8th day of python challenges 111-117
This commit is contained in:
212
venv/lib/python3.6/site-packages/numpy/random/__init__.py
Normal file
212
venv/lib/python3.6/site-packages/numpy/random/__init__.py
Normal file
@@ -0,0 +1,212 @@
|
||||
"""
|
||||
========================
|
||||
Random Number Generation
|
||||
========================
|
||||
|
||||
Use ``default_rng()`` to create a `Generator` and call its methods.
|
||||
|
||||
=============== =========================================================
|
||||
Generator
|
||||
--------------- ---------------------------------------------------------
|
||||
Generator Class implementing all of the random number distributions
|
||||
default_rng Default constructor for ``Generator``
|
||||
=============== =========================================================
|
||||
|
||||
============================================= ===
|
||||
BitGenerator Streams that work with Generator
|
||||
--------------------------------------------- ---
|
||||
MT19937
|
||||
PCG64
|
||||
Philox
|
||||
SFC64
|
||||
============================================= ===
|
||||
|
||||
============================================= ===
|
||||
Getting entropy to initialize a BitGenerator
|
||||
--------------------------------------------- ---
|
||||
SeedSequence
|
||||
============================================= ===
|
||||
|
||||
|
||||
Legacy
|
||||
------
|
||||
|
||||
For backwards compatibility with previous versions of numpy before 1.17, the
|
||||
various aliases to the global `RandomState` methods are left alone and do not
|
||||
use the new `Generator` API.
|
||||
|
||||
==================== =========================================================
|
||||
Utility functions
|
||||
-------------------- ---------------------------------------------------------
|
||||
random Uniformly distributed floats over ``[0, 1)``
|
||||
bytes Uniformly distributed random bytes.
|
||||
permutation Randomly permute a sequence / generate a random sequence.
|
||||
shuffle Randomly permute a sequence in place.
|
||||
choice Random sample from 1-D array.
|
||||
==================== =========================================================
|
||||
|
||||
==================== =========================================================
|
||||
Compatibility
|
||||
functions - removed
|
||||
in the new API
|
||||
-------------------- ---------------------------------------------------------
|
||||
rand Uniformly distributed values.
|
||||
randn Normally distributed values.
|
||||
ranf Uniformly distributed floating point numbers.
|
||||
random_integers Uniformly distributed integers in a given range.
|
||||
(deprecated, use ``integers(..., closed=True)`` instead)
|
||||
random_sample Alias for `random_sample`
|
||||
randint Uniformly distributed integers in a given range
|
||||
seed Seed the legacy random number generator.
|
||||
==================== =========================================================
|
||||
|
||||
==================== =========================================================
|
||||
Univariate
|
||||
distributions
|
||||
-------------------- ---------------------------------------------------------
|
||||
beta Beta distribution over ``[0, 1]``.
|
||||
binomial Binomial distribution.
|
||||
chisquare :math:`\\chi^2` distribution.
|
||||
exponential Exponential distribution.
|
||||
f F (Fisher-Snedecor) distribution.
|
||||
gamma Gamma distribution.
|
||||
geometric Geometric distribution.
|
||||
gumbel Gumbel distribution.
|
||||
hypergeometric Hypergeometric distribution.
|
||||
laplace Laplace distribution.
|
||||
logistic Logistic distribution.
|
||||
lognormal Log-normal distribution.
|
||||
logseries Logarithmic series distribution.
|
||||
negative_binomial Negative binomial distribution.
|
||||
noncentral_chisquare Non-central chi-square distribution.
|
||||
noncentral_f Non-central F distribution.
|
||||
normal Normal / Gaussian distribution.
|
||||
pareto Pareto distribution.
|
||||
poisson Poisson distribution.
|
||||
power Power distribution.
|
||||
rayleigh Rayleigh distribution.
|
||||
triangular Triangular distribution.
|
||||
uniform Uniform distribution.
|
||||
vonmises Von Mises circular distribution.
|
||||
wald Wald (inverse Gaussian) distribution.
|
||||
weibull Weibull distribution.
|
||||
zipf Zipf's distribution over ranked data.
|
||||
==================== =========================================================
|
||||
|
||||
==================== ==========================================================
|
||||
Multivariate
|
||||
distributions
|
||||
-------------------- ----------------------------------------------------------
|
||||
dirichlet Multivariate generalization of Beta distribution.
|
||||
multinomial Multivariate generalization of the binomial distribution.
|
||||
multivariate_normal Multivariate generalization of the normal distribution.
|
||||
==================== ==========================================================
|
||||
|
||||
==================== =========================================================
|
||||
Standard
|
||||
distributions
|
||||
-------------------- ---------------------------------------------------------
|
||||
standard_cauchy Standard Cauchy-Lorentz distribution.
|
||||
standard_exponential Standard exponential distribution.
|
||||
standard_gamma Standard Gamma distribution.
|
||||
standard_normal Standard normal distribution.
|
||||
standard_t Standard Student's t-distribution.
|
||||
==================== =========================================================
|
||||
|
||||
==================== =========================================================
|
||||
Internal functions
|
||||
-------------------- ---------------------------------------------------------
|
||||
get_state Get tuple representing internal state of generator.
|
||||
set_state Set state of generator.
|
||||
==================== =========================================================
|
||||
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
__all__ = [
|
||||
'beta',
|
||||
'binomial',
|
||||
'bytes',
|
||||
'chisquare',
|
||||
'choice',
|
||||
'dirichlet',
|
||||
'exponential',
|
||||
'f',
|
||||
'gamma',
|
||||
'geometric',
|
||||
'get_state',
|
||||
'gumbel',
|
||||
'hypergeometric',
|
||||
'laplace',
|
||||
'logistic',
|
||||
'lognormal',
|
||||
'logseries',
|
||||
'multinomial',
|
||||
'multivariate_normal',
|
||||
'negative_binomial',
|
||||
'noncentral_chisquare',
|
||||
'noncentral_f',
|
||||
'normal',
|
||||
'pareto',
|
||||
'permutation',
|
||||
'poisson',
|
||||
'power',
|
||||
'rand',
|
||||
'randint',
|
||||
'randn',
|
||||
'random',
|
||||
'random_integers',
|
||||
'random_sample',
|
||||
'ranf',
|
||||
'rayleigh',
|
||||
'sample',
|
||||
'seed',
|
||||
'set_state',
|
||||
'shuffle',
|
||||
'standard_cauchy',
|
||||
'standard_exponential',
|
||||
'standard_gamma',
|
||||
'standard_normal',
|
||||
'standard_t',
|
||||
'triangular',
|
||||
'uniform',
|
||||
'vonmises',
|
||||
'wald',
|
||||
'weibull',
|
||||
'zipf',
|
||||
]
|
||||
|
||||
from . import mtrand
|
||||
from .mtrand import *
|
||||
from .generator import Generator, default_rng
|
||||
from .bit_generator import SeedSequence
|
||||
from .mt19937 import MT19937
|
||||
from .pcg64 import PCG64
|
||||
from .philox import Philox
|
||||
from .sfc64 import SFC64
|
||||
from .mtrand import RandomState
|
||||
|
||||
__all__ += ['Generator', 'RandomState', 'SeedSequence', 'MT19937',
|
||||
'Philox', 'PCG64', 'SFC64', 'default_rng']
|
||||
|
||||
|
||||
def __RandomState_ctor():
|
||||
"""Return a RandomState instance.
|
||||
|
||||
This function exists solely to assist (un)pickling.
|
||||
|
||||
Note that the state of the RandomState returned here is irrelevant, as this
|
||||
function's entire purpose is to return a newly allocated RandomState whose
|
||||
state pickle can set. Consequently the RandomState returned by this function
|
||||
is a freshly allocated copy with a seed=0.
|
||||
|
||||
See https://github.com/numpy/numpy/issues/4763 for a detailed discussion
|
||||
|
||||
"""
|
||||
return RandomState(seed=0)
|
||||
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
82
venv/lib/python3.6/site-packages/numpy/random/_pickle.py
Normal file
82
venv/lib/python3.6/site-packages/numpy/random/_pickle.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from .mtrand import RandomState
|
||||
from .philox import Philox
|
||||
from .pcg64 import PCG64
|
||||
from .sfc64 import SFC64
|
||||
|
||||
from .generator import Generator
|
||||
from .mt19937 import MT19937
|
||||
|
||||
BitGenerators = {'MT19937': MT19937,
|
||||
'PCG64': PCG64,
|
||||
'Philox': Philox,
|
||||
'SFC64': SFC64,
|
||||
}
|
||||
|
||||
|
||||
def __generator_ctor(bit_generator_name='mt19937'):
|
||||
"""
|
||||
Pickling helper function that returns a Generator object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bit_generator_name: str
|
||||
String containing the core BitGenerator
|
||||
|
||||
Returns
|
||||
-------
|
||||
rg: Generator
|
||||
Generator using the named core BitGenerator
|
||||
"""
|
||||
if bit_generator_name in BitGenerators:
|
||||
bit_generator = BitGenerators[bit_generator_name]
|
||||
else:
|
||||
raise ValueError(str(bit_generator_name) + ' is not a known '
|
||||
'BitGenerator module.')
|
||||
|
||||
return Generator(bit_generator())
|
||||
|
||||
|
||||
def __bit_generator_ctor(bit_generator_name='mt19937'):
|
||||
"""
|
||||
Pickling helper function that returns a bit generator object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bit_generator_name: str
|
||||
String containing the name of the BitGenerator
|
||||
|
||||
Returns
|
||||
-------
|
||||
bit_generator: BitGenerator
|
||||
BitGenerator instance
|
||||
"""
|
||||
if bit_generator_name in BitGenerators:
|
||||
bit_generator = BitGenerators[bit_generator_name]
|
||||
else:
|
||||
raise ValueError(str(bit_generator_name) + ' is not a known '
|
||||
'BitGenerator module.')
|
||||
|
||||
return bit_generator()
|
||||
|
||||
|
||||
def __randomstate_ctor(bit_generator_name='mt19937'):
|
||||
"""
|
||||
Pickling helper function that returns a legacy RandomState-like object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bit_generator_name: str
|
||||
String containing the core BitGenerator
|
||||
|
||||
Returns
|
||||
-------
|
||||
rs: RandomState
|
||||
Legacy RandomState using the named core BitGenerator
|
||||
"""
|
||||
if bit_generator_name in BitGenerators:
|
||||
bit_generator = BitGenerators[bit_generator_name]
|
||||
else:
|
||||
raise ValueError(str(bit_generator_name) + ' is not a known '
|
||||
'BitGenerator module.')
|
||||
|
||||
return RandomState(bit_generator())
|
Binary file not shown.
@@ -0,0 +1,26 @@
|
||||
|
||||
from .common cimport bitgen_t
|
||||
cimport numpy as np
|
||||
|
||||
cdef class BitGenerator():
|
||||
cdef readonly object _seed_seq
|
||||
cdef readonly object lock
|
||||
cdef bitgen_t _bitgen
|
||||
cdef readonly object _ctypes
|
||||
cdef readonly object _cffi
|
||||
cdef readonly object capsule
|
||||
|
||||
|
||||
cdef class SeedSequence():
|
||||
cdef readonly object entropy
|
||||
cdef readonly tuple spawn_key
|
||||
cdef readonly int pool_size
|
||||
cdef readonly object pool
|
||||
cdef readonly int n_children_spawned
|
||||
|
||||
cdef mix_entropy(self, np.ndarray[np.npy_uint32, ndim=1] mixer,
|
||||
np.ndarray[np.npy_uint32, ndim=1] entropy_array)
|
||||
cdef get_assembled_entropy(self)
|
||||
|
||||
cdef class SeedlessSequence():
|
||||
pass
|
Binary file not shown.
Binary file not shown.
114
venv/lib/python3.6/site-packages/numpy/random/common.pxd
Normal file
114
venv/lib/python3.6/site-packages/numpy/random/common.pxd
Normal file
@@ -0,0 +1,114 @@
|
||||
#cython: language_level=3
|
||||
|
||||
from libc.stdint cimport (uint8_t, uint16_t, uint32_t, uint64_t,
|
||||
int8_t, int16_t, int32_t, int64_t, intptr_t,
|
||||
uintptr_t)
|
||||
from libc.math cimport sqrt
|
||||
|
||||
cdef extern from "numpy/random/bitgen.h":
|
||||
struct bitgen:
|
||||
void *state
|
||||
uint64_t (*next_uint64)(void *st) nogil
|
||||
uint32_t (*next_uint32)(void *st) nogil
|
||||
double (*next_double)(void *st) nogil
|
||||
uint64_t (*next_raw)(void *st) nogil
|
||||
|
||||
ctypedef bitgen bitgen_t
|
||||
|
||||
import numpy as np
|
||||
cimport numpy as np
|
||||
|
||||
cdef double POISSON_LAM_MAX
|
||||
cdef double LEGACY_POISSON_LAM_MAX
|
||||
cdef uint64_t MAXSIZE
|
||||
|
||||
cdef enum ConstraintType:
|
||||
CONS_NONE
|
||||
CONS_NON_NEGATIVE
|
||||
CONS_POSITIVE
|
||||
CONS_POSITIVE_NOT_NAN
|
||||
CONS_BOUNDED_0_1
|
||||
CONS_BOUNDED_0_1_NOTNAN
|
||||
CONS_BOUNDED_GT_0_1
|
||||
CONS_GT_1
|
||||
CONS_GTE_1
|
||||
CONS_POISSON
|
||||
LEGACY_CONS_POISSON
|
||||
|
||||
ctypedef ConstraintType constraint_type
|
||||
|
||||
cdef object benchmark(bitgen_t *bitgen, object lock, Py_ssize_t cnt, object method)
|
||||
cdef object random_raw(bitgen_t *bitgen, object lock, object size, object output)
|
||||
cdef object prepare_cffi(bitgen_t *bitgen)
|
||||
cdef object prepare_ctypes(bitgen_t *bitgen)
|
||||
cdef int check_constraint(double val, object name, constraint_type cons) except -1
|
||||
cdef int check_array_constraint(np.ndarray val, object name, constraint_type cons) except -1
|
||||
|
||||
cdef extern from "src/aligned_malloc/aligned_malloc.h":
|
||||
cdef void *PyArray_realloc_aligned(void *p, size_t n)
|
||||
cdef void *PyArray_malloc_aligned(size_t n)
|
||||
cdef void *PyArray_calloc_aligned(size_t n, size_t s)
|
||||
cdef void PyArray_free_aligned(void *p)
|
||||
|
||||
ctypedef double (*random_double_fill)(bitgen_t *state, np.npy_intp count, double* out) nogil
|
||||
ctypedef double (*random_double_0)(void *state) nogil
|
||||
ctypedef double (*random_double_1)(void *state, double a) nogil
|
||||
ctypedef double (*random_double_2)(void *state, double a, double b) nogil
|
||||
ctypedef double (*random_double_3)(void *state, double a, double b, double c) nogil
|
||||
|
||||
ctypedef float (*random_float_0)(bitgen_t *state) nogil
|
||||
ctypedef float (*random_float_1)(bitgen_t *state, float a) nogil
|
||||
|
||||
ctypedef int64_t (*random_uint_0)(void *state) nogil
|
||||
ctypedef int64_t (*random_uint_d)(void *state, double a) nogil
|
||||
ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) nogil
|
||||
ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) nogil
|
||||
ctypedef int64_t (*random_uint_i)(void *state, int64_t a) nogil
|
||||
ctypedef int64_t (*random_uint_iii)(void *state, int64_t a, int64_t b, int64_t c) nogil
|
||||
|
||||
ctypedef uint32_t (*random_uint_0_32)(bitgen_t *state) nogil
|
||||
ctypedef uint32_t (*random_uint_1_i_32)(bitgen_t *state, uint32_t a) nogil
|
||||
|
||||
ctypedef int32_t (*random_int_2_i_32)(bitgen_t *state, int32_t a, int32_t b) nogil
|
||||
ctypedef int64_t (*random_int_2_i)(bitgen_t *state, int64_t a, int64_t b) nogil
|
||||
|
||||
cdef double kahan_sum(double *darr, np.npy_intp n)
|
||||
|
||||
cdef inline double uint64_to_double(uint64_t rnd) nogil:
|
||||
return (rnd >> 11) * (1.0 / 9007199254740992.0)
|
||||
|
||||
cdef object double_fill(void *func, bitgen_t *state, object size, object lock, object out)
|
||||
|
||||
cdef object float_fill(void *func, bitgen_t *state, object size, object lock, object out)
|
||||
|
||||
cdef object float_fill_from_double(void *func, bitgen_t *state, object size, object lock, object out)
|
||||
|
||||
cdef object wrap_int(object val, object bits)
|
||||
|
||||
cdef np.ndarray int_to_array(object value, object name, object bits, object uint_size)
|
||||
|
||||
cdef object cont(void *func, void *state, object size, object lock, int narg,
|
||||
object a, object a_name, constraint_type a_constraint,
|
||||
object b, object b_name, constraint_type b_constraint,
|
||||
object c, object c_name, constraint_type c_constraint,
|
||||
object out)
|
||||
|
||||
cdef object disc(void *func, void *state, object size, object lock,
|
||||
int narg_double, int narg_int64,
|
||||
object a, object a_name, constraint_type a_constraint,
|
||||
object b, object b_name, constraint_type b_constraint,
|
||||
object c, object c_name, constraint_type c_constraint)
|
||||
|
||||
cdef object cont_f(void *func, bitgen_t *state, object size, object lock,
|
||||
object a, object a_name, constraint_type a_constraint,
|
||||
object out)
|
||||
|
||||
cdef object cont_broadcast_3(void *func, void *state, object size, object lock,
|
||||
np.ndarray a_arr, object a_name, constraint_type a_constraint,
|
||||
np.ndarray b_arr, object b_name, constraint_type b_constraint,
|
||||
np.ndarray c_arr, object c_name, constraint_type c_constraint)
|
||||
|
||||
cdef object discrete_broadcast_iii(void *func, void *state, object size, object lock,
|
||||
np.ndarray a_arr, object a_name, constraint_type a_constraint,
|
||||
np.ndarray b_arr, object b_name, constraint_type b_constraint,
|
||||
np.ndarray c_arr, object c_name, constraint_type c_constraint)
|
Binary file not shown.
Binary file not shown.
5
venv/lib/python3.6/site-packages/numpy/random/info.py
Normal file
5
venv/lib/python3.6/site-packages/numpy/random/info.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
from .. import __doc__
|
||||
|
||||
depends = ['core']
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
149
venv/lib/python3.6/site-packages/numpy/random/setup.py
Normal file
149
venv/lib/python3.6/site-packages/numpy/random/setup.py
Normal file
@@ -0,0 +1,149 @@
|
||||
from __future__ import division, print_function
|
||||
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from os.path import join
|
||||
|
||||
from numpy.distutils.system_info import platform_bits
|
||||
|
||||
is_msvc = (platform.platform().startswith('Windows') and
|
||||
platform.python_compiler().startswith('MS'))
|
||||
|
||||
|
||||
def configuration(parent_package='', top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration, get_mathlibs
|
||||
config = Configuration('random', parent_package, top_path)
|
||||
|
||||
def generate_libraries(ext, build_dir):
|
||||
config_cmd = config.get_config_cmd()
|
||||
libs = get_mathlibs()
|
||||
if sys.platform == 'win32':
|
||||
libs.extend(['Advapi32', 'Kernel32'])
|
||||
ext.libraries.extend(libs)
|
||||
return None
|
||||
|
||||
# enable unix large file support on 32 bit systems
|
||||
# (64 bit off_t, lseek -> lseek64 etc.)
|
||||
if sys.platform[:3] == "aix":
|
||||
defs = [('_LARGE_FILES', None)]
|
||||
else:
|
||||
defs = [('_FILE_OFFSET_BITS', '64'),
|
||||
('_LARGEFILE_SOURCE', '1'),
|
||||
('_LARGEFILE64_SOURCE', '1')]
|
||||
|
||||
defs.append(('NPY_NO_DEPRECATED_API', 0))
|
||||
config.add_data_dir('tests')
|
||||
config.add_data_files('common.pxd')
|
||||
config.add_data_files('bit_generator.pxd')
|
||||
|
||||
EXTRA_LINK_ARGS = []
|
||||
# Math lib
|
||||
EXTRA_LIBRARIES = ['m'] if os.name != 'nt' else []
|
||||
# Some bit generators exclude GCC inlining
|
||||
EXTRA_COMPILE_ARGS = ['-U__GNUC_GNU_INLINE__']
|
||||
|
||||
if is_msvc and platform_bits == 32:
|
||||
# 32-bit windows requires explicit sse2 option
|
||||
EXTRA_COMPILE_ARGS += ['/arch:SSE2']
|
||||
elif not is_msvc:
|
||||
# Some bit generators require c99
|
||||
EXTRA_COMPILE_ARGS += ['-std=c99']
|
||||
INTEL_LIKE = any([val in k.lower() for k in platform.uname()
|
||||
for val in ('x86', 'i686', 'i386', 'amd64')])
|
||||
if INTEL_LIKE:
|
||||
# Assumes GCC or GCC-like compiler
|
||||
EXTRA_COMPILE_ARGS += ['-msse2']
|
||||
|
||||
# Use legacy integer variable sizes
|
||||
LEGACY_DEFS = [('NP_RANDOM_LEGACY', '1')]
|
||||
PCG64_DEFS = []
|
||||
# One can force emulated 128-bit arithmetic if one wants.
|
||||
#PCG64_DEFS += [('PCG_FORCE_EMULATED_128BIT_MATH', '1')]
|
||||
|
||||
config.add_extension('entropy',
|
||||
sources=['entropy.c', 'src/entropy/entropy.c'] +
|
||||
[generate_libraries],
|
||||
libraries=EXTRA_LIBRARIES,
|
||||
extra_compile_args=EXTRA_COMPILE_ARGS,
|
||||
extra_link_args=EXTRA_LINK_ARGS,
|
||||
depends=[join('src', 'splitmix64', 'splitmix.h'),
|
||||
join('src', 'entropy', 'entropy.h'),
|
||||
'entropy.pyx',
|
||||
],
|
||||
define_macros=defs,
|
||||
)
|
||||
for gen in ['mt19937']:
|
||||
# gen.pyx, src/gen/gen.c, src/gen/gen-jump.c
|
||||
config.add_extension(gen,
|
||||
sources=['{0}.c'.format(gen),
|
||||
'src/{0}/{0}.c'.format(gen),
|
||||
'src/{0}/{0}-jump.c'.format(gen)],
|
||||
include_dirs=['.', 'src', join('src', gen)],
|
||||
libraries=EXTRA_LIBRARIES,
|
||||
extra_compile_args=EXTRA_COMPILE_ARGS,
|
||||
extra_link_args=EXTRA_LINK_ARGS,
|
||||
depends=['%s.pyx' % gen],
|
||||
define_macros=defs,
|
||||
)
|
||||
for gen in ['philox', 'pcg64', 'sfc64']:
|
||||
# gen.pyx, src/gen/gen.c
|
||||
_defs = defs + PCG64_DEFS if gen == 'pcg64' else defs
|
||||
config.add_extension(gen,
|
||||
sources=['{0}.c'.format(gen),
|
||||
'src/{0}/{0}.c'.format(gen)],
|
||||
include_dirs=['.', 'src', join('src', gen)],
|
||||
libraries=EXTRA_LIBRARIES,
|
||||
extra_compile_args=EXTRA_COMPILE_ARGS,
|
||||
extra_link_args=EXTRA_LINK_ARGS,
|
||||
depends=['%s.pyx' % gen, 'bit_generator.pyx',
|
||||
'bit_generator.pxd'],
|
||||
define_macros=_defs,
|
||||
)
|
||||
for gen in ['common', 'bit_generator']:
|
||||
# gen.pyx
|
||||
config.add_extension(gen,
|
||||
sources=['{0}.c'.format(gen)],
|
||||
libraries=EXTRA_LIBRARIES,
|
||||
extra_compile_args=EXTRA_COMPILE_ARGS,
|
||||
extra_link_args=EXTRA_LINK_ARGS,
|
||||
include_dirs=['.', 'src'],
|
||||
depends=['%s.pyx' % gen, '%s.pxd' % gen,],
|
||||
define_macros=defs,
|
||||
)
|
||||
other_srcs = [
|
||||
'src/distributions/logfactorial.c',
|
||||
'src/distributions/distributions.c',
|
||||
'src/distributions/random_hypergeometric.c',
|
||||
]
|
||||
for gen in ['generator', 'bounded_integers']:
|
||||
# gen.pyx, src/distributions/distributions.c
|
||||
config.add_extension(gen,
|
||||
sources=['{0}.c'.format(gen)] + other_srcs,
|
||||
libraries=EXTRA_LIBRARIES,
|
||||
extra_compile_args=EXTRA_COMPILE_ARGS,
|
||||
include_dirs=['.', 'src'],
|
||||
extra_link_args=EXTRA_LINK_ARGS,
|
||||
depends=['%s.pyx' % gen],
|
||||
define_macros=defs,
|
||||
)
|
||||
config.add_extension('mtrand',
|
||||
# mtrand does not depend on random_hypergeometric.c.
|
||||
sources=['mtrand.c',
|
||||
'src/legacy/legacy-distributions.c',
|
||||
'src/distributions/logfactorial.c',
|
||||
'src/distributions/distributions.c'],
|
||||
include_dirs=['.', 'src', 'src/legacy'],
|
||||
libraries=EXTRA_LIBRARIES,
|
||||
extra_compile_args=EXTRA_COMPILE_ARGS,
|
||||
extra_link_args=EXTRA_LINK_ARGS,
|
||||
depends=['mtrand.pyx'],
|
||||
define_macros=defs + LEGACY_DEFS,
|
||||
)
|
||||
return config
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
|
||||
setup(configuration=configuration)
|
Binary file not shown.
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,418 @@
|
||||
import os
|
||||
from os.path import join
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import (assert_equal, assert_allclose, assert_array_equal,
|
||||
assert_raises)
|
||||
import pytest
|
||||
|
||||
from numpy.random import (
|
||||
Generator, MT19937, PCG64, Philox, RandomState, SeedSequence, SFC64,
|
||||
default_rng
|
||||
)
|
||||
from numpy.random.common import interface
|
||||
|
||||
try:
|
||||
import cffi # noqa: F401
|
||||
|
||||
MISSING_CFFI = False
|
||||
except ImportError:
|
||||
MISSING_CFFI = True
|
||||
|
||||
try:
|
||||
import ctypes # noqa: F401
|
||||
|
||||
MISSING_CTYPES = False
|
||||
except ImportError:
|
||||
MISSING_CTYPES = False
|
||||
|
||||
pwd = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
|
||||
def assert_state_equal(actual, target):
|
||||
for key in actual:
|
||||
if isinstance(actual[key], dict):
|
||||
assert_state_equal(actual[key], target[key])
|
||||
elif isinstance(actual[key], np.ndarray):
|
||||
assert_array_equal(actual[key], target[key])
|
||||
else:
|
||||
assert actual[key] == target[key]
|
||||
|
||||
|
||||
def uniform32_from_uint64(x):
|
||||
x = np.uint64(x)
|
||||
upper = np.array(x >> np.uint64(32), dtype=np.uint32)
|
||||
lower = np.uint64(0xffffffff)
|
||||
lower = np.array(x & lower, dtype=np.uint32)
|
||||
joined = np.column_stack([lower, upper]).ravel()
|
||||
out = (joined >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
return out.astype(np.float32)
|
||||
|
||||
|
||||
def uniform32_from_uint53(x):
|
||||
x = np.uint64(x) >> np.uint64(16)
|
||||
x = np.uint32(x & np.uint64(0xffffffff))
|
||||
out = (x >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
return out.astype(np.float32)
|
||||
|
||||
|
||||
def uniform32_from_uint32(x):
|
||||
return (x >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
|
||||
|
||||
def uniform32_from_uint(x, bits):
|
||||
if bits == 64:
|
||||
return uniform32_from_uint64(x)
|
||||
elif bits == 53:
|
||||
return uniform32_from_uint53(x)
|
||||
elif bits == 32:
|
||||
return uniform32_from_uint32(x)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def uniform_from_uint(x, bits):
|
||||
if bits in (64, 63, 53):
|
||||
return uniform_from_uint64(x)
|
||||
elif bits == 32:
|
||||
return uniform_from_uint32(x)
|
||||
|
||||
|
||||
def uniform_from_uint64(x):
|
||||
return (x >> np.uint64(11)) * (1.0 / 9007199254740992.0)
|
||||
|
||||
|
||||
def uniform_from_uint32(x):
|
||||
out = np.empty(len(x) // 2)
|
||||
for i in range(0, len(x), 2):
|
||||
a = x[i] >> 5
|
||||
b = x[i + 1] >> 6
|
||||
out[i // 2] = (a * 67108864.0 + b) / 9007199254740992.0
|
||||
return out
|
||||
|
||||
|
||||
def uniform_from_dsfmt(x):
|
||||
return x.view(np.double) - 1.0
|
||||
|
||||
|
||||
def gauss_from_uint(x, n, bits):
|
||||
if bits in (64, 63):
|
||||
doubles = uniform_from_uint64(x)
|
||||
elif bits == 32:
|
||||
doubles = uniform_from_uint32(x)
|
||||
else: # bits == 'dsfmt'
|
||||
doubles = uniform_from_dsfmt(x)
|
||||
gauss = []
|
||||
loc = 0
|
||||
x1 = x2 = 0.0
|
||||
while len(gauss) < n:
|
||||
r2 = 2
|
||||
while r2 >= 1.0 or r2 == 0.0:
|
||||
x1 = 2.0 * doubles[loc] - 1.0
|
||||
x2 = 2.0 * doubles[loc + 1] - 1.0
|
||||
r2 = x1 * x1 + x2 * x2
|
||||
loc += 2
|
||||
|
||||
f = np.sqrt(-2.0 * np.log(r2) / r2)
|
||||
gauss.append(f * x2)
|
||||
gauss.append(f * x1)
|
||||
|
||||
return gauss[:n]
|
||||
|
||||
def test_seedsequence():
|
||||
from numpy.random.bit_generator import (ISeedSequence,
|
||||
ISpawnableSeedSequence,
|
||||
SeedlessSeedSequence)
|
||||
|
||||
s1 = SeedSequence(range(10), spawn_key=(1, 2), pool_size=6)
|
||||
s1.spawn(10)
|
||||
s2 = SeedSequence(**s1.state)
|
||||
assert_equal(s1.state, s2.state)
|
||||
assert_equal(s1.n_children_spawned, s2.n_children_spawned)
|
||||
|
||||
# The interfaces cannot be instantiated themselves.
|
||||
assert_raises(TypeError, ISeedSequence)
|
||||
assert_raises(TypeError, ISpawnableSeedSequence)
|
||||
dummy = SeedlessSeedSequence()
|
||||
assert_raises(NotImplementedError, dummy.generate_state, 10)
|
||||
assert len(dummy.spawn(10)) == 10
|
||||
|
||||
|
||||
class Base(object):
|
||||
dtype = np.uint64
|
||||
data2 = data1 = {}
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.seed_error_type = TypeError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = []
|
||||
|
||||
@classmethod
|
||||
def _read_csv(cls, filename):
|
||||
with open(filename) as csv:
|
||||
seed = csv.readline()
|
||||
seed = seed.split(',')
|
||||
seed = [int(s.strip(), 0) for s in seed[1:]]
|
||||
data = []
|
||||
for line in csv:
|
||||
data.append(int(line.split(',')[-1].strip(), 0))
|
||||
return {'seed': seed, 'data': np.array(data, dtype=cls.dtype)}
|
||||
|
||||
def test_raw(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw(1000)
|
||||
assert_equal(uints, self.data1['data'])
|
||||
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw()
|
||||
assert_equal(uints, self.data1['data'][0])
|
||||
|
||||
bit_generator = self.bit_generator(*self.data2['seed'])
|
||||
uints = bit_generator.random_raw(1000)
|
||||
assert_equal(uints, self.data2['data'])
|
||||
|
||||
def test_random_raw(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw(output=False)
|
||||
assert uints is None
|
||||
uints = bit_generator.random_raw(1000, output=False)
|
||||
assert uints is None
|
||||
|
||||
def test_gauss_inv(self):
|
||||
n = 25
|
||||
rs = RandomState(self.bit_generator(*self.data1['seed']))
|
||||
gauss = rs.standard_normal(n)
|
||||
assert_allclose(gauss,
|
||||
gauss_from_uint(self.data1['data'], n, self.bits))
|
||||
|
||||
rs = RandomState(self.bit_generator(*self.data2['seed']))
|
||||
gauss = rs.standard_normal(25)
|
||||
assert_allclose(gauss,
|
||||
gauss_from_uint(self.data2['data'], n, self.bits))
|
||||
|
||||
def test_uniform_double(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
vals = uniform_from_uint(self.data1['data'], self.bits)
|
||||
uniforms = rs.random(len(vals))
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float64)
|
||||
|
||||
rs = Generator(self.bit_generator(*self.data2['seed']))
|
||||
vals = uniform_from_uint(self.data2['data'], self.bits)
|
||||
uniforms = rs.random(len(vals))
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float64)
|
||||
|
||||
def test_uniform_float(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
vals = uniform32_from_uint(self.data1['data'], self.bits)
|
||||
uniforms = rs.random(len(vals), dtype=np.float32)
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float32)
|
||||
|
||||
rs = Generator(self.bit_generator(*self.data2['seed']))
|
||||
vals = uniform32_from_uint(self.data2['data'], self.bits)
|
||||
uniforms = rs.random(len(vals), dtype=np.float32)
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float32)
|
||||
|
||||
def test_repr(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
assert 'Generator' in repr(rs)
|
||||
assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') in repr(rs)
|
||||
|
||||
def test_str(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
assert 'Generator' in str(rs)
|
||||
assert str(self.bit_generator.__name__) in str(rs)
|
||||
assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') not in str(rs)
|
||||
|
||||
def test_pickle(self):
|
||||
import pickle
|
||||
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
bitgen_pkl = pickle.dumps(bit_generator)
|
||||
reloaded = pickle.loads(bitgen_pkl)
|
||||
reloaded_state = reloaded.state
|
||||
assert_array_equal(Generator(bit_generator).standard_normal(1000),
|
||||
Generator(reloaded).standard_normal(1000))
|
||||
assert bit_generator is not reloaded
|
||||
assert_state_equal(reloaded_state, state)
|
||||
|
||||
ss = SeedSequence(100)
|
||||
aa = pickle.loads(pickle.dumps(ss))
|
||||
assert_equal(ss.state, aa.state)
|
||||
|
||||
def test_invalid_state_type(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
with pytest.raises(TypeError):
|
||||
bit_generator.state = {'1'}
|
||||
|
||||
def test_invalid_state_value(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
state['bit_generator'] = 'otherBitGenerator'
|
||||
with pytest.raises(ValueError):
|
||||
bit_generator.state = state
|
||||
|
||||
def test_invalid_init_type(self):
|
||||
bit_generator = self.bit_generator
|
||||
for st in self.invalid_init_types:
|
||||
with pytest.raises(TypeError):
|
||||
bit_generator(*st)
|
||||
|
||||
def test_invalid_init_values(self):
|
||||
bit_generator = self.bit_generator
|
||||
for st in self.invalid_init_values:
|
||||
with pytest.raises((ValueError, OverflowError)):
|
||||
bit_generator(*st)
|
||||
|
||||
def test_benchmark(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
bit_generator._benchmark(1)
|
||||
bit_generator._benchmark(1, 'double')
|
||||
with pytest.raises(ValueError):
|
||||
bit_generator._benchmark(1, 'int32')
|
||||
|
||||
@pytest.mark.skipif(MISSING_CFFI, reason='cffi not available')
|
||||
def test_cffi(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
cffi_interface = bit_generator.cffi
|
||||
assert isinstance(cffi_interface, interface)
|
||||
other_cffi_interface = bit_generator.cffi
|
||||
assert other_cffi_interface is cffi_interface
|
||||
|
||||
@pytest.mark.skipif(MISSING_CTYPES, reason='ctypes not available')
|
||||
def test_ctypes(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
ctypes_interface = bit_generator.ctypes
|
||||
assert isinstance(ctypes_interface, interface)
|
||||
other_ctypes_interface = bit_generator.ctypes
|
||||
assert other_ctypes_interface is ctypes_interface
|
||||
|
||||
def test_getstate(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
alt_state = bit_generator.__getstate__()
|
||||
assert_state_equal(state, alt_state)
|
||||
|
||||
|
||||
class TestPhilox(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = Philox
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(
|
||||
join(pwd, './data/philox-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(
|
||||
join(pwd, './data/philox-testset-2.csv'))
|
||||
cls.seed_error_type = TypeError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = [(1, None, 1), (-1,), (None, None, 2 ** 257 + 1)]
|
||||
|
||||
def test_set_key(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
keyed = self.bit_generator(counter=state['state']['counter'],
|
||||
key=state['state']['key'])
|
||||
assert_state_equal(bit_generator.state, keyed.state)
|
||||
|
||||
|
||||
class TestPCG64(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(join(pwd, './data/pcg64-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(join(pwd, './data/pcg64-testset-2.csv'))
|
||||
cls.seed_error_type = (ValueError, TypeError)
|
||||
cls.invalid_init_types = [(3.2,), ([None],), (1, None)]
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
def test_advance_symmetry(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
state = rs.bit_generator.state
|
||||
step = -0x9e3779b97f4a7c150000000000000000
|
||||
rs.bit_generator.advance(step)
|
||||
val_neg = rs.integers(10)
|
||||
rs.bit_generator.state = state
|
||||
rs.bit_generator.advance(2**128 + step)
|
||||
val_pos = rs.integers(10)
|
||||
rs.bit_generator.state = state
|
||||
rs.bit_generator.advance(10 * 2**128 + step)
|
||||
val_big = rs.integers(10)
|
||||
assert val_neg == val_pos
|
||||
assert val_big == val_pos
|
||||
|
||||
|
||||
class TestMT19937(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = MT19937
|
||||
cls.bits = 32
|
||||
cls.dtype = np.uint32
|
||||
cls.data1 = cls._read_csv(join(pwd, './data/mt19937-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(join(pwd, './data/mt19937-testset-2.csv'))
|
||||
cls.seed_error_type = ValueError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
def test_seed_float_array(self):
|
||||
assert_raises(TypeError, self.bit_generator, np.array([np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([-np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([np.pi, -np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([0, np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, [np.pi])
|
||||
assert_raises(TypeError, self.bit_generator, [0, np.pi])
|
||||
|
||||
def test_state_tuple(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
bit_generator = rs.bit_generator
|
||||
state = bit_generator.state
|
||||
desired = rs.integers(2 ** 16)
|
||||
tup = (state['bit_generator'], state['state']['key'],
|
||||
state['state']['pos'])
|
||||
bit_generator.state = tup
|
||||
actual = rs.integers(2 ** 16)
|
||||
assert_equal(actual, desired)
|
||||
tup = tup + (0, 0.0)
|
||||
bit_generator.state = tup
|
||||
actual = rs.integers(2 ** 16)
|
||||
assert_equal(actual, desired)
|
||||
|
||||
|
||||
class TestSFC64(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = SFC64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(
|
||||
join(pwd, './data/sfc64-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(
|
||||
join(pwd, './data/sfc64-testset-2.csv'))
|
||||
cls.seed_error_type = (ValueError, TypeError)
|
||||
cls.invalid_init_types = [(3.2,), ([None],), (1, None)]
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
|
||||
class TestDefaultRNG(object):
|
||||
def test_seed(self):
|
||||
for args in [(), (None,), (1234,), ([1234, 5678],)]:
|
||||
rg = default_rng(*args)
|
||||
assert isinstance(rg.bit_generator, PCG64)
|
||||
|
||||
def test_passthrough(self):
|
||||
bg = Philox()
|
||||
rg = default_rng(bg)
|
||||
assert rg.bit_generator is bg
|
||||
rg2 = default_rng(rg)
|
||||
assert rg2 is rg
|
||||
assert rg2.bit_generator is bg
|
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,158 @@
|
||||
import sys
|
||||
from numpy.testing import (assert_, assert_array_equal)
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.random import Generator, MT19937
|
||||
|
||||
mt19937 = Generator(MT19937())
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = mt19937.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(mt19937.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(mt19937.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems
|
||||
assert_(mt19937.hypergeometric(*args) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
mt19937 = Generator(MT19937(0))
|
||||
rvsn = mt19937.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = mt19937.permutation(12)
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
b = mt19937.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
mt19937 = Generator(MT19937(12345))
|
||||
shuffled = list(t)
|
||||
mt19937.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[2], t[0], t[3], t[1]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom BitGenerator does not call into global state
|
||||
res = np.array([1, 8, 0, 1, 5, 3, 3, 8, 1, 4])
|
||||
for i in range(3):
|
||||
mt19937 = Generator(MT19937(i))
|
||||
m = Generator(MT19937(4321))
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
mt19937.multivariate_normal([0], [[0]], size=1)
|
||||
mt19937.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
mt19937.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
mt19937 = Generator(MT19937(1234567890))
|
||||
x = mt19937.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = mt19937.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
with pytest.raises(ValueError):
|
||||
mt19937.choice(a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
mt19937.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
mt19937.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
mt19937 = Generator(MT19937(1))
|
||||
orig = np.arange(3).view(N)
|
||||
perm = mt19937.permutation(orig)
|
||||
assert_array_equal(perm, np.array([2, 0, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
mt19937 = Generator(MT19937(1))
|
||||
m = M()
|
||||
perm = mt19937.permutation(m)
|
||||
assert_array_equal(perm, np.array([4, 1, 3, 0, 2]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
|
||||
def test_gamma_0(self):
|
||||
assert mt19937.standard_gamma(0.0) == 0.0
|
||||
assert_array_equal(mt19937.standard_gamma([0.0]), 0.0)
|
||||
|
||||
actual = mt19937.standard_gamma([0.0], dtype='float')
|
||||
expected = np.array([0.], dtype=np.float32)
|
||||
assert_array_equal(actual, expected)
|
1674
venv/lib/python3.6/site-packages/numpy/random/tests/test_random.py
Normal file
1674
venv/lib/python3.6/site-packages/numpy/random/tests/test_random.py
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,183 @@
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
|
||||
from numpy.testing import (
|
||||
assert_, assert_array_equal, assert_raises,
|
||||
)
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
|
||||
from numpy.random import mtrand as random
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = random.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = [
|
||||
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
||||
]
|
||||
is_64bits = sys.maxsize > 2**32
|
||||
if is_64bits and sys.platform != 'win32':
|
||||
# Check for 64-bit systems
|
||||
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
||||
for arg in args:
|
||||
assert_(random.hypergeometric(*arg) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
random.seed(0)
|
||||
rvsn = random.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
random.seed(1234)
|
||||
a = random.permutation(12)
|
||||
random.seed(1234)
|
||||
b = random.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
random.seed(12345)
|
||||
shuffled = list(t)
|
||||
random.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom RandomState does not call into global state
|
||||
m = random.RandomState()
|
||||
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
||||
for i in range(3):
|
||||
random.seed(i)
|
||||
m.seed(4321)
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
random.multivariate_normal([0], [[0]], size=1)
|
||||
random.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
random.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
random.seed(1234567890)
|
||||
x = random.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in random.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
random.seed(1234)
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = random.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
assert_raises(ValueError, random.choice, a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
random.seed(1234)
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
random.seed(1234)
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
random.seed(1)
|
||||
orig = np.arange(3).view(N)
|
||||
perm = random.permutation(orig)
|
||||
assert_array_equal(perm, np.array([0, 2, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
random.seed(1)
|
||||
m = M()
|
||||
perm = random.permutation(m)
|
||||
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
|
||||
def test_warns_byteorder(self):
|
||||
# GH 13159
|
||||
other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
|
||||
with pytest.deprecated_call(match='non-native byteorder is not'):
|
||||
random.randint(0, 200, size=10, dtype=other_byteord_dt)
|
||||
|
||||
def test_named_argument_initialization(self):
|
||||
# GH 13669
|
||||
rs1 = np.random.RandomState(123456789)
|
||||
rs2 = np.random.RandomState(seed=123456789)
|
||||
assert rs1.randint(0, 100) == rs2.randint(0, 100)
|
||||
|
||||
def test_choice_retun_dtype(self):
|
||||
# GH 9867
|
||||
c = np.random.choice(10, p=[.1]*10, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, p=[.1]*10, replace=False, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, replace=False, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
@@ -0,0 +1,158 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import sys
|
||||
from numpy.testing import (
|
||||
assert_, assert_array_equal, assert_raises,
|
||||
)
|
||||
from numpy import random
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = random.mtrand.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = [
|
||||
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
||||
]
|
||||
is_64bits = sys.maxsize > 2**32
|
||||
if is_64bits and sys.platform != 'win32':
|
||||
# Check for 64-bit systems
|
||||
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
||||
for arg in args:
|
||||
assert_(np.random.hypergeometric(*arg) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
np.random.seed(0)
|
||||
rvsn = np.random.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
np.random.seed(1234)
|
||||
a = np.random.permutation(12)
|
||||
np.random.seed(1234)
|
||||
b = np.random.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
np.random.seed(12345)
|
||||
shuffled = list(t)
|
||||
random.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom RandomState does not call into global state
|
||||
m = np.random.RandomState()
|
||||
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
||||
for i in range(3):
|
||||
np.random.seed(i)
|
||||
m.seed(4321)
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
np.random.multivariate_normal([0], [[0]], size=1)
|
||||
np.random.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
np.random.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
np.random.seed(1234567890)
|
||||
x = np.random.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
np.random.seed(1234)
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = np.random.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
assert_raises(ValueError, np.random.choice, a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
np.random.seed(1234)
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
np.random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
np.random.seed(1234)
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
np.random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
np.random.seed(1)
|
||||
orig = np.arange(3).view(N)
|
||||
perm = np.random.permutation(orig)
|
||||
assert_array_equal(perm, np.array([0, 2, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
np.random.seed(1)
|
||||
m = M()
|
||||
perm = np.random.permutation(m)
|
||||
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
@@ -0,0 +1,54 @@
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from numpy.random.bit_generator import SeedSequence
|
||||
|
||||
|
||||
def test_reference_data():
|
||||
""" Check that SeedSequence generates data the same as the C++ reference.
|
||||
|
||||
https://gist.github.com/imneme/540829265469e673d045
|
||||
"""
|
||||
inputs = [
|
||||
[3735928559, 195939070, 229505742, 305419896],
|
||||
[3668361503, 4165561550, 1661411377, 3634257570],
|
||||
[164546577, 4166754639, 1765190214, 1303880213],
|
||||
[446610472, 3941463886, 522937693, 1882353782],
|
||||
[1864922766, 1719732118, 3882010307, 1776744564],
|
||||
[4141682960, 3310988675, 553637289, 902896340],
|
||||
[1134851934, 2352871630, 3699409824, 2648159817],
|
||||
[1240956131, 3107113773, 1283198141, 1924506131],
|
||||
[2669565031, 579818610, 3042504477, 2774880435],
|
||||
[2766103236, 2883057919, 4029656435, 862374500],
|
||||
]
|
||||
outputs = [
|
||||
[3914649087, 576849849, 3593928901, 2229911004],
|
||||
[2240804226, 3691353228, 1365957195, 2654016646],
|
||||
[3562296087, 3191708229, 1147942216, 3726991905],
|
||||
[1403443605, 3591372999, 1291086759, 441919183],
|
||||
[1086200464, 2191331643, 560336446, 3658716651],
|
||||
[3249937430, 2346751812, 847844327, 2996632307],
|
||||
[2584285912, 4034195531, 3523502488, 169742686],
|
||||
[959045797, 3875435559, 1886309314, 359682705],
|
||||
[3978441347, 432478529, 3223635119, 138903045],
|
||||
[296367413, 4262059219, 13109864, 3283683422],
|
||||
]
|
||||
outputs64 = [
|
||||
[2477551240072187391, 9577394838764454085],
|
||||
[15854241394484835714, 11398914698975566411],
|
||||
[13708282465491374871, 16007308345579681096],
|
||||
[15424829579845884309, 1898028439751125927],
|
||||
[9411697742461147792, 15714068361935982142],
|
||||
[10079222287618677782, 12870437757549876199],
|
||||
[17326737873898640088, 729039288628699544],
|
||||
[16644868984619524261, 1544825456798124994],
|
||||
[1857481142255628931, 596584038813451439],
|
||||
[18305404959516669237, 14103312907920476776],
|
||||
]
|
||||
for seed, expected, expected64 in zip(inputs, outputs, outputs64):
|
||||
expected = np.array(expected, dtype=np.uint32)
|
||||
ss = SeedSequence(seed)
|
||||
state = ss.generate_state(len(expected))
|
||||
assert_array_equal(state, expected)
|
||||
state64 = ss.generate_state(len(expected64), dtype=np.uint64)
|
||||
assert_array_equal(state64, expected64)
|
@@ -0,0 +1,828 @@
|
||||
import pickle
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.testing import assert_equal, assert_, assert_array_equal
|
||||
from numpy.random import (Generator, MT19937, PCG64, Philox, SFC64, entropy)
|
||||
|
||||
@pytest.fixture(scope='module',
|
||||
params=(np.bool, np.int8, np.int16, np.int32, np.int64,
|
||||
np.uint8, np.uint16, np.uint32, np.uint64))
|
||||
def dtype(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def params_0(f):
|
||||
val = f()
|
||||
assert_(np.isscalar(val))
|
||||
val = f(10)
|
||||
assert_(val.shape == (10,))
|
||||
val = f((10, 10))
|
||||
assert_(val.shape == (10, 10))
|
||||
val = f((10, 10, 10))
|
||||
assert_(val.shape == (10, 10, 10))
|
||||
val = f(size=(5, 5))
|
||||
assert_(val.shape == (5, 5))
|
||||
|
||||
|
||||
def params_1(f, bounded=False):
|
||||
a = 5.0
|
||||
b = np.arange(2.0, 12.0)
|
||||
c = np.arange(2.0, 102.0).reshape((10, 10))
|
||||
d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
|
||||
e = np.array([2.0, 3.0])
|
||||
g = np.arange(2.0, 12.0).reshape((1, 10, 1))
|
||||
if bounded:
|
||||
a = 0.5
|
||||
b = b / (1.5 * b.max())
|
||||
c = c / (1.5 * c.max())
|
||||
d = d / (1.5 * d.max())
|
||||
e = e / (1.5 * e.max())
|
||||
g = g / (1.5 * g.max())
|
||||
|
||||
# Scalar
|
||||
f(a)
|
||||
# Scalar - size
|
||||
f(a, size=(10, 10))
|
||||
# 1d
|
||||
f(b)
|
||||
# 2d
|
||||
f(c)
|
||||
# 3d
|
||||
f(d)
|
||||
# 1d size
|
||||
f(b, size=10)
|
||||
# 2d - size - broadcast
|
||||
f(e, size=(10, 2))
|
||||
# 3d - size
|
||||
f(g, size=(10, 10, 10))
|
||||
|
||||
|
||||
def comp_state(state1, state2):
|
||||
identical = True
|
||||
if isinstance(state1, dict):
|
||||
for key in state1:
|
||||
identical &= comp_state(state1[key], state2[key])
|
||||
elif type(state1) != type(state2):
|
||||
identical &= type(state1) == type(state2)
|
||||
else:
|
||||
if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
|
||||
state2, (list, tuple, np.ndarray))):
|
||||
for s1, s2 in zip(state1, state2):
|
||||
identical &= comp_state(s1, s2)
|
||||
else:
|
||||
identical &= state1 == state2
|
||||
return identical
|
||||
|
||||
|
||||
def warmup(rg, n=None):
|
||||
if n is None:
|
||||
n = 11 + np.random.randint(0, 20)
|
||||
rg.standard_normal(n)
|
||||
rg.standard_normal(n)
|
||||
rg.standard_normal(n, dtype=np.float32)
|
||||
rg.standard_normal(n, dtype=np.float32)
|
||||
rg.integers(0, 2 ** 24, n, dtype=np.uint64)
|
||||
rg.integers(0, 2 ** 48, n, dtype=np.uint64)
|
||||
rg.standard_gamma(11.0, n)
|
||||
rg.standard_gamma(11.0, n, dtype=np.float32)
|
||||
rg.random(n, dtype=np.float64)
|
||||
rg.random(n, dtype=np.float32)
|
||||
|
||||
|
||||
class RNG(object):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# Overridden in test classes. Place holder to silence IDE noise
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = None
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
@classmethod
|
||||
def _extra_setup(cls):
|
||||
cls.vec_1d = np.arange(2.0, 102.0)
|
||||
cls.vec_2d = np.arange(2.0, 102.0)[None, :]
|
||||
cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
|
||||
cls.seed_error = TypeError
|
||||
|
||||
def _reset_state(self):
|
||||
self.rg.bit_generator.state = self.initial_state
|
||||
|
||||
def test_init(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
state = rg.bit_generator.state
|
||||
rg.standard_normal(1)
|
||||
rg.standard_normal(1)
|
||||
rg.bit_generator.state = state
|
||||
new_state = rg.bit_generator.state
|
||||
assert_(comp_state(state, new_state))
|
||||
|
||||
def test_advance(self):
|
||||
state = self.rg.bit_generator.state
|
||||
if hasattr(self.rg.bit_generator, 'advance'):
|
||||
self.rg.bit_generator.advance(self.advance)
|
||||
assert_(not comp_state(state, self.rg.bit_generator.state))
|
||||
else:
|
||||
bitgen_name = self.rg.bit_generator.__class__.__name__
|
||||
pytest.skip('Advance is not supported by {0}'.format(bitgen_name))
|
||||
|
||||
def test_jump(self):
|
||||
state = self.rg.bit_generator.state
|
||||
if hasattr(self.rg.bit_generator, 'jumped'):
|
||||
bit_gen2 = self.rg.bit_generator.jumped()
|
||||
jumped_state = bit_gen2.state
|
||||
assert_(not comp_state(state, jumped_state))
|
||||
self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
|
||||
self.rg.bit_generator.state = state
|
||||
bit_gen3 = self.rg.bit_generator.jumped()
|
||||
rejumped_state = bit_gen3.state
|
||||
assert_(comp_state(jumped_state, rejumped_state))
|
||||
else:
|
||||
bitgen_name = self.rg.bit_generator.__class__.__name__
|
||||
if bitgen_name not in ('SFC64',):
|
||||
raise AttributeError('no "jumped" in %s' % bitgen_name)
|
||||
pytest.skip('Jump is not supported by {0}'.format(bitgen_name))
|
||||
|
||||
def test_uniform(self):
|
||||
r = self.rg.uniform(-1.0, 0.0, size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
|
||||
def test_uniform_array(self):
|
||||
r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
r = self.rg.uniform(np.array([-1.0] * 10),
|
||||
np.array([0.0] * 10), size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
|
||||
def test_random(self):
|
||||
assert_(len(self.rg.random(10)) == 10)
|
||||
params_0(self.rg.random)
|
||||
|
||||
def test_standard_normal_zig(self):
|
||||
assert_(len(self.rg.standard_normal(10)) == 10)
|
||||
|
||||
def test_standard_normal(self):
|
||||
assert_(len(self.rg.standard_normal(10)) == 10)
|
||||
params_0(self.rg.standard_normal)
|
||||
|
||||
def test_standard_gamma(self):
|
||||
assert_(len(self.rg.standard_gamma(10, 10)) == 10)
|
||||
assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
|
||||
params_1(self.rg.standard_gamma)
|
||||
|
||||
def test_standard_exponential(self):
|
||||
assert_(len(self.rg.standard_exponential(10)) == 10)
|
||||
params_0(self.rg.standard_exponential)
|
||||
|
||||
def test_standard_exponential_float(self):
|
||||
randoms = self.rg.standard_exponential(10, dtype='float32')
|
||||
assert_(len(randoms) == 10)
|
||||
assert randoms.dtype == np.float32
|
||||
params_0(partial(self.rg.standard_exponential, dtype='float32'))
|
||||
|
||||
def test_standard_exponential_float_log(self):
|
||||
randoms = self.rg.standard_exponential(10, dtype='float32',
|
||||
method='inv')
|
||||
assert_(len(randoms) == 10)
|
||||
assert randoms.dtype == np.float32
|
||||
params_0(partial(self.rg.standard_exponential, dtype='float32',
|
||||
method='inv'))
|
||||
|
||||
def test_standard_cauchy(self):
|
||||
assert_(len(self.rg.standard_cauchy(10)) == 10)
|
||||
params_0(self.rg.standard_cauchy)
|
||||
|
||||
def test_standard_t(self):
|
||||
assert_(len(self.rg.standard_t(10, 10)) == 10)
|
||||
params_1(self.rg.standard_t)
|
||||
|
||||
def test_binomial(self):
|
||||
assert_(self.rg.binomial(10, .5) >= 0)
|
||||
assert_(self.rg.binomial(1000, .5) >= 0)
|
||||
|
||||
def test_reset_state(self):
|
||||
state = self.rg.bit_generator.state
|
||||
int_1 = self.rg.integers(2**31)
|
||||
self.rg.bit_generator.state = state
|
||||
int_2 = self.rg.integers(2**31)
|
||||
assert_(int_1 == int_2)
|
||||
|
||||
def test_entropy_init(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
rg2 = Generator(self.bit_generator())
|
||||
assert_(not comp_state(rg.bit_generator.state,
|
||||
rg2.bit_generator.state))
|
||||
|
||||
def test_seed(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg2 = Generator(self.bit_generator(*self.seed))
|
||||
rg.random()
|
||||
rg2.random()
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_reset_state_gauss(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.standard_normal()
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.standard_normal(size=10)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.standard_normal(size=10)
|
||||
assert_array_equal(n1, n2)
|
||||
|
||||
def test_reset_state_uint32(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
|
||||
assert_array_equal(n1, n2)
|
||||
|
||||
def test_reset_state_float(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.random(dtype='float32')
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.random(size=10, dtype='float32')
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.random(size=10, dtype='float32')
|
||||
assert_((n1 == n2).all())
|
||||
|
||||
def test_shuffle(self):
|
||||
original = np.arange(200, 0, -1)
|
||||
permuted = self.rg.permutation(original)
|
||||
assert_((original != permuted).any())
|
||||
|
||||
def test_permutation(self):
|
||||
original = np.arange(200, 0, -1)
|
||||
permuted = self.rg.permutation(original)
|
||||
assert_((original != permuted).any())
|
||||
|
||||
def test_beta(self):
|
||||
vals = self.rg.beta(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), 2.0)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(2.0, np.array([2.0] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
|
||||
assert_(vals.shape == (10, 10))
|
||||
|
||||
def test_bytes(self):
|
||||
vals = self.rg.bytes(10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_chisquare(self):
|
||||
vals = self.rg.chisquare(2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.chisquare)
|
||||
|
||||
def test_exponential(self):
|
||||
vals = self.rg.exponential(2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.exponential)
|
||||
|
||||
def test_f(self):
|
||||
vals = self.rg.f(3, 1000, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_gamma(self):
|
||||
vals = self.rg.gamma(3, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_geometric(self):
|
||||
vals = self.rg.geometric(0.5, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.exponential, bounded=True)
|
||||
|
||||
def test_gumbel(self):
|
||||
vals = self.rg.gumbel(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_laplace(self):
|
||||
vals = self.rg.laplace(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_logitic(self):
|
||||
vals = self.rg.logistic(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_logseries(self):
|
||||
vals = self.rg.logseries(0.5, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_negative_binomial(self):
|
||||
vals = self.rg.negative_binomial(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_noncentral_chisquare(self):
|
||||
vals = self.rg.noncentral_chisquare(10, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_noncentral_f(self):
|
||||
vals = self.rg.noncentral_f(3, 1000, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_normal(self):
|
||||
vals = self.rg.normal(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_pareto(self):
|
||||
vals = self.rg.pareto(3.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_poisson(self):
|
||||
vals = self.rg.poisson(10, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.poisson(np.array([10] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.poisson)
|
||||
|
||||
def test_power(self):
|
||||
vals = self.rg.power(0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_integers(self):
|
||||
vals = self.rg.integers(10, 20, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_rayleigh(self):
|
||||
vals = self.rg.rayleigh(0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.rayleigh, bounded=True)
|
||||
|
||||
def test_vonmises(self):
|
||||
vals = self.rg.vonmises(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_wald(self):
|
||||
vals = self.rg.wald(1.0, 1.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_weibull(self):
|
||||
vals = self.rg.weibull(1.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_zipf(self):
|
||||
vals = self.rg.zipf(10, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.zipf(self.vec_1d)
|
||||
assert_(len(vals) == 100)
|
||||
vals = self.rg.zipf(self.vec_2d)
|
||||
assert_(vals.shape == (1, 100))
|
||||
vals = self.rg.zipf(self.mat)
|
||||
assert_(vals.shape == (100, 100))
|
||||
|
||||
def test_hypergeometric(self):
|
||||
vals = self.rg.hypergeometric(25, 25, 20)
|
||||
assert_(np.isscalar(vals))
|
||||
vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
|
||||
assert_(vals.shape == (10,))
|
||||
|
||||
def test_triangular(self):
|
||||
vals = self.rg.triangular(-5, 0, 5)
|
||||
assert_(np.isscalar(vals))
|
||||
vals = self.rg.triangular(-5, np.array([0] * 10), 5)
|
||||
assert_(vals.shape == (10,))
|
||||
|
||||
def test_multivariate_normal(self):
|
||||
mean = [0, 0]
|
||||
cov = [[1, 0], [0, 100]] # diagonal covariance
|
||||
x = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
x_zig = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
x_inv = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
assert_((x_zig != x_inv).any())
|
||||
|
||||
def test_multinomial(self):
|
||||
vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
|
||||
assert_(vals.shape == (2,))
|
||||
vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
|
||||
assert_(vals.shape == (10, 2))
|
||||
|
||||
def test_dirichlet(self):
|
||||
s = self.rg.dirichlet((10, 5, 3), 20)
|
||||
assert_(s.shape == (20, 3))
|
||||
|
||||
def test_pickle(self):
|
||||
pick = pickle.dumps(self.rg)
|
||||
unpick = pickle.loads(pick)
|
||||
assert_((type(self.rg) == type(unpick)))
|
||||
assert_(comp_state(self.rg.bit_generator.state,
|
||||
unpick.bit_generator.state))
|
||||
|
||||
pick = pickle.dumps(self.rg)
|
||||
unpick = pickle.loads(pick)
|
||||
assert_((type(self.rg) == type(unpick)))
|
||||
assert_(comp_state(self.rg.bit_generator.state,
|
||||
unpick.bit_generator.state))
|
||||
|
||||
def test_seed_array(self):
|
||||
if self.seed_vector_bits is None:
|
||||
bitgen_name = self.bit_generator.__name__
|
||||
pytest.skip('Vector seeding is not supported by '
|
||||
'{0}'.format(bitgen_name))
|
||||
|
||||
if self.seed_vector_bits == 32:
|
||||
dtype = np.uint32
|
||||
else:
|
||||
dtype = np.uint64
|
||||
seed = np.array([1], dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(1)
|
||||
state2 = bg.state
|
||||
assert_(comp_state(state1, state2))
|
||||
|
||||
seed = np.arange(4, dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
seed = np.arange(1500, dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
|
||||
self.seed_vector_bits - 1) + 1
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
def test_uniform_float(self):
|
||||
rg = Generator(self.bit_generator(12345))
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.random(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.random(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_gamma_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_normal_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_normal(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_normal(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_normal_zig_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_normal(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_normal(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_output_fill(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_normal(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
sized = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=sized, size=sized.shape)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_normal(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_uniform(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.random(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.random(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.random(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.random(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_exponential(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_exponential(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_exponential(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_exponential(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_exponential(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_gamma(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.zeros(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(1.0, out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(1.0, size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_gamma_broadcast(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
mu = np.arange(97.0) + 1.0
|
||||
existing = np.zeros(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(mu, out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(mu, size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(mu, out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_fill_error(self):
|
||||
rg = self.rg
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_normal(out=existing, dtype=np.float32)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_normal(out=existing[::3])
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_normal(out=existing, dtype=np.float64)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float64)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
|
||||
existing = np.zeros(size, dtype=np.float64)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float32)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_gamma(1.0, out=existing[::3])
|
||||
|
||||
def test_integers_broadcast(self, dtype):
|
||||
if dtype == np.bool:
|
||||
upper = 2
|
||||
lower = 0
|
||||
else:
|
||||
info = np.iinfo(dtype)
|
||||
upper = int(info.max) + 1
|
||||
lower = info.min
|
||||
self._reset_state()
|
||||
a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
|
||||
self._reset_state()
|
||||
b = self.rg.integers([lower] * 10, upper, dtype=dtype)
|
||||
assert_equal(a, b)
|
||||
self._reset_state()
|
||||
c = self.rg.integers(lower, upper, size=10, dtype=dtype)
|
||||
assert_equal(a, c)
|
||||
self._reset_state()
|
||||
d = self.rg.integers(np.array(
|
||||
[lower] * 10), np.array([upper], dtype=np.object), size=10,
|
||||
dtype=dtype)
|
||||
assert_equal(a, d)
|
||||
self._reset_state()
|
||||
e = self.rg.integers(
|
||||
np.array([lower] * 10), np.array([upper] * 10), size=10,
|
||||
dtype=dtype)
|
||||
assert_equal(a, e)
|
||||
|
||||
self._reset_state()
|
||||
a = self.rg.integers(0, upper, size=10, dtype=dtype)
|
||||
self._reset_state()
|
||||
b = self.rg.integers([upper] * 10, dtype=dtype)
|
||||
assert_equal(a, b)
|
||||
|
||||
def test_integers_numpy(self, dtype):
|
||||
high = np.array([1])
|
||||
low = np.array([0])
|
||||
|
||||
out = self.rg.integers(low, high, dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
out = self.rg.integers(low[0], high, dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
out = self.rg.integers(low, high[0], dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
def test_integers_broadcast_errors(self, dtype):
|
||||
if dtype == np.bool:
|
||||
upper = 2
|
||||
lower = 0
|
||||
else:
|
||||
info = np.iinfo(dtype)
|
||||
upper = int(info.max) + 1
|
||||
lower = info.min
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers([0], [0], dtype=dtype)
|
||||
|
||||
|
||||
class TestMT19937(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = MT19937
|
||||
cls.advance = None
|
||||
cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 32
|
||||
cls._extra_setup()
|
||||
cls.seed_error = ValueError
|
||||
|
||||
def test_numpy_state(self):
|
||||
nprg = np.random.RandomState()
|
||||
nprg.standard_normal(99)
|
||||
state = nprg.get_state()
|
||||
self.rg.bit_generator.state = state
|
||||
state2 = self.rg.bit_generator.state
|
||||
assert_((state[1] == state2['state']['key']).all())
|
||||
assert_((state[2] == state2['state']['pos']))
|
||||
|
||||
|
||||
class TestPhilox(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = Philox
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestSFC64(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = SFC64
|
||||
cls.advance = None
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 192
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestPCG64(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestDefaultRNG(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# This will duplicate some tests that directly instantiate a fresh
|
||||
# Generator(), but that's okay.
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = np.random.default_rng(*cls.seed)
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
def test_default_is_pcg64(self):
|
||||
# In order to change the default BitGenerator, we'll go through
|
||||
# a deprecation cycle to move to a different function.
|
||||
assert_(isinstance(self.rg.bit_generator, PCG64))
|
||||
|
||||
def test_seed(self):
|
||||
np.random.default_rng()
|
||||
np.random.default_rng(None)
|
||||
np.random.default_rng(12345)
|
||||
np.random.default_rng(0)
|
||||
np.random.default_rng(43660444402423911716352051725018508569)
|
||||
np.random.default_rng([43660444402423911716352051725018508569,
|
||||
279705150948142787361475340226491943209])
|
||||
with pytest.raises(ValueError):
|
||||
np.random.default_rng(-1)
|
||||
with pytest.raises(ValueError):
|
||||
np.random.default_rng([12345, -1])
|
||||
|
||||
|
||||
class TestEntropy(object):
|
||||
def test_entropy(self):
|
||||
e1 = entropy.random_entropy()
|
||||
e2 = entropy.random_entropy()
|
||||
assert_((e1 != e2))
|
||||
e1 = entropy.random_entropy(10)
|
||||
e2 = entropy.random_entropy(10)
|
||||
assert_((e1 != e2).all())
|
||||
e1 = entropy.random_entropy(10, source='system')
|
||||
e2 = entropy.random_entropy(10, source='system')
|
||||
assert_((e1 != e2).all())
|
||||
|
||||
def test_fallback(self):
|
||||
e1 = entropy.random_entropy(source='fallback')
|
||||
time.sleep(0.1)
|
||||
e2 = entropy.random_entropy(source='fallback')
|
||||
assert_((e1 != e2))
|
||||
|
Reference in New Issue
Block a user