8th day of python challenges 111-117
This commit is contained in:
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,418 @@
|
||||
import os
|
||||
from os.path import join
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import (assert_equal, assert_allclose, assert_array_equal,
|
||||
assert_raises)
|
||||
import pytest
|
||||
|
||||
from numpy.random import (
|
||||
Generator, MT19937, PCG64, Philox, RandomState, SeedSequence, SFC64,
|
||||
default_rng
|
||||
)
|
||||
from numpy.random.common import interface
|
||||
|
||||
try:
|
||||
import cffi # noqa: F401
|
||||
|
||||
MISSING_CFFI = False
|
||||
except ImportError:
|
||||
MISSING_CFFI = True
|
||||
|
||||
try:
|
||||
import ctypes # noqa: F401
|
||||
|
||||
MISSING_CTYPES = False
|
||||
except ImportError:
|
||||
MISSING_CTYPES = False
|
||||
|
||||
pwd = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
|
||||
def assert_state_equal(actual, target):
|
||||
for key in actual:
|
||||
if isinstance(actual[key], dict):
|
||||
assert_state_equal(actual[key], target[key])
|
||||
elif isinstance(actual[key], np.ndarray):
|
||||
assert_array_equal(actual[key], target[key])
|
||||
else:
|
||||
assert actual[key] == target[key]
|
||||
|
||||
|
||||
def uniform32_from_uint64(x):
|
||||
x = np.uint64(x)
|
||||
upper = np.array(x >> np.uint64(32), dtype=np.uint32)
|
||||
lower = np.uint64(0xffffffff)
|
||||
lower = np.array(x & lower, dtype=np.uint32)
|
||||
joined = np.column_stack([lower, upper]).ravel()
|
||||
out = (joined >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
return out.astype(np.float32)
|
||||
|
||||
|
||||
def uniform32_from_uint53(x):
|
||||
x = np.uint64(x) >> np.uint64(16)
|
||||
x = np.uint32(x & np.uint64(0xffffffff))
|
||||
out = (x >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
return out.astype(np.float32)
|
||||
|
||||
|
||||
def uniform32_from_uint32(x):
|
||||
return (x >> np.uint32(9)) * (1.0 / 2 ** 23)
|
||||
|
||||
|
||||
def uniform32_from_uint(x, bits):
|
||||
if bits == 64:
|
||||
return uniform32_from_uint64(x)
|
||||
elif bits == 53:
|
||||
return uniform32_from_uint53(x)
|
||||
elif bits == 32:
|
||||
return uniform32_from_uint32(x)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def uniform_from_uint(x, bits):
|
||||
if bits in (64, 63, 53):
|
||||
return uniform_from_uint64(x)
|
||||
elif bits == 32:
|
||||
return uniform_from_uint32(x)
|
||||
|
||||
|
||||
def uniform_from_uint64(x):
|
||||
return (x >> np.uint64(11)) * (1.0 / 9007199254740992.0)
|
||||
|
||||
|
||||
def uniform_from_uint32(x):
|
||||
out = np.empty(len(x) // 2)
|
||||
for i in range(0, len(x), 2):
|
||||
a = x[i] >> 5
|
||||
b = x[i + 1] >> 6
|
||||
out[i // 2] = (a * 67108864.0 + b) / 9007199254740992.0
|
||||
return out
|
||||
|
||||
|
||||
def uniform_from_dsfmt(x):
|
||||
return x.view(np.double) - 1.0
|
||||
|
||||
|
||||
def gauss_from_uint(x, n, bits):
|
||||
if bits in (64, 63):
|
||||
doubles = uniform_from_uint64(x)
|
||||
elif bits == 32:
|
||||
doubles = uniform_from_uint32(x)
|
||||
else: # bits == 'dsfmt'
|
||||
doubles = uniform_from_dsfmt(x)
|
||||
gauss = []
|
||||
loc = 0
|
||||
x1 = x2 = 0.0
|
||||
while len(gauss) < n:
|
||||
r2 = 2
|
||||
while r2 >= 1.0 or r2 == 0.0:
|
||||
x1 = 2.0 * doubles[loc] - 1.0
|
||||
x2 = 2.0 * doubles[loc + 1] - 1.0
|
||||
r2 = x1 * x1 + x2 * x2
|
||||
loc += 2
|
||||
|
||||
f = np.sqrt(-2.0 * np.log(r2) / r2)
|
||||
gauss.append(f * x2)
|
||||
gauss.append(f * x1)
|
||||
|
||||
return gauss[:n]
|
||||
|
||||
def test_seedsequence():
|
||||
from numpy.random.bit_generator import (ISeedSequence,
|
||||
ISpawnableSeedSequence,
|
||||
SeedlessSeedSequence)
|
||||
|
||||
s1 = SeedSequence(range(10), spawn_key=(1, 2), pool_size=6)
|
||||
s1.spawn(10)
|
||||
s2 = SeedSequence(**s1.state)
|
||||
assert_equal(s1.state, s2.state)
|
||||
assert_equal(s1.n_children_spawned, s2.n_children_spawned)
|
||||
|
||||
# The interfaces cannot be instantiated themselves.
|
||||
assert_raises(TypeError, ISeedSequence)
|
||||
assert_raises(TypeError, ISpawnableSeedSequence)
|
||||
dummy = SeedlessSeedSequence()
|
||||
assert_raises(NotImplementedError, dummy.generate_state, 10)
|
||||
assert len(dummy.spawn(10)) == 10
|
||||
|
||||
|
||||
class Base(object):
|
||||
dtype = np.uint64
|
||||
data2 = data1 = {}
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.seed_error_type = TypeError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = []
|
||||
|
||||
@classmethod
|
||||
def _read_csv(cls, filename):
|
||||
with open(filename) as csv:
|
||||
seed = csv.readline()
|
||||
seed = seed.split(',')
|
||||
seed = [int(s.strip(), 0) for s in seed[1:]]
|
||||
data = []
|
||||
for line in csv:
|
||||
data.append(int(line.split(',')[-1].strip(), 0))
|
||||
return {'seed': seed, 'data': np.array(data, dtype=cls.dtype)}
|
||||
|
||||
def test_raw(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw(1000)
|
||||
assert_equal(uints, self.data1['data'])
|
||||
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw()
|
||||
assert_equal(uints, self.data1['data'][0])
|
||||
|
||||
bit_generator = self.bit_generator(*self.data2['seed'])
|
||||
uints = bit_generator.random_raw(1000)
|
||||
assert_equal(uints, self.data2['data'])
|
||||
|
||||
def test_random_raw(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
uints = bit_generator.random_raw(output=False)
|
||||
assert uints is None
|
||||
uints = bit_generator.random_raw(1000, output=False)
|
||||
assert uints is None
|
||||
|
||||
def test_gauss_inv(self):
|
||||
n = 25
|
||||
rs = RandomState(self.bit_generator(*self.data1['seed']))
|
||||
gauss = rs.standard_normal(n)
|
||||
assert_allclose(gauss,
|
||||
gauss_from_uint(self.data1['data'], n, self.bits))
|
||||
|
||||
rs = RandomState(self.bit_generator(*self.data2['seed']))
|
||||
gauss = rs.standard_normal(25)
|
||||
assert_allclose(gauss,
|
||||
gauss_from_uint(self.data2['data'], n, self.bits))
|
||||
|
||||
def test_uniform_double(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
vals = uniform_from_uint(self.data1['data'], self.bits)
|
||||
uniforms = rs.random(len(vals))
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float64)
|
||||
|
||||
rs = Generator(self.bit_generator(*self.data2['seed']))
|
||||
vals = uniform_from_uint(self.data2['data'], self.bits)
|
||||
uniforms = rs.random(len(vals))
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float64)
|
||||
|
||||
def test_uniform_float(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
vals = uniform32_from_uint(self.data1['data'], self.bits)
|
||||
uniforms = rs.random(len(vals), dtype=np.float32)
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float32)
|
||||
|
||||
rs = Generator(self.bit_generator(*self.data2['seed']))
|
||||
vals = uniform32_from_uint(self.data2['data'], self.bits)
|
||||
uniforms = rs.random(len(vals), dtype=np.float32)
|
||||
assert_allclose(uniforms, vals)
|
||||
assert_equal(uniforms.dtype, np.float32)
|
||||
|
||||
def test_repr(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
assert 'Generator' in repr(rs)
|
||||
assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') in repr(rs)
|
||||
|
||||
def test_str(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
assert 'Generator' in str(rs)
|
||||
assert str(self.bit_generator.__name__) in str(rs)
|
||||
assert '{:#x}'.format(id(rs)).upper().replace('X', 'x') not in str(rs)
|
||||
|
||||
def test_pickle(self):
|
||||
import pickle
|
||||
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
bitgen_pkl = pickle.dumps(bit_generator)
|
||||
reloaded = pickle.loads(bitgen_pkl)
|
||||
reloaded_state = reloaded.state
|
||||
assert_array_equal(Generator(bit_generator).standard_normal(1000),
|
||||
Generator(reloaded).standard_normal(1000))
|
||||
assert bit_generator is not reloaded
|
||||
assert_state_equal(reloaded_state, state)
|
||||
|
||||
ss = SeedSequence(100)
|
||||
aa = pickle.loads(pickle.dumps(ss))
|
||||
assert_equal(ss.state, aa.state)
|
||||
|
||||
def test_invalid_state_type(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
with pytest.raises(TypeError):
|
||||
bit_generator.state = {'1'}
|
||||
|
||||
def test_invalid_state_value(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
state['bit_generator'] = 'otherBitGenerator'
|
||||
with pytest.raises(ValueError):
|
||||
bit_generator.state = state
|
||||
|
||||
def test_invalid_init_type(self):
|
||||
bit_generator = self.bit_generator
|
||||
for st in self.invalid_init_types:
|
||||
with pytest.raises(TypeError):
|
||||
bit_generator(*st)
|
||||
|
||||
def test_invalid_init_values(self):
|
||||
bit_generator = self.bit_generator
|
||||
for st in self.invalid_init_values:
|
||||
with pytest.raises((ValueError, OverflowError)):
|
||||
bit_generator(*st)
|
||||
|
||||
def test_benchmark(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
bit_generator._benchmark(1)
|
||||
bit_generator._benchmark(1, 'double')
|
||||
with pytest.raises(ValueError):
|
||||
bit_generator._benchmark(1, 'int32')
|
||||
|
||||
@pytest.mark.skipif(MISSING_CFFI, reason='cffi not available')
|
||||
def test_cffi(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
cffi_interface = bit_generator.cffi
|
||||
assert isinstance(cffi_interface, interface)
|
||||
other_cffi_interface = bit_generator.cffi
|
||||
assert other_cffi_interface is cffi_interface
|
||||
|
||||
@pytest.mark.skipif(MISSING_CTYPES, reason='ctypes not available')
|
||||
def test_ctypes(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
ctypes_interface = bit_generator.ctypes
|
||||
assert isinstance(ctypes_interface, interface)
|
||||
other_ctypes_interface = bit_generator.ctypes
|
||||
assert other_ctypes_interface is ctypes_interface
|
||||
|
||||
def test_getstate(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
alt_state = bit_generator.__getstate__()
|
||||
assert_state_equal(state, alt_state)
|
||||
|
||||
|
||||
class TestPhilox(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = Philox
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(
|
||||
join(pwd, './data/philox-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(
|
||||
join(pwd, './data/philox-testset-2.csv'))
|
||||
cls.seed_error_type = TypeError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = [(1, None, 1), (-1,), (None, None, 2 ** 257 + 1)]
|
||||
|
||||
def test_set_key(self):
|
||||
bit_generator = self.bit_generator(*self.data1['seed'])
|
||||
state = bit_generator.state
|
||||
keyed = self.bit_generator(counter=state['state']['counter'],
|
||||
key=state['state']['key'])
|
||||
assert_state_equal(bit_generator.state, keyed.state)
|
||||
|
||||
|
||||
class TestPCG64(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(join(pwd, './data/pcg64-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(join(pwd, './data/pcg64-testset-2.csv'))
|
||||
cls.seed_error_type = (ValueError, TypeError)
|
||||
cls.invalid_init_types = [(3.2,), ([None],), (1, None)]
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
def test_advance_symmetry(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
state = rs.bit_generator.state
|
||||
step = -0x9e3779b97f4a7c150000000000000000
|
||||
rs.bit_generator.advance(step)
|
||||
val_neg = rs.integers(10)
|
||||
rs.bit_generator.state = state
|
||||
rs.bit_generator.advance(2**128 + step)
|
||||
val_pos = rs.integers(10)
|
||||
rs.bit_generator.state = state
|
||||
rs.bit_generator.advance(10 * 2**128 + step)
|
||||
val_big = rs.integers(10)
|
||||
assert val_neg == val_pos
|
||||
assert val_big == val_pos
|
||||
|
||||
|
||||
class TestMT19937(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = MT19937
|
||||
cls.bits = 32
|
||||
cls.dtype = np.uint32
|
||||
cls.data1 = cls._read_csv(join(pwd, './data/mt19937-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(join(pwd, './data/mt19937-testset-2.csv'))
|
||||
cls.seed_error_type = ValueError
|
||||
cls.invalid_init_types = []
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
def test_seed_float_array(self):
|
||||
assert_raises(TypeError, self.bit_generator, np.array([np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([-np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([np.pi, -np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, np.array([0, np.pi]))
|
||||
assert_raises(TypeError, self.bit_generator, [np.pi])
|
||||
assert_raises(TypeError, self.bit_generator, [0, np.pi])
|
||||
|
||||
def test_state_tuple(self):
|
||||
rs = Generator(self.bit_generator(*self.data1['seed']))
|
||||
bit_generator = rs.bit_generator
|
||||
state = bit_generator.state
|
||||
desired = rs.integers(2 ** 16)
|
||||
tup = (state['bit_generator'], state['state']['key'],
|
||||
state['state']['pos'])
|
||||
bit_generator.state = tup
|
||||
actual = rs.integers(2 ** 16)
|
||||
assert_equal(actual, desired)
|
||||
tup = tup + (0, 0.0)
|
||||
bit_generator.state = tup
|
||||
actual = rs.integers(2 ** 16)
|
||||
assert_equal(actual, desired)
|
||||
|
||||
|
||||
class TestSFC64(Base):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = SFC64
|
||||
cls.bits = 64
|
||||
cls.dtype = np.uint64
|
||||
cls.data1 = cls._read_csv(
|
||||
join(pwd, './data/sfc64-testset-1.csv'))
|
||||
cls.data2 = cls._read_csv(
|
||||
join(pwd, './data/sfc64-testset-2.csv'))
|
||||
cls.seed_error_type = (ValueError, TypeError)
|
||||
cls.invalid_init_types = [(3.2,), ([None],), (1, None)]
|
||||
cls.invalid_init_values = [(-1,)]
|
||||
|
||||
|
||||
class TestDefaultRNG(object):
|
||||
def test_seed(self):
|
||||
for args in [(), (None,), (1234,), ([1234, 5678],)]:
|
||||
rg = default_rng(*args)
|
||||
assert isinstance(rg.bit_generator, PCG64)
|
||||
|
||||
def test_passthrough(self):
|
||||
bg = Philox()
|
||||
rg = default_rng(bg)
|
||||
assert rg.bit_generator is bg
|
||||
rg2 = default_rng(rg)
|
||||
assert rg2 is rg
|
||||
assert rg2.bit_generator is bg
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,158 @@
|
||||
import sys
|
||||
from numpy.testing import (assert_, assert_array_equal)
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.random import Generator, MT19937
|
||||
|
||||
mt19937 = Generator(MT19937())
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = mt19937.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(mt19937.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(mt19937.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems
|
||||
assert_(mt19937.hypergeometric(*args) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
mt19937 = Generator(MT19937(0))
|
||||
rvsn = mt19937.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = mt19937.permutation(12)
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
b = mt19937.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
mt19937 = Generator(MT19937(12345))
|
||||
shuffled = list(t)
|
||||
mt19937.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[2], t[0], t[3], t[1]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom BitGenerator does not call into global state
|
||||
res = np.array([1, 8, 0, 1, 5, 3, 3, 8, 1, 4])
|
||||
for i in range(3):
|
||||
mt19937 = Generator(MT19937(i))
|
||||
m = Generator(MT19937(4321))
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
mt19937.multivariate_normal([0], [[0]], size=1)
|
||||
mt19937.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
mt19937.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
mt19937 = Generator(MT19937(1234567890))
|
||||
x = mt19937.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = mt19937.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
with pytest.raises(ValueError):
|
||||
mt19937.choice(a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
mt19937.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
mt19937 = Generator(MT19937(1234))
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
mt19937.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
mt19937 = Generator(MT19937(1))
|
||||
orig = np.arange(3).view(N)
|
||||
perm = mt19937.permutation(orig)
|
||||
assert_array_equal(perm, np.array([2, 0, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
mt19937 = Generator(MT19937(1))
|
||||
m = M()
|
||||
perm = mt19937.permutation(m)
|
||||
assert_array_equal(perm, np.array([4, 1, 3, 0, 2]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
|
||||
def test_gamma_0(self):
|
||||
assert mt19937.standard_gamma(0.0) == 0.0
|
||||
assert_array_equal(mt19937.standard_gamma([0.0]), 0.0)
|
||||
|
||||
actual = mt19937.standard_gamma([0.0], dtype='float')
|
||||
expected = np.array([0.], dtype=np.float32)
|
||||
assert_array_equal(actual, expected)
|
||||
1674
venv/lib/python3.6/site-packages/numpy/random/tests/test_random.py
Normal file
1674
venv/lib/python3.6/site-packages/numpy/random/tests/test_random.py
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,183 @@
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
|
||||
from numpy.testing import (
|
||||
assert_, assert_array_equal, assert_raises,
|
||||
)
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
|
||||
from numpy.random import mtrand as random
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = random.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = [
|
||||
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
||||
]
|
||||
is_64bits = sys.maxsize > 2**32
|
||||
if is_64bits and sys.platform != 'win32':
|
||||
# Check for 64-bit systems
|
||||
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
||||
for arg in args:
|
||||
assert_(random.hypergeometric(*arg) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
random.seed(0)
|
||||
rvsn = random.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
random.seed(1234)
|
||||
a = random.permutation(12)
|
||||
random.seed(1234)
|
||||
b = random.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
random.seed(12345)
|
||||
shuffled = list(t)
|
||||
random.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom RandomState does not call into global state
|
||||
m = random.RandomState()
|
||||
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
||||
for i in range(3):
|
||||
random.seed(i)
|
||||
m.seed(4321)
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
random.multivariate_normal([0], [[0]], size=1)
|
||||
random.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
random.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
random.seed(1234567890)
|
||||
x = random.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in random.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
random.seed(1234)
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = random.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
assert_raises(ValueError, random.choice, a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
random.seed(1234)
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
random.seed(1234)
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
random.seed(1)
|
||||
orig = np.arange(3).view(N)
|
||||
perm = random.permutation(orig)
|
||||
assert_array_equal(perm, np.array([0, 2, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
random.seed(1)
|
||||
m = M()
|
||||
perm = random.permutation(m)
|
||||
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
|
||||
def test_warns_byteorder(self):
|
||||
# GH 13159
|
||||
other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
|
||||
with pytest.deprecated_call(match='non-native byteorder is not'):
|
||||
random.randint(0, 200, size=10, dtype=other_byteord_dt)
|
||||
|
||||
def test_named_argument_initialization(self):
|
||||
# GH 13669
|
||||
rs1 = np.random.RandomState(123456789)
|
||||
rs2 = np.random.RandomState(seed=123456789)
|
||||
assert rs1.randint(0, 100) == rs2.randint(0, 100)
|
||||
|
||||
def test_choice_retun_dtype(self):
|
||||
# GH 9867
|
||||
c = np.random.choice(10, p=[.1]*10, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, p=[.1]*10, replace=False, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
c = np.random.choice(10, replace=False, size=2)
|
||||
assert c.dtype == np.dtype(int)
|
||||
@@ -0,0 +1,158 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import sys
|
||||
from numpy.testing import (
|
||||
assert_, assert_array_equal, assert_raises,
|
||||
)
|
||||
from numpy import random
|
||||
from numpy.compat import long
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_VonMises_range(self):
|
||||
# Make sure generated random variables are in [-pi, pi].
|
||||
# Regression test for ticket #986.
|
||||
for mu in np.linspace(-7., 7., 5):
|
||||
r = random.mtrand.vonmises(mu, 1, 50)
|
||||
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||||
|
||||
def test_hypergeometric_range(self):
|
||||
# Test for ticket #921
|
||||
assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
|
||||
assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
|
||||
|
||||
# Test for ticket #5623
|
||||
args = [
|
||||
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
||||
]
|
||||
is_64bits = sys.maxsize > 2**32
|
||||
if is_64bits and sys.platform != 'win32':
|
||||
# Check for 64-bit systems
|
||||
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
||||
for arg in args:
|
||||
assert_(np.random.hypergeometric(*arg) > 0)
|
||||
|
||||
def test_logseries_convergence(self):
|
||||
# Test for ticket #923
|
||||
N = 1000
|
||||
np.random.seed(0)
|
||||
rvsn = np.random.logseries(0.8, size=N)
|
||||
# these two frequency counts should be close to theoretical
|
||||
# numbers with this large sample
|
||||
# theoretical large N result is 0.49706795
|
||||
freq = np.sum(rvsn == 1) / float(N)
|
||||
msg = "Frequency was %f, should be > 0.45" % freq
|
||||
assert_(freq > 0.45, msg)
|
||||
# theoretical large N result is 0.19882718
|
||||
freq = np.sum(rvsn == 2) / float(N)
|
||||
msg = "Frequency was %f, should be < 0.23" % freq
|
||||
assert_(freq < 0.23, msg)
|
||||
|
||||
def test_permutation_longs(self):
|
||||
np.random.seed(1234)
|
||||
a = np.random.permutation(12)
|
||||
np.random.seed(1234)
|
||||
b = np.random.permutation(long(12))
|
||||
assert_array_equal(a, b)
|
||||
|
||||
def test_shuffle_mixed_dimension(self):
|
||||
# Test for trac ticket #2074
|
||||
for t in [[1, 2, 3, None],
|
||||
[(1, 1), (2, 2), (3, 3), None],
|
||||
[1, (2, 2), (3, 3), None],
|
||||
[(1, 1), 2, 3, None]]:
|
||||
np.random.seed(12345)
|
||||
shuffled = list(t)
|
||||
random.shuffle(shuffled)
|
||||
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
|
||||
|
||||
def test_call_within_randomstate(self):
|
||||
# Check that custom RandomState does not call into global state
|
||||
m = np.random.RandomState()
|
||||
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
||||
for i in range(3):
|
||||
np.random.seed(i)
|
||||
m.seed(4321)
|
||||
# If m.state is not honored, the result will change
|
||||
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||||
|
||||
def test_multivariate_normal_size_types(self):
|
||||
# Test for multivariate_normal issue with 'size' argument.
|
||||
# Check that the multivariate_normal size argument can be a
|
||||
# numpy integer.
|
||||
np.random.multivariate_normal([0], [[0]], size=1)
|
||||
np.random.multivariate_normal([0], [[0]], size=np.int_(1))
|
||||
np.random.multivariate_normal([0], [[0]], size=np.int64(1))
|
||||
|
||||
def test_beta_small_parameters(self):
|
||||
# Test that beta with small a and b parameters does not produce
|
||||
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||||
np.random.seed(1234567890)
|
||||
x = np.random.beta(0.0001, 0.0001, size=100)
|
||||
assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta')
|
||||
|
||||
def test_choice_sum_of_probs_tolerance(self):
|
||||
# The sum of probs should be 1.0 with some tolerance.
|
||||
# For low precision dtypes the tolerance was too tight.
|
||||
# See numpy github issue 6123.
|
||||
np.random.seed(1234)
|
||||
a = [1, 2, 3]
|
||||
counts = [4, 4, 2]
|
||||
for dt in np.float16, np.float32, np.float64:
|
||||
probs = np.array(counts, dtype=dt) / sum(counts)
|
||||
c = np.random.choice(a, p=probs)
|
||||
assert_(c in a)
|
||||
assert_raises(ValueError, np.random.choice, a, p=probs*0.9)
|
||||
|
||||
def test_shuffle_of_array_of_different_length_strings(self):
|
||||
# Test that permuting an array of different length strings
|
||||
# will not cause a segfault on garbage collection
|
||||
# Tests gh-7710
|
||||
np.random.seed(1234)
|
||||
|
||||
a = np.array(['a', 'a' * 1000])
|
||||
|
||||
for _ in range(100):
|
||||
np.random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_shuffle_of_array_of_objects(self):
|
||||
# Test that permuting an array of objects will not cause
|
||||
# a segfault on garbage collection.
|
||||
# See gh-7719
|
||||
np.random.seed(1234)
|
||||
a = np.array([np.arange(1), np.arange(4)])
|
||||
|
||||
for _ in range(1000):
|
||||
np.random.shuffle(a)
|
||||
|
||||
# Force Garbage Collection - should not segfault.
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def test_permutation_subclass(self):
|
||||
class N(np.ndarray):
|
||||
pass
|
||||
|
||||
np.random.seed(1)
|
||||
orig = np.arange(3).view(N)
|
||||
perm = np.random.permutation(orig)
|
||||
assert_array_equal(perm, np.array([0, 2, 1]))
|
||||
assert_array_equal(orig, np.arange(3).view(N))
|
||||
|
||||
class M(object):
|
||||
a = np.arange(5)
|
||||
|
||||
def __array__(self):
|
||||
return self.a
|
||||
|
||||
np.random.seed(1)
|
||||
m = M()
|
||||
perm = np.random.permutation(m)
|
||||
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
||||
assert_array_equal(m.__array__(), np.arange(5))
|
||||
@@ -0,0 +1,54 @@
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_equal
|
||||
|
||||
from numpy.random.bit_generator import SeedSequence
|
||||
|
||||
|
||||
def test_reference_data():
|
||||
""" Check that SeedSequence generates data the same as the C++ reference.
|
||||
|
||||
https://gist.github.com/imneme/540829265469e673d045
|
||||
"""
|
||||
inputs = [
|
||||
[3735928559, 195939070, 229505742, 305419896],
|
||||
[3668361503, 4165561550, 1661411377, 3634257570],
|
||||
[164546577, 4166754639, 1765190214, 1303880213],
|
||||
[446610472, 3941463886, 522937693, 1882353782],
|
||||
[1864922766, 1719732118, 3882010307, 1776744564],
|
||||
[4141682960, 3310988675, 553637289, 902896340],
|
||||
[1134851934, 2352871630, 3699409824, 2648159817],
|
||||
[1240956131, 3107113773, 1283198141, 1924506131],
|
||||
[2669565031, 579818610, 3042504477, 2774880435],
|
||||
[2766103236, 2883057919, 4029656435, 862374500],
|
||||
]
|
||||
outputs = [
|
||||
[3914649087, 576849849, 3593928901, 2229911004],
|
||||
[2240804226, 3691353228, 1365957195, 2654016646],
|
||||
[3562296087, 3191708229, 1147942216, 3726991905],
|
||||
[1403443605, 3591372999, 1291086759, 441919183],
|
||||
[1086200464, 2191331643, 560336446, 3658716651],
|
||||
[3249937430, 2346751812, 847844327, 2996632307],
|
||||
[2584285912, 4034195531, 3523502488, 169742686],
|
||||
[959045797, 3875435559, 1886309314, 359682705],
|
||||
[3978441347, 432478529, 3223635119, 138903045],
|
||||
[296367413, 4262059219, 13109864, 3283683422],
|
||||
]
|
||||
outputs64 = [
|
||||
[2477551240072187391, 9577394838764454085],
|
||||
[15854241394484835714, 11398914698975566411],
|
||||
[13708282465491374871, 16007308345579681096],
|
||||
[15424829579845884309, 1898028439751125927],
|
||||
[9411697742461147792, 15714068361935982142],
|
||||
[10079222287618677782, 12870437757549876199],
|
||||
[17326737873898640088, 729039288628699544],
|
||||
[16644868984619524261, 1544825456798124994],
|
||||
[1857481142255628931, 596584038813451439],
|
||||
[18305404959516669237, 14103312907920476776],
|
||||
]
|
||||
for seed, expected, expected64 in zip(inputs, outputs, outputs64):
|
||||
expected = np.array(expected, dtype=np.uint32)
|
||||
ss = SeedSequence(seed)
|
||||
state = ss.generate_state(len(expected))
|
||||
assert_array_equal(state, expected)
|
||||
state64 = ss.generate_state(len(expected64), dtype=np.uint64)
|
||||
assert_array_equal(state64, expected64)
|
||||
@@ -0,0 +1,828 @@
|
||||
import pickle
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.testing import assert_equal, assert_, assert_array_equal
|
||||
from numpy.random import (Generator, MT19937, PCG64, Philox, SFC64, entropy)
|
||||
|
||||
@pytest.fixture(scope='module',
|
||||
params=(np.bool, np.int8, np.int16, np.int32, np.int64,
|
||||
np.uint8, np.uint16, np.uint32, np.uint64))
|
||||
def dtype(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def params_0(f):
|
||||
val = f()
|
||||
assert_(np.isscalar(val))
|
||||
val = f(10)
|
||||
assert_(val.shape == (10,))
|
||||
val = f((10, 10))
|
||||
assert_(val.shape == (10, 10))
|
||||
val = f((10, 10, 10))
|
||||
assert_(val.shape == (10, 10, 10))
|
||||
val = f(size=(5, 5))
|
||||
assert_(val.shape == (5, 5))
|
||||
|
||||
|
||||
def params_1(f, bounded=False):
|
||||
a = 5.0
|
||||
b = np.arange(2.0, 12.0)
|
||||
c = np.arange(2.0, 102.0).reshape((10, 10))
|
||||
d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
|
||||
e = np.array([2.0, 3.0])
|
||||
g = np.arange(2.0, 12.0).reshape((1, 10, 1))
|
||||
if bounded:
|
||||
a = 0.5
|
||||
b = b / (1.5 * b.max())
|
||||
c = c / (1.5 * c.max())
|
||||
d = d / (1.5 * d.max())
|
||||
e = e / (1.5 * e.max())
|
||||
g = g / (1.5 * g.max())
|
||||
|
||||
# Scalar
|
||||
f(a)
|
||||
# Scalar - size
|
||||
f(a, size=(10, 10))
|
||||
# 1d
|
||||
f(b)
|
||||
# 2d
|
||||
f(c)
|
||||
# 3d
|
||||
f(d)
|
||||
# 1d size
|
||||
f(b, size=10)
|
||||
# 2d - size - broadcast
|
||||
f(e, size=(10, 2))
|
||||
# 3d - size
|
||||
f(g, size=(10, 10, 10))
|
||||
|
||||
|
||||
def comp_state(state1, state2):
|
||||
identical = True
|
||||
if isinstance(state1, dict):
|
||||
for key in state1:
|
||||
identical &= comp_state(state1[key], state2[key])
|
||||
elif type(state1) != type(state2):
|
||||
identical &= type(state1) == type(state2)
|
||||
else:
|
||||
if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
|
||||
state2, (list, tuple, np.ndarray))):
|
||||
for s1, s2 in zip(state1, state2):
|
||||
identical &= comp_state(s1, s2)
|
||||
else:
|
||||
identical &= state1 == state2
|
||||
return identical
|
||||
|
||||
|
||||
def warmup(rg, n=None):
|
||||
if n is None:
|
||||
n = 11 + np.random.randint(0, 20)
|
||||
rg.standard_normal(n)
|
||||
rg.standard_normal(n)
|
||||
rg.standard_normal(n, dtype=np.float32)
|
||||
rg.standard_normal(n, dtype=np.float32)
|
||||
rg.integers(0, 2 ** 24, n, dtype=np.uint64)
|
||||
rg.integers(0, 2 ** 48, n, dtype=np.uint64)
|
||||
rg.standard_gamma(11.0, n)
|
||||
rg.standard_gamma(11.0, n, dtype=np.float32)
|
||||
rg.random(n, dtype=np.float64)
|
||||
rg.random(n, dtype=np.float32)
|
||||
|
||||
|
||||
class RNG(object):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# Overridden in test classes. Place holder to silence IDE noise
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = None
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
@classmethod
|
||||
def _extra_setup(cls):
|
||||
cls.vec_1d = np.arange(2.0, 102.0)
|
||||
cls.vec_2d = np.arange(2.0, 102.0)[None, :]
|
||||
cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
|
||||
cls.seed_error = TypeError
|
||||
|
||||
def _reset_state(self):
|
||||
self.rg.bit_generator.state = self.initial_state
|
||||
|
||||
def test_init(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
state = rg.bit_generator.state
|
||||
rg.standard_normal(1)
|
||||
rg.standard_normal(1)
|
||||
rg.bit_generator.state = state
|
||||
new_state = rg.bit_generator.state
|
||||
assert_(comp_state(state, new_state))
|
||||
|
||||
def test_advance(self):
|
||||
state = self.rg.bit_generator.state
|
||||
if hasattr(self.rg.bit_generator, 'advance'):
|
||||
self.rg.bit_generator.advance(self.advance)
|
||||
assert_(not comp_state(state, self.rg.bit_generator.state))
|
||||
else:
|
||||
bitgen_name = self.rg.bit_generator.__class__.__name__
|
||||
pytest.skip('Advance is not supported by {0}'.format(bitgen_name))
|
||||
|
||||
def test_jump(self):
|
||||
state = self.rg.bit_generator.state
|
||||
if hasattr(self.rg.bit_generator, 'jumped'):
|
||||
bit_gen2 = self.rg.bit_generator.jumped()
|
||||
jumped_state = bit_gen2.state
|
||||
assert_(not comp_state(state, jumped_state))
|
||||
self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
|
||||
self.rg.bit_generator.state = state
|
||||
bit_gen3 = self.rg.bit_generator.jumped()
|
||||
rejumped_state = bit_gen3.state
|
||||
assert_(comp_state(jumped_state, rejumped_state))
|
||||
else:
|
||||
bitgen_name = self.rg.bit_generator.__class__.__name__
|
||||
if bitgen_name not in ('SFC64',):
|
||||
raise AttributeError('no "jumped" in %s' % bitgen_name)
|
||||
pytest.skip('Jump is not supported by {0}'.format(bitgen_name))
|
||||
|
||||
def test_uniform(self):
|
||||
r = self.rg.uniform(-1.0, 0.0, size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
|
||||
def test_uniform_array(self):
|
||||
r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
r = self.rg.uniform(np.array([-1.0] * 10),
|
||||
np.array([0.0] * 10), size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
|
||||
assert_(len(r) == 10)
|
||||
assert_((r > -1).all())
|
||||
assert_((r <= 0).all())
|
||||
|
||||
def test_random(self):
|
||||
assert_(len(self.rg.random(10)) == 10)
|
||||
params_0(self.rg.random)
|
||||
|
||||
def test_standard_normal_zig(self):
|
||||
assert_(len(self.rg.standard_normal(10)) == 10)
|
||||
|
||||
def test_standard_normal(self):
|
||||
assert_(len(self.rg.standard_normal(10)) == 10)
|
||||
params_0(self.rg.standard_normal)
|
||||
|
||||
def test_standard_gamma(self):
|
||||
assert_(len(self.rg.standard_gamma(10, 10)) == 10)
|
||||
assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
|
||||
params_1(self.rg.standard_gamma)
|
||||
|
||||
def test_standard_exponential(self):
|
||||
assert_(len(self.rg.standard_exponential(10)) == 10)
|
||||
params_0(self.rg.standard_exponential)
|
||||
|
||||
def test_standard_exponential_float(self):
|
||||
randoms = self.rg.standard_exponential(10, dtype='float32')
|
||||
assert_(len(randoms) == 10)
|
||||
assert randoms.dtype == np.float32
|
||||
params_0(partial(self.rg.standard_exponential, dtype='float32'))
|
||||
|
||||
def test_standard_exponential_float_log(self):
|
||||
randoms = self.rg.standard_exponential(10, dtype='float32',
|
||||
method='inv')
|
||||
assert_(len(randoms) == 10)
|
||||
assert randoms.dtype == np.float32
|
||||
params_0(partial(self.rg.standard_exponential, dtype='float32',
|
||||
method='inv'))
|
||||
|
||||
def test_standard_cauchy(self):
|
||||
assert_(len(self.rg.standard_cauchy(10)) == 10)
|
||||
params_0(self.rg.standard_cauchy)
|
||||
|
||||
def test_standard_t(self):
|
||||
assert_(len(self.rg.standard_t(10, 10)) == 10)
|
||||
params_1(self.rg.standard_t)
|
||||
|
||||
def test_binomial(self):
|
||||
assert_(self.rg.binomial(10, .5) >= 0)
|
||||
assert_(self.rg.binomial(1000, .5) >= 0)
|
||||
|
||||
def test_reset_state(self):
|
||||
state = self.rg.bit_generator.state
|
||||
int_1 = self.rg.integers(2**31)
|
||||
self.rg.bit_generator.state = state
|
||||
int_2 = self.rg.integers(2**31)
|
||||
assert_(int_1 == int_2)
|
||||
|
||||
def test_entropy_init(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
rg2 = Generator(self.bit_generator())
|
||||
assert_(not comp_state(rg.bit_generator.state,
|
||||
rg2.bit_generator.state))
|
||||
|
||||
def test_seed(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg2 = Generator(self.bit_generator(*self.seed))
|
||||
rg.random()
|
||||
rg2.random()
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_reset_state_gauss(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.standard_normal()
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.standard_normal(size=10)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.standard_normal(size=10)
|
||||
assert_array_equal(n1, n2)
|
||||
|
||||
def test_reset_state_uint32(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
|
||||
assert_array_equal(n1, n2)
|
||||
|
||||
def test_reset_state_float(self):
|
||||
rg = Generator(self.bit_generator(*self.seed))
|
||||
rg.random(dtype='float32')
|
||||
state = rg.bit_generator.state
|
||||
n1 = rg.random(size=10, dtype='float32')
|
||||
rg2 = Generator(self.bit_generator())
|
||||
rg2.bit_generator.state = state
|
||||
n2 = rg2.random(size=10, dtype='float32')
|
||||
assert_((n1 == n2).all())
|
||||
|
||||
def test_shuffle(self):
|
||||
original = np.arange(200, 0, -1)
|
||||
permuted = self.rg.permutation(original)
|
||||
assert_((original != permuted).any())
|
||||
|
||||
def test_permutation(self):
|
||||
original = np.arange(200, 0, -1)
|
||||
permuted = self.rg.permutation(original)
|
||||
assert_((original != permuted).any())
|
||||
|
||||
def test_beta(self):
|
||||
vals = self.rg.beta(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), 2.0)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(2.0, np.array([2.0] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
|
||||
assert_(vals.shape == (10, 10))
|
||||
|
||||
def test_bytes(self):
|
||||
vals = self.rg.bytes(10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_chisquare(self):
|
||||
vals = self.rg.chisquare(2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.chisquare)
|
||||
|
||||
def test_exponential(self):
|
||||
vals = self.rg.exponential(2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.exponential)
|
||||
|
||||
def test_f(self):
|
||||
vals = self.rg.f(3, 1000, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_gamma(self):
|
||||
vals = self.rg.gamma(3, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_geometric(self):
|
||||
vals = self.rg.geometric(0.5, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.exponential, bounded=True)
|
||||
|
||||
def test_gumbel(self):
|
||||
vals = self.rg.gumbel(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_laplace(self):
|
||||
vals = self.rg.laplace(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_logitic(self):
|
||||
vals = self.rg.logistic(2.0, 2.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_logseries(self):
|
||||
vals = self.rg.logseries(0.5, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_negative_binomial(self):
|
||||
vals = self.rg.negative_binomial(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_noncentral_chisquare(self):
|
||||
vals = self.rg.noncentral_chisquare(10, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_noncentral_f(self):
|
||||
vals = self.rg.noncentral_f(3, 1000, 2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_normal(self):
|
||||
vals = self.rg.normal(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_pareto(self):
|
||||
vals = self.rg.pareto(3.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_poisson(self):
|
||||
vals = self.rg.poisson(10, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.poisson(np.array([10] * 10))
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.poisson)
|
||||
|
||||
def test_power(self):
|
||||
vals = self.rg.power(0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_integers(self):
|
||||
vals = self.rg.integers(10, 20, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_rayleigh(self):
|
||||
vals = self.rg.rayleigh(0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
params_1(self.rg.rayleigh, bounded=True)
|
||||
|
||||
def test_vonmises(self):
|
||||
vals = self.rg.vonmises(10, 0.2, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_wald(self):
|
||||
vals = self.rg.wald(1.0, 1.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_weibull(self):
|
||||
vals = self.rg.weibull(1.0, 10)
|
||||
assert_(len(vals) == 10)
|
||||
|
||||
def test_zipf(self):
|
||||
vals = self.rg.zipf(10, 10)
|
||||
assert_(len(vals) == 10)
|
||||
vals = self.rg.zipf(self.vec_1d)
|
||||
assert_(len(vals) == 100)
|
||||
vals = self.rg.zipf(self.vec_2d)
|
||||
assert_(vals.shape == (1, 100))
|
||||
vals = self.rg.zipf(self.mat)
|
||||
assert_(vals.shape == (100, 100))
|
||||
|
||||
def test_hypergeometric(self):
|
||||
vals = self.rg.hypergeometric(25, 25, 20)
|
||||
assert_(np.isscalar(vals))
|
||||
vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
|
||||
assert_(vals.shape == (10,))
|
||||
|
||||
def test_triangular(self):
|
||||
vals = self.rg.triangular(-5, 0, 5)
|
||||
assert_(np.isscalar(vals))
|
||||
vals = self.rg.triangular(-5, np.array([0] * 10), 5)
|
||||
assert_(vals.shape == (10,))
|
||||
|
||||
def test_multivariate_normal(self):
|
||||
mean = [0, 0]
|
||||
cov = [[1, 0], [0, 100]] # diagonal covariance
|
||||
x = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
x_zig = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
x_inv = self.rg.multivariate_normal(mean, cov, 5000)
|
||||
assert_(x.shape == (5000, 2))
|
||||
assert_((x_zig != x_inv).any())
|
||||
|
||||
def test_multinomial(self):
|
||||
vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
|
||||
assert_(vals.shape == (2,))
|
||||
vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
|
||||
assert_(vals.shape == (10, 2))
|
||||
|
||||
def test_dirichlet(self):
|
||||
s = self.rg.dirichlet((10, 5, 3), 20)
|
||||
assert_(s.shape == (20, 3))
|
||||
|
||||
def test_pickle(self):
|
||||
pick = pickle.dumps(self.rg)
|
||||
unpick = pickle.loads(pick)
|
||||
assert_((type(self.rg) == type(unpick)))
|
||||
assert_(comp_state(self.rg.bit_generator.state,
|
||||
unpick.bit_generator.state))
|
||||
|
||||
pick = pickle.dumps(self.rg)
|
||||
unpick = pickle.loads(pick)
|
||||
assert_((type(self.rg) == type(unpick)))
|
||||
assert_(comp_state(self.rg.bit_generator.state,
|
||||
unpick.bit_generator.state))
|
||||
|
||||
def test_seed_array(self):
|
||||
if self.seed_vector_bits is None:
|
||||
bitgen_name = self.bit_generator.__name__
|
||||
pytest.skip('Vector seeding is not supported by '
|
||||
'{0}'.format(bitgen_name))
|
||||
|
||||
if self.seed_vector_bits == 32:
|
||||
dtype = np.uint32
|
||||
else:
|
||||
dtype = np.uint64
|
||||
seed = np.array([1], dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(1)
|
||||
state2 = bg.state
|
||||
assert_(comp_state(state1, state2))
|
||||
|
||||
seed = np.arange(4, dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
seed = np.arange(1500, dtype=dtype)
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
|
||||
self.seed_vector_bits - 1) + 1
|
||||
bg = self.bit_generator(seed)
|
||||
state1 = bg.state
|
||||
bg = self.bit_generator(seed[0])
|
||||
state2 = bg.state
|
||||
assert_(not comp_state(state1, state2))
|
||||
|
||||
def test_uniform_float(self):
|
||||
rg = Generator(self.bit_generator(12345))
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.random(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.random(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_gamma_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_normal_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_normal(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_normal(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_normal_zig_floats(self):
|
||||
rg = Generator(self.bit_generator())
|
||||
warmup(rg)
|
||||
state = rg.bit_generator.state
|
||||
r1 = rg.standard_normal(11, dtype=np.float32)
|
||||
rg2 = Generator(self.bit_generator())
|
||||
warmup(rg2)
|
||||
rg2.bit_generator.state = state
|
||||
r2 = rg2.standard_normal(11, dtype=np.float32)
|
||||
assert_array_equal(r1, r2)
|
||||
assert_equal(r1.dtype, np.float32)
|
||||
assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
|
||||
|
||||
def test_output_fill(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_normal(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
sized = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=sized, size=sized.shape)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_normal(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_normal(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_uniform(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.random(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.random(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.random(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.random(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_exponential(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_exponential(out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_exponential(size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_exponential(out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_exponential(size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_gamma(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
existing = np.zeros(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(1.0, out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(1.0, size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_filling_gamma_broadcast(self):
|
||||
rg = self.rg
|
||||
state = rg.bit_generator.state
|
||||
size = (31, 7, 97)
|
||||
mu = np.arange(97.0) + 1.0
|
||||
existing = np.zeros(size)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(mu, out=existing)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(mu, size=size)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
rg.standard_gamma(mu, out=existing, dtype=np.float32)
|
||||
rg.bit_generator.state = state
|
||||
direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
|
||||
assert_equal(direct, existing)
|
||||
|
||||
def test_output_fill_error(self):
|
||||
rg = self.rg
|
||||
size = (31, 7, 97)
|
||||
existing = np.empty(size)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_normal(out=existing, dtype=np.float32)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_normal(out=existing[::3])
|
||||
existing = np.empty(size, dtype=np.float32)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_normal(out=existing, dtype=np.float64)
|
||||
|
||||
existing = np.zeros(size, dtype=np.float32)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float64)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
|
||||
existing = np.zeros(size, dtype=np.float64)
|
||||
with pytest.raises(TypeError):
|
||||
rg.standard_gamma(1.0, out=existing, dtype=np.float32)
|
||||
with pytest.raises(ValueError):
|
||||
rg.standard_gamma(1.0, out=existing[::3])
|
||||
|
||||
def test_integers_broadcast(self, dtype):
|
||||
if dtype == np.bool:
|
||||
upper = 2
|
||||
lower = 0
|
||||
else:
|
||||
info = np.iinfo(dtype)
|
||||
upper = int(info.max) + 1
|
||||
lower = info.min
|
||||
self._reset_state()
|
||||
a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
|
||||
self._reset_state()
|
||||
b = self.rg.integers([lower] * 10, upper, dtype=dtype)
|
||||
assert_equal(a, b)
|
||||
self._reset_state()
|
||||
c = self.rg.integers(lower, upper, size=10, dtype=dtype)
|
||||
assert_equal(a, c)
|
||||
self._reset_state()
|
||||
d = self.rg.integers(np.array(
|
||||
[lower] * 10), np.array([upper], dtype=np.object), size=10,
|
||||
dtype=dtype)
|
||||
assert_equal(a, d)
|
||||
self._reset_state()
|
||||
e = self.rg.integers(
|
||||
np.array([lower] * 10), np.array([upper] * 10), size=10,
|
||||
dtype=dtype)
|
||||
assert_equal(a, e)
|
||||
|
||||
self._reset_state()
|
||||
a = self.rg.integers(0, upper, size=10, dtype=dtype)
|
||||
self._reset_state()
|
||||
b = self.rg.integers([upper] * 10, dtype=dtype)
|
||||
assert_equal(a, b)
|
||||
|
||||
def test_integers_numpy(self, dtype):
|
||||
high = np.array([1])
|
||||
low = np.array([0])
|
||||
|
||||
out = self.rg.integers(low, high, dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
out = self.rg.integers(low[0], high, dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
out = self.rg.integers(low, high[0], dtype=dtype)
|
||||
assert out.shape == (1,)
|
||||
|
||||
def test_integers_broadcast_errors(self, dtype):
|
||||
if dtype == np.bool:
|
||||
upper = 2
|
||||
lower = 0
|
||||
else:
|
||||
info = np.iinfo(dtype)
|
||||
upper = int(info.max) + 1
|
||||
lower = info.min
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
|
||||
with pytest.raises(ValueError):
|
||||
self.rg.integers([0], [0], dtype=dtype)
|
||||
|
||||
|
||||
class TestMT19937(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = MT19937
|
||||
cls.advance = None
|
||||
cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 32
|
||||
cls._extra_setup()
|
||||
cls.seed_error = ValueError
|
||||
|
||||
def test_numpy_state(self):
|
||||
nprg = np.random.RandomState()
|
||||
nprg.standard_normal(99)
|
||||
state = nprg.get_state()
|
||||
self.rg.bit_generator.state = state
|
||||
state2 = self.rg.bit_generator.state
|
||||
assert_((state[1] == state2['state']['key']).all())
|
||||
assert_((state[2] == state2['state']['pos']))
|
||||
|
||||
|
||||
class TestPhilox(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = Philox
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestSFC64(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = SFC64
|
||||
cls.advance = None
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 192
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestPCG64(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = Generator(cls.bit_generator(*cls.seed))
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
|
||||
class TestDefaultRNG(RNG):
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# This will duplicate some tests that directly instantiate a fresh
|
||||
# Generator(), but that's okay.
|
||||
cls.bit_generator = PCG64
|
||||
cls.advance = 2**63 + 2**31 + 2**15 + 1
|
||||
cls.seed = [12345]
|
||||
cls.rg = np.random.default_rng(*cls.seed)
|
||||
cls.initial_state = cls.rg.bit_generator.state
|
||||
cls.seed_vector_bits = 64
|
||||
cls._extra_setup()
|
||||
|
||||
def test_default_is_pcg64(self):
|
||||
# In order to change the default BitGenerator, we'll go through
|
||||
# a deprecation cycle to move to a different function.
|
||||
assert_(isinstance(self.rg.bit_generator, PCG64))
|
||||
|
||||
def test_seed(self):
|
||||
np.random.default_rng()
|
||||
np.random.default_rng(None)
|
||||
np.random.default_rng(12345)
|
||||
np.random.default_rng(0)
|
||||
np.random.default_rng(43660444402423911716352051725018508569)
|
||||
np.random.default_rng([43660444402423911716352051725018508569,
|
||||
279705150948142787361475340226491943209])
|
||||
with pytest.raises(ValueError):
|
||||
np.random.default_rng(-1)
|
||||
with pytest.raises(ValueError):
|
||||
np.random.default_rng([12345, -1])
|
||||
|
||||
|
||||
class TestEntropy(object):
|
||||
def test_entropy(self):
|
||||
e1 = entropy.random_entropy()
|
||||
e2 = entropy.random_entropy()
|
||||
assert_((e1 != e2))
|
||||
e1 = entropy.random_entropy(10)
|
||||
e2 = entropy.random_entropy(10)
|
||||
assert_((e1 != e2).all())
|
||||
e1 = entropy.random_entropy(10, source='system')
|
||||
e2 = entropy.random_entropy(10, source='system')
|
||||
assert_((e1 != e2).all())
|
||||
|
||||
def test_fallback(self):
|
||||
e1 = entropy.random_entropy(source='fallback')
|
||||
time.sleep(0.1)
|
||||
e2 = entropy.random_entropy(source='fallback')
|
||||
assert_((e1 != e2))
|
||||
|
||||
Reference in New Issue
Block a user