm.assert_categorical_equal(cat, pd.read_pickle(pickle_path))
def test_pickle_path_pathlib():
df = tm.makeDataFrame()
result = tm.round_trip_pathlib(df.to_pickle, pd.read_pickle)
tm.assert_frame_equal(df, result)
def test_pickle_path_localpath():
df = tm.makeDataFrame()
result = tm.round_trip_localpath(df.to_pickle, pd.read_pickle)
tm.assert_frame_equal(df, result)
# ---------------------
# test pickle compression
# ---------------------
@pytest.fixture
def get_random_path():
return "__{}__.pickle".format(tm.rands(10))
class TestCompression:
_compression_to_extension = {
None: ".none",
"gzip": ".gz",
"bz2": ".bz2",
"zip": ".zip",
"xz": ".xz",
}
def compress_file(self, src_path, dest_path, compression):
if compression is None:
shutil.copyfile(src_path, dest_path)
return
if compression == "gzip":
f = gzip.open(dest_path, "w")
elif compression == "bz2":
f = bz2.BZ2File(dest_path, "w")
elif compression == "zip":
with zipfile.ZipFile(dest_path, "w", compression=zipfile.ZIP_DEFLATED) as f:
f.write(src_path, os.path.basename(src_path))
elif compression == "xz":
f = lzma.LZMAFile(dest_path, "w")
else:
msg = "Unrecognized compression type: {}".format(compression)
raise ValueError(msg)
if compression != "zip":
with open(src_path, "rb") as fh, f:
f.write(fh.read())
def test_write_explicit(self, compression, get_random_path):
base = get_random_path
path1 = base + ".compressed"
path2 = base + ".raw"
with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
df = tm.makeDataFrame()
# write to compressed file
df.to_pickle(p1, compression=compression)
# decompress
with tm.decompress_file(p1, compression=compression) as f:
with open(p2, "wb") as fh:
fh.write(f.read())
# read decompressed file
df2 = pd.read_pickle(p2, compression=None)
tm.assert_frame_equal(df, df2)
@pytest.mark.parametrize("compression", ["", "None", "bad", "7z"])
def test_write_explicit_bad(self, compression, get_random_path):
with pytest.raises(ValueError, match="Unrecognized compression type"):
with tm.ensure_clean(get_random_path) as path:
df = tm.makeDataFrame()
df.to_pickle(path, compression=compression)
@pytest.mark.parametrize("ext", ["", ".gz", ".bz2", ".no_compress", ".xz"])
def test_write_infer(self, ext, get_random_path):
base = get_random_path
path1 = base + ext
path2 = base + ".raw"
compression = None
for c in self._compression_to_extension:
if self._compression_to_extension[c] == ext:
compression = c
break
with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
df = tm.makeDataFrame()
# write to compressed file by inferred compression method
df.to_pickle(p1)
# decompress
with tm.decompress_file(p1, compression=compression) as f:
with open(p2, "wb") as fh:
fh.write(f.read())
# read decompressed file
df2 = pd.read_pickle(p2, compression=None)
tm.assert_frame_equal(df, df2)
def test_read_explicit(self, compression, get_random_path):
base = get_random_path
path1 = base + ".raw"
path2 = base + ".compressed"
with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
df = tm.makeDataFrame()
# write to uncompressed file
df.to_pickle(p1, compression=None)
# compress
self.compress_file(p1, p2, compression=compression)
# read compressed file
df2 = pd.read_pickle(p2, compression=compression)
tm.assert_frame_equal(df, df2)
@pytest.mark.parametrize("ext", ["", ".gz", ".bz2", ".zip", ".no_compress", ".xz"])
def test_read_infer(self, ext, get_random_path):
base = get_random_path
path1 = base + ".raw"
path2 = base + ext
compression = None
for c in self._compression_to_extension:
if self._compression_to_extension[c] == ext:
compression = c
break
with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
df = tm.makeDataFrame()
# write to uncompressed file
df.to_pickle(p1, compression=None)
# compress
self.compress_file(p1, p2, compression=compression)
# read compressed file by inferred compression method
df2 = pd.read_pickle(p2)
tm.assert_frame_equal(df, df2)
# ---------------------
# test pickle compression
# ---------------------
class TestProtocol:
@pytest.mark.parametrize("protocol", [-1, 0, 1, 2])
def test_read(self, protocol, get_random_path):
with tm.ensure_clean(get_random_path) as path:
df = tm.makeDataFrame()
df.to_pickle(path, protocol=protocol)
df2 = pd.read_pickle(path)
tm.assert_frame_equal(df, df2)