8th day of python challenges 111-117
This commit is contained in:
@@ -0,0 +1,74 @@
|
||||
""" support numpy compatibility across versions """
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
|
||||
# numpy versioning
|
||||
_np_version = np.__version__
|
||||
_nlv = LooseVersion(_np_version)
|
||||
_np_version_under1p14 = _nlv < LooseVersion("1.14")
|
||||
_np_version_under1p15 = _nlv < LooseVersion("1.15")
|
||||
_np_version_under1p16 = _nlv < LooseVersion("1.16")
|
||||
_np_version_under1p17 = _nlv < LooseVersion("1.17")
|
||||
_is_numpy_dev = ".dev" in str(_nlv)
|
||||
|
||||
|
||||
if _nlv < "1.13.3":
|
||||
raise ImportError(
|
||||
"this version of pandas is incompatible with "
|
||||
"numpy < 1.13.3\n"
|
||||
"your numpy version is {0}.\n"
|
||||
"Please upgrade numpy to >= 1.13.3 to use "
|
||||
"this pandas version".format(_np_version)
|
||||
)
|
||||
|
||||
|
||||
_tz_regex = re.compile("[+-]0000$")
|
||||
|
||||
|
||||
def tz_replacer(s):
|
||||
if isinstance(s, str):
|
||||
if s.endswith("Z"):
|
||||
s = s[:-1]
|
||||
elif _tz_regex.search(s):
|
||||
s = s[:-5]
|
||||
return s
|
||||
|
||||
|
||||
def np_datetime64_compat(s, *args, **kwargs):
|
||||
"""
|
||||
provide compat for construction of strings to numpy datetime64's with
|
||||
tz-changes in 1.11 that make '2015-01-01 09:00:00Z' show a deprecation
|
||||
warning, when need to pass '2015-01-01 09:00:00'
|
||||
"""
|
||||
s = tz_replacer(s)
|
||||
return np.datetime64(s, *args, **kwargs)
|
||||
|
||||
|
||||
def np_array_datetime64_compat(arr, *args, **kwargs):
|
||||
"""
|
||||
provide compat for construction of an array of strings to a
|
||||
np.array(..., dtype=np.datetime64(..))
|
||||
tz-changes in 1.11 that make '2015-01-01 09:00:00Z' show a deprecation
|
||||
warning, when need to pass '2015-01-01 09:00:00'
|
||||
"""
|
||||
# is_list_like
|
||||
if hasattr(arr, "__iter__") and not isinstance(arr, (str, bytes)):
|
||||
arr = [tz_replacer(s) for s in arr]
|
||||
else:
|
||||
arr = tz_replacer(arr)
|
||||
|
||||
return np.array(arr, *args, **kwargs)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"np",
|
||||
"_np_version",
|
||||
"_np_version_under1p14",
|
||||
"_np_version_under1p15",
|
||||
"_np_version_under1p16",
|
||||
"_np_version_under1p17",
|
||||
"_is_numpy_dev",
|
||||
]
|
424
venv/lib/python3.6/site-packages/pandas/compat/numpy/function.py
Normal file
424
venv/lib/python3.6/site-packages/pandas/compat/numpy/function.py
Normal file
@@ -0,0 +1,424 @@
|
||||
"""
|
||||
For compatibility with numpy libraries, pandas functions or
|
||||
methods have to accept '*args' and '**kwargs' parameters to
|
||||
accommodate numpy arguments that are not actually used or
|
||||
respected in the pandas implementation.
|
||||
|
||||
To ensure that users do not abuse these parameters, validation
|
||||
is performed in 'validators.py' to make sure that any extra
|
||||
parameters passed correspond ONLY to those in the numpy signature.
|
||||
Part of that validation includes whether or not the user attempted
|
||||
to pass in non-default values for these extraneous parameters. As we
|
||||
want to discourage users from relying on these parameters when calling
|
||||
the pandas implementation, we want them only to pass in the default values
|
||||
for these parameters.
|
||||
|
||||
This module provides a set of commonly used default arguments for functions
|
||||
and methods that are spread throughout the codebase. This module will make it
|
||||
easier to adjust to future upstream changes in the analogous numpy signatures.
|
||||
"""
|
||||
from collections import OrderedDict
|
||||
from distutils.version import LooseVersion
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from numpy import __version__ as _np_version, ndarray
|
||||
|
||||
from pandas._libs.lib import is_bool, is_integer
|
||||
from pandas.errors import UnsupportedFunctionCall
|
||||
from pandas.util._validators import (
|
||||
validate_args,
|
||||
validate_args_and_kwargs,
|
||||
validate_kwargs,
|
||||
)
|
||||
|
||||
|
||||
class CompatValidator:
|
||||
def __init__(self, defaults, fname=None, method=None, max_fname_arg_count=None):
|
||||
self.fname = fname
|
||||
self.method = method
|
||||
self.defaults = defaults
|
||||
self.max_fname_arg_count = max_fname_arg_count
|
||||
|
||||
def __call__(self, args, kwargs, fname=None, max_fname_arg_count=None, method=None):
|
||||
if args or kwargs:
|
||||
fname = self.fname if fname is None else fname
|
||||
max_fname_arg_count = (
|
||||
self.max_fname_arg_count
|
||||
if max_fname_arg_count is None
|
||||
else max_fname_arg_count
|
||||
)
|
||||
method = self.method if method is None else method
|
||||
|
||||
if method == "args":
|
||||
validate_args(fname, args, max_fname_arg_count, self.defaults)
|
||||
elif method == "kwargs":
|
||||
validate_kwargs(fname, kwargs, self.defaults)
|
||||
elif method == "both":
|
||||
validate_args_and_kwargs(
|
||||
fname, args, kwargs, max_fname_arg_count, self.defaults
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"invalid validation method " "'{method}'".format(method=method)
|
||||
)
|
||||
|
||||
|
||||
ARGMINMAX_DEFAULTS = dict(out=None)
|
||||
validate_argmin = CompatValidator(
|
||||
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
|
||||
)
|
||||
validate_argmax = CompatValidator(
|
||||
ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
|
||||
def process_skipna(skipna, args):
|
||||
if isinstance(skipna, ndarray) or skipna is None:
|
||||
args = (skipna,) + args
|
||||
skipna = True
|
||||
|
||||
return skipna, args
|
||||
|
||||
|
||||
def validate_argmin_with_skipna(skipna, args, kwargs):
|
||||
"""
|
||||
If 'Series.argmin' is called via the 'numpy' library,
|
||||
the third parameter in its signature is 'out', which
|
||||
takes either an ndarray or 'None', so check if the
|
||||
'skipna' parameter is either an instance of ndarray or
|
||||
is None, since 'skipna' itself should be a boolean
|
||||
"""
|
||||
|
||||
skipna, args = process_skipna(skipna, args)
|
||||
validate_argmin(args, kwargs)
|
||||
return skipna
|
||||
|
||||
|
||||
def validate_argmax_with_skipna(skipna, args, kwargs):
|
||||
"""
|
||||
If 'Series.argmax' is called via the 'numpy' library,
|
||||
the third parameter in its signature is 'out', which
|
||||
takes either an ndarray or 'None', so check if the
|
||||
'skipna' parameter is either an instance of ndarray or
|
||||
is None, since 'skipna' itself should be a boolean
|
||||
"""
|
||||
|
||||
skipna, args = process_skipna(skipna, args)
|
||||
validate_argmax(args, kwargs)
|
||||
return skipna
|
||||
|
||||
|
||||
ARGSORT_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[Union[int, str]]]
|
||||
ARGSORT_DEFAULTS["axis"] = -1
|
||||
ARGSORT_DEFAULTS["kind"] = "quicksort"
|
||||
ARGSORT_DEFAULTS["order"] = None
|
||||
|
||||
if LooseVersion(_np_version) >= LooseVersion("1.17.0"):
|
||||
# GH-26361. NumPy added radix sort and changed default to None.
|
||||
ARGSORT_DEFAULTS["kind"] = None
|
||||
|
||||
|
||||
validate_argsort = CompatValidator(
|
||||
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
|
||||
)
|
||||
|
||||
# two different signatures of argsort, this second validation
|
||||
# for when the `kind` param is supported
|
||||
ARGSORT_DEFAULTS_KIND = OrderedDict() # type: OrderedDict[str, Optional[int]]
|
||||
ARGSORT_DEFAULTS_KIND["axis"] = -1
|
||||
ARGSORT_DEFAULTS_KIND["order"] = None
|
||||
validate_argsort_kind = CompatValidator(
|
||||
ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both"
|
||||
)
|
||||
|
||||
|
||||
def validate_argsort_with_ascending(ascending, args, kwargs):
|
||||
"""
|
||||
If 'Categorical.argsort' is called via the 'numpy' library, the
|
||||
first parameter in its signature is 'axis', which takes either
|
||||
an integer or 'None', so check if the 'ascending' parameter has
|
||||
either integer type or is None, since 'ascending' itself should
|
||||
be a boolean
|
||||
"""
|
||||
|
||||
if is_integer(ascending) or ascending is None:
|
||||
args = (ascending,) + args
|
||||
ascending = True
|
||||
|
||||
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
|
||||
return ascending
|
||||
|
||||
|
||||
CLIP_DEFAULTS = dict(out=None) # type Dict[str, Any]
|
||||
validate_clip = CompatValidator(
|
||||
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
|
||||
)
|
||||
|
||||
|
||||
def validate_clip_with_axis(axis, args, kwargs):
|
||||
"""
|
||||
If 'NDFrame.clip' is called via the numpy library, the third
|
||||
parameter in its signature is 'out', which can takes an ndarray,
|
||||
so check if the 'axis' parameter is an instance of ndarray, since
|
||||
'axis' itself should either be an integer or None
|
||||
"""
|
||||
|
||||
if isinstance(axis, ndarray):
|
||||
args = (axis,) + args
|
||||
axis = None
|
||||
|
||||
validate_clip(args, kwargs)
|
||||
return axis
|
||||
|
||||
|
||||
COMPRESS_DEFAULTS = OrderedDict() # type: OrderedDict[str, Any]
|
||||
COMPRESS_DEFAULTS["axis"] = None
|
||||
COMPRESS_DEFAULTS["out"] = None
|
||||
validate_compress = CompatValidator(
|
||||
COMPRESS_DEFAULTS, fname="compress", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
CUM_FUNC_DEFAULTS = OrderedDict() # type: OrderedDict[str, Any]
|
||||
CUM_FUNC_DEFAULTS["dtype"] = None
|
||||
CUM_FUNC_DEFAULTS["out"] = None
|
||||
validate_cum_func = CompatValidator(
|
||||
CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1
|
||||
)
|
||||
validate_cumsum = CompatValidator(
|
||||
CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
|
||||
def validate_cum_func_with_skipna(skipna, args, kwargs, name):
|
||||
"""
|
||||
If this function is called via the 'numpy' library, the third
|
||||
parameter in its signature is 'dtype', which takes either a
|
||||
'numpy' dtype or 'None', so check if the 'skipna' parameter is
|
||||
a boolean or not
|
||||
"""
|
||||
if not is_bool(skipna):
|
||||
args = (skipna,) + args
|
||||
skipna = True
|
||||
|
||||
validate_cum_func(args, kwargs, fname=name)
|
||||
return skipna
|
||||
|
||||
|
||||
ALLANY_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[bool]]
|
||||
ALLANY_DEFAULTS["dtype"] = None
|
||||
ALLANY_DEFAULTS["out"] = None
|
||||
ALLANY_DEFAULTS["keepdims"] = False
|
||||
validate_all = CompatValidator(
|
||||
ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1
|
||||
)
|
||||
validate_any = CompatValidator(
|
||||
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
LOGICAL_FUNC_DEFAULTS = dict(out=None, keepdims=False)
|
||||
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
|
||||
|
||||
MINMAX_DEFAULTS = dict(out=None, keepdims=False)
|
||||
validate_min = CompatValidator(
|
||||
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
|
||||
)
|
||||
validate_max = CompatValidator(
|
||||
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
RESHAPE_DEFAULTS = dict(order="C") # type: Dict[str, str]
|
||||
validate_reshape = CompatValidator(
|
||||
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
REPEAT_DEFAULTS = dict(axis=None) # type: Dict[str, Any]
|
||||
validate_repeat = CompatValidator(
|
||||
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
ROUND_DEFAULTS = dict(out=None) # type: Dict[str, Any]
|
||||
validate_round = CompatValidator(
|
||||
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
SORT_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[Union[int, str]]]
|
||||
SORT_DEFAULTS["axis"] = -1
|
||||
SORT_DEFAULTS["kind"] = "quicksort"
|
||||
SORT_DEFAULTS["order"] = None
|
||||
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
|
||||
|
||||
STAT_FUNC_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[Any]]
|
||||
STAT_FUNC_DEFAULTS["dtype"] = None
|
||||
STAT_FUNC_DEFAULTS["out"] = None
|
||||
|
||||
PROD_DEFAULTS = SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
||||
SUM_DEFAULTS["keepdims"] = False
|
||||
SUM_DEFAULTS["initial"] = None
|
||||
|
||||
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
||||
MEDIAN_DEFAULTS["overwrite_input"] = False
|
||||
MEDIAN_DEFAULTS["keepdims"] = False
|
||||
|
||||
STAT_FUNC_DEFAULTS["keepdims"] = False
|
||||
|
||||
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs")
|
||||
validate_sum = CompatValidator(
|
||||
SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1
|
||||
)
|
||||
validate_prod = CompatValidator(
|
||||
PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1
|
||||
)
|
||||
validate_mean = CompatValidator(
|
||||
STAT_FUNC_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1
|
||||
)
|
||||
validate_median = CompatValidator(
|
||||
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
STAT_DDOF_FUNC_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[bool]]
|
||||
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
|
||||
STAT_DDOF_FUNC_DEFAULTS["out"] = None
|
||||
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
|
||||
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
|
||||
|
||||
TAKE_DEFAULTS = OrderedDict() # type: OrderedDict[str, Optional[str]]
|
||||
TAKE_DEFAULTS["out"] = None
|
||||
TAKE_DEFAULTS["mode"] = "raise"
|
||||
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
|
||||
|
||||
|
||||
def validate_take_with_convert(convert, args, kwargs):
|
||||
"""
|
||||
If this function is called via the 'numpy' library, the third
|
||||
parameter in its signature is 'axis', which takes either an
|
||||
ndarray or 'None', so check if the 'convert' parameter is either
|
||||
an instance of ndarray or is None
|
||||
"""
|
||||
|
||||
if isinstance(convert, ndarray) or convert is None:
|
||||
args = (convert,) + args
|
||||
convert = True
|
||||
|
||||
validate_take(args, kwargs, max_fname_arg_count=3, method="both")
|
||||
return convert
|
||||
|
||||
|
||||
TRANSPOSE_DEFAULTS = dict(axes=None)
|
||||
validate_transpose = CompatValidator(
|
||||
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
|
||||
)
|
||||
|
||||
|
||||
def validate_window_func(name, args, kwargs):
|
||||
numpy_args = ("axis", "dtype", "out")
|
||||
msg = (
|
||||
"numpy operations are not "
|
||||
"valid with window objects. "
|
||||
"Use .{func}() directly instead ".format(func=name)
|
||||
)
|
||||
|
||||
if len(args) > 0:
|
||||
raise UnsupportedFunctionCall(msg)
|
||||
|
||||
for arg in numpy_args:
|
||||
if arg in kwargs:
|
||||
raise UnsupportedFunctionCall(msg)
|
||||
|
||||
|
||||
def validate_rolling_func(name, args, kwargs):
|
||||
numpy_args = ("axis", "dtype", "out")
|
||||
msg = (
|
||||
"numpy operations are not "
|
||||
"valid with window objects. "
|
||||
"Use .rolling(...).{func}() instead ".format(func=name)
|
||||
)
|
||||
|
||||
if len(args) > 0:
|
||||
raise UnsupportedFunctionCall(msg)
|
||||
|
||||
for arg in numpy_args:
|
||||
if arg in kwargs:
|
||||
raise UnsupportedFunctionCall(msg)
|
||||
|
||||
|
||||
def validate_expanding_func(name, args, kwargs):
|
||||
numpy_args = ("axis", "dtype", "out")
|
||||
msg = (
|
||||
"numpy operations are not "
|
||||
"valid with window objects. "
|
||||
"Use .expanding(...).{func}() instead ".format(func=name)
|
||||
)
|
||||
|
||||
if len(args) > 0:
|
||||
raise UnsupportedFunctionCall(msg)
|
||||
|
||||
for arg in numpy_args:
|
||||
if arg in kwargs:
|
||||
raise UnsupportedFunctionCall(msg)
|
||||
|
||||
|
||||
def validate_groupby_func(name, args, kwargs, allowed=None):
|
||||
"""
|
||||
'args' and 'kwargs' should be empty, except for allowed
|
||||
kwargs because all of
|
||||
their necessary parameters are explicitly listed in
|
||||
the function signature
|
||||
"""
|
||||
if allowed is None:
|
||||
allowed = []
|
||||
|
||||
kwargs = set(kwargs) - set(allowed)
|
||||
|
||||
if len(args) + len(kwargs) > 0:
|
||||
raise UnsupportedFunctionCall(
|
||||
(
|
||||
"numpy operations are not valid "
|
||||
"with groupby. Use .groupby(...)."
|
||||
"{func}() instead".format(func=name)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
|
||||
|
||||
|
||||
def validate_resampler_func(method, args, kwargs):
|
||||
"""
|
||||
'args' and 'kwargs' should be empty because all of
|
||||
their necessary parameters are explicitly listed in
|
||||
the function signature
|
||||
"""
|
||||
if len(args) + len(kwargs) > 0:
|
||||
if method in RESAMPLER_NUMPY_OPS:
|
||||
raise UnsupportedFunctionCall(
|
||||
(
|
||||
"numpy operations are not valid "
|
||||
"with resample. Use .resample(...)."
|
||||
"{func}() instead".format(func=method)
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise TypeError("too many arguments passed in")
|
||||
|
||||
|
||||
def validate_minmax_axis(axis):
|
||||
"""
|
||||
Ensure that the axis argument passed to min, max, argmin, or argmax is
|
||||
zero or None, as otherwise it will be incorrectly ignored.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axis : int or None
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
"""
|
||||
ndim = 1 # hard-coded for Index
|
||||
if axis is None:
|
||||
return
|
||||
if axis >= ndim or (axis < 0 and ndim + axis < 0):
|
||||
raise ValueError(
|
||||
"`axis` must be fewer than the number of "
|
||||
"dimensions ({ndim})".format(ndim=ndim)
|
||||
)
|
Reference in New Issue
Block a user