8th day of python challenges 111-117

This commit is contained in:
abd.shallal
2019-08-04 15:26:35 +03:00
parent b04c1b055f
commit 627802c383
3215 changed files with 760227 additions and 491 deletions

View File

@@ -0,0 +1,16 @@
from pandas.io.excel._base import ExcelFile, ExcelWriter, read_excel
from pandas.io.excel._openpyxl import _OpenpyxlWriter
from pandas.io.excel._util import register_writer
from pandas.io.excel._xlsxwriter import _XlsxWriter
from pandas.io.excel._xlwt import _XlwtWriter
__all__ = ["read_excel", "ExcelWriter", "ExcelFile"]
register_writer(_OpenpyxlWriter)
register_writer(_XlwtWriter)
register_writer(_XlsxWriter)

View File

@@ -0,0 +1,903 @@
import abc
from collections import OrderedDict
from datetime import date, datetime, timedelta
from io import BytesIO
import os
from textwrap import fill
from urllib.request import urlopen
from pandas._config import config
from pandas.errors import EmptyDataError
from pandas.util._decorators import Appender, deprecate_kwarg
from pandas.core.dtypes.common import is_bool, is_float, is_integer, is_list_like
from pandas.core.frame import DataFrame
from pandas.io.common import (
_NA_VALUES,
_is_url,
_stringify_path,
_validate_header_arg,
get_filepath_or_buffer,
)
from pandas.io.excel._util import (
_fill_mi_header,
_get_default_writer,
_maybe_convert_usecols,
_pop_header_name,
get_writer,
)
from pandas.io.formats.printing import pprint_thing
from pandas.io.parsers import TextParser
_read_excel_doc = (
"""
Read an Excel file into a pandas DataFrame.
Support both `xls` and `xlsx` file extensions from a local filesystem or URL.
Support an option to read a single sheet or a list of sheets.
Parameters
----------
io : str, ExcelFile, xlrd.Book, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: ``file://localhost/path/to/table.xlsx``.
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method,
such as a file handler (e.g. via builtin ``open`` function)
or ``StringIO``.
sheet_name : str, int, list, or None, default 0
Strings are used for sheet names. Integers are used in zero-indexed
sheet positions. Lists of strings/integers are used to request
multiple sheets. Specify None to get all sheets.
Available cases:
* Defaults to ``0``: 1st sheet as a `DataFrame`
* ``1``: 2nd sheet as a `DataFrame`
* ``"Sheet1"``: Load sheet with name "Sheet1"
* ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
as a dict of `DataFrame`
* None: All sheets.
header : int, list of int, default 0
Row (0-indexed) to use for the column labels of the parsed
DataFrame. If a list of integers is passed those row positions will
be combined into a ``MultiIndex``. Use None if there is no header.
names : array-like, default None
List of column names to use. If file contains no header row,
then you should explicitly pass header=None.
index_col : int, list of int, default None
Column (0-indexed) to use as the row labels of the DataFrame.
Pass None if there is no such column. If a list is passed,
those columns will be combined into a ``MultiIndex``. If a
subset of data is selected with ``usecols``, index_col
is based on the subset.
usecols : int, str, list-like, or callable default None
Return a subset of the columns.
* If None, then parse all columns.
* If int, then indicates last column to be parsed.
.. deprecated:: 0.24.0
Pass in a list of int instead from 0 to `usecols` inclusive.
* If str, then indicates comma separated list of Excel column letters
and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
both sides.
* If list of int, then indicates list of column numbers to be parsed.
* If list of string, then indicates list of column names to be parsed.
.. versionadded:: 0.24.0
* If callable, then evaluate each column name against it and parse the
column if the callable returns ``True``.
.. versionadded:: 0.24.0
squeeze : bool, default False
If the parsed data only contains one column then return a Series.
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
Use `object` to preserve data as stored in Excel and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion.
.. versionadded:: 0.20.0
engine : str, default None
If io is not a buffer or path, this must be set to identify io.
Acceptable values are None or xlrd.
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the Excel cell content, and return the transformed
content.
true_values : list, default None
Values to consider as True.
.. versionadded:: 0.19.0
false_values : list, default None
Values to consider as False.
.. versionadded:: 0.19.0
skiprows : list-like
Rows to skip at the beginning (0-indexed).
nrows : int, default None
Number of rows to parse.
.. versionadded:: 0.23.0
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted
as NaN: '"""
+ fill("', '".join(sorted(_NA_VALUES)), 70, subsequent_indent=" ")
+ """'.
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to.
verbose : bool, default False
Indicate number of NA values placed in non-numeric columns.
parse_dates : bool, list-like, or dict, default False
The behavior is as follows:
* bool. If True -> try parsing the index.
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
each as a separate date column.
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
a single date column.
* dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
result 'foo'
If a column or index contains an unparseable date, the entire column or
index will be returned unaltered as an object data type. For non-standard
datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.
Note: A fast-path exists for iso8601-formatted dates.
date_parser : function, optional
Function to use for converting a sequence of string columns to an array of
datetime instances. The default uses ``dateutil.parser.parser`` to do the
conversion. Pandas will try to call `date_parser` in three different ways,
advancing to the next if an exception occurs: 1) Pass one or more arrays
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
string values from the columns defined by `parse_dates` into a single array
and pass that; and 3) call `date_parser` once for each row using one or
more strings (corresponding to the columns defined by `parse_dates`) as
arguments.
thousands : str, default None
Thousands separator for parsing string columns to numeric. Note that
this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.
comment : str, default None
Comments out remainder of line. Pass a character or characters to this
argument to indicate comments in the input file. Any data between the
comment string and the end of the current line is ignored.
skip_footer : int, default 0
Alias of `skipfooter`.
.. deprecated:: 0.23.0
Use `skipfooter` instead.
skipfooter : int, default 0
Rows at the end to skip (0-indexed).
convert_float : bool, default True
Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
data will be read in as floats: Excel stores all numbers as floats
internally.
mangle_dupe_cols : bool, default True
Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than
'X'...'X'. Passing in False will cause data to be overwritten if there
are duplicate names in the columns.
**kwds : optional
Optional keyword arguments can be passed to ``TextFileReader``.
Returns
-------
DataFrame or dict of DataFrames
DataFrame from the passed in Excel file. See notes in sheet_name
argument for more information on when a dict of DataFrames is returned.
See Also
--------
to_excel : Write DataFrame to an Excel file.
to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
Examples
--------
The file can be read using the file name as string or an open file object:
>>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP
Name Value
0 string1 1
1 string2 2
2 #Comment 3
>>> pd.read_excel(open('tmp.xlsx', 'rb'),
... sheet_name='Sheet3') # doctest: +SKIP
Unnamed: 0 Name Value
0 0 string1 1
1 1 string2 2
2 2 #Comment 3
Index and header can be specified via the `index_col` and `header` arguments
>>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP
0 1 2
0 NaN Name Value
1 0.0 string1 1
2 1.0 string2 2
3 2.0 #Comment 3
Column types are inferred but can be explicitly specified
>>> pd.read_excel('tmp.xlsx', index_col=0,
... dtype={'Name': str, 'Value': float}) # doctest: +SKIP
Name Value
0 string1 1.0
1 string2 2.0
2 #Comment 3.0
True, False, and NA values, and thousands separators have defaults,
but can be explicitly specified, too. Supply the values you would like
as strings or lists of strings!
>>> pd.read_excel('tmp.xlsx', index_col=0,
... na_values=['string1', 'string2']) # doctest: +SKIP
Name Value
0 NaN 1
1 NaN 2
2 #Comment 3
Comment lines in the excel input file can be skipped using the `comment` kwarg
>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP
Name Value
0 string1 1.0
1 string2 2.0
2 None NaN
"""
)
@Appender(_read_excel_doc)
@deprecate_kwarg("skip_footer", "skipfooter")
def read_excel(
io,
sheet_name=0,
header=0,
names=None,
index_col=None,
usecols=None,
squeeze=False,
dtype=None,
engine=None,
converters=None,
true_values=None,
false_values=None,
skiprows=None,
nrows=None,
na_values=None,
keep_default_na=True,
verbose=False,
parse_dates=False,
date_parser=None,
thousands=None,
comment=None,
skip_footer=0,
skipfooter=0,
convert_float=True,
mangle_dupe_cols=True,
**kwds
):
for arg in ("sheet", "sheetname", "parse_cols"):
if arg in kwds:
raise TypeError(
"read_excel() got an unexpected keyword argument " "`{}`".format(arg)
)
if not isinstance(io, ExcelFile):
io = ExcelFile(io, engine=engine)
elif engine and engine != io.engine:
raise ValueError(
"Engine should not be specified when passing "
"an ExcelFile - ExcelFile already has the engine set"
)
return io.parse(
sheet_name=sheet_name,
header=header,
names=names,
index_col=index_col,
usecols=usecols,
squeeze=squeeze,
dtype=dtype,
converters=converters,
true_values=true_values,
false_values=false_values,
skiprows=skiprows,
nrows=nrows,
na_values=na_values,
keep_default_na=keep_default_na,
verbose=verbose,
parse_dates=parse_dates,
date_parser=date_parser,
thousands=thousands,
comment=comment,
skipfooter=skipfooter,
convert_float=convert_float,
mangle_dupe_cols=mangle_dupe_cols,
**kwds
)
class _BaseExcelReader(metaclass=abc.ABCMeta):
def __init__(self, filepath_or_buffer):
# If filepath_or_buffer is a url, load the data into a BytesIO
if _is_url(filepath_or_buffer):
filepath_or_buffer = BytesIO(urlopen(filepath_or_buffer).read())
elif not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)):
filepath_or_buffer, _, _, _ = get_filepath_or_buffer(filepath_or_buffer)
if isinstance(filepath_or_buffer, self._workbook_class):
self.book = filepath_or_buffer
elif hasattr(filepath_or_buffer, "read"):
# N.B. xlrd.Book has a read attribute too
filepath_or_buffer.seek(0)
self.book = self.load_workbook(filepath_or_buffer)
elif isinstance(filepath_or_buffer, str):
self.book = self.load_workbook(filepath_or_buffer)
else:
raise ValueError(
"Must explicitly set engine if not passing in" " buffer or path for io."
)
@property
@abc.abstractmethod
def _workbook_class(self):
pass
@abc.abstractmethod
def load_workbook(self, filepath_or_buffer):
pass
@property
@abc.abstractmethod
def sheet_names(self):
pass
@abc.abstractmethod
def get_sheet_by_name(self, name):
pass
@abc.abstractmethod
def get_sheet_by_index(self, index):
pass
@abc.abstractmethod
def get_sheet_data(self, sheet, convert_float):
pass
def parse(
self,
sheet_name=0,
header=0,
names=None,
index_col=None,
usecols=None,
squeeze=False,
dtype=None,
true_values=None,
false_values=None,
skiprows=None,
nrows=None,
na_values=None,
verbose=False,
parse_dates=False,
date_parser=None,
thousands=None,
comment=None,
skipfooter=0,
convert_float=True,
mangle_dupe_cols=True,
**kwds
):
_validate_header_arg(header)
ret_dict = False
# Keep sheetname to maintain backwards compatibility.
if isinstance(sheet_name, list):
sheets = sheet_name
ret_dict = True
elif sheet_name is None:
sheets = self.sheet_names
ret_dict = True
else:
sheets = [sheet_name]
# handle same-type duplicates.
sheets = list(OrderedDict.fromkeys(sheets).keys())
output = OrderedDict()
for asheetname in sheets:
if verbose:
print("Reading sheet {sheet}".format(sheet=asheetname))
if isinstance(asheetname, str):
sheet = self.get_sheet_by_name(asheetname)
else: # assume an integer if not a string
sheet = self.get_sheet_by_index(asheetname)
data = self.get_sheet_data(sheet, convert_float)
usecols = _maybe_convert_usecols(usecols)
if not data:
output[asheetname] = DataFrame()
continue
if is_list_like(header) and len(header) == 1:
header = header[0]
# forward fill and pull out names for MultiIndex column
header_names = None
if header is not None and is_list_like(header):
header_names = []
control_row = [True] * len(data[0])
for row in header:
if is_integer(skiprows):
row += skiprows
data[row], control_row = _fill_mi_header(data[row], control_row)
if index_col is not None:
header_name, _ = _pop_header_name(data[row], index_col)
header_names.append(header_name)
if is_list_like(index_col):
# Forward fill values for MultiIndex index.
if not is_list_like(header):
offset = 1 + header
else:
offset = 1 + max(header)
# Check if we have an empty dataset
# before trying to collect data.
if offset < len(data):
for col in index_col:
last = data[offset][col]
for row in range(offset + 1, len(data)):
if data[row][col] == "" or data[row][col] is None:
data[row][col] = last
else:
last = data[row][col]
has_index_names = is_list_like(header) and len(header) > 1
# GH 12292 : error when read one empty column from excel file
try:
parser = TextParser(
data,
names=names,
header=header,
index_col=index_col,
has_index_names=has_index_names,
squeeze=squeeze,
dtype=dtype,
true_values=true_values,
false_values=false_values,
skiprows=skiprows,
nrows=nrows,
na_values=na_values,
parse_dates=parse_dates,
date_parser=date_parser,
thousands=thousands,
comment=comment,
skipfooter=skipfooter,
usecols=usecols,
mangle_dupe_cols=mangle_dupe_cols,
**kwds
)
output[asheetname] = parser.read(nrows=nrows)
if not squeeze or isinstance(output[asheetname], DataFrame):
if header_names:
output[asheetname].columns = output[
asheetname
].columns.set_names(header_names)
except EmptyDataError:
# No Data, return an empty DataFrame
output[asheetname] = DataFrame()
if ret_dict:
return output
else:
return output[asheetname]
class ExcelWriter(metaclass=abc.ABCMeta):
"""
Class for writing DataFrame objects into excel sheets, default is to use
xlwt for xls, openpyxl for xlsx. See DataFrame.to_excel for typical usage.
Parameters
----------
path : string
Path to xls or xlsx file.
engine : string (optional)
Engine to use for writing. If None, defaults to
``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword
argument.
date_format : string, default None
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD')
datetime_format : string, default None
Format string for datetime objects written into Excel files
(e.g. 'YYYY-MM-DD HH:MM:SS')
mode : {'w', 'a'}, default 'w'
File mode to use (write or append).
.. versionadded:: 0.24.0
Attributes
----------
None
Methods
-------
None
Notes
-----
None of the methods and properties are considered public.
For compatibility with CSV writers, ExcelWriter serializes lists
and dicts to strings before writing.
Examples
--------
Default usage:
>>> with ExcelWriter('path_to_file.xlsx') as writer:
... df.to_excel(writer)
To write to separate sheets in a single file:
>>> with ExcelWriter('path_to_file.xlsx') as writer:
... df1.to_excel(writer, sheet_name='Sheet1')
... df2.to_excel(writer, sheet_name='Sheet2')
You can set the date format or datetime format:
>>> with ExcelWriter('path_to_file.xlsx',
date_format='YYYY-MM-DD',
datetime_format='YYYY-MM-DD HH:MM:SS') as writer:
... df.to_excel(writer)
You can also append to an existing Excel file:
>>> with ExcelWriter('path_to_file.xlsx', mode='a') as writer:
... df.to_excel(writer, sheet_name='Sheet3')
"""
# Defining an ExcelWriter implementation (see abstract methods for more...)
# - Mandatory
# - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)``
# --> called to write additional DataFrames to disk
# - ``supported_extensions`` (tuple of supported extensions), used to
# check that engine supports the given extension.
# - ``engine`` - string that gives the engine name. Necessary to
# instantiate class directly and bypass ``ExcelWriterMeta`` engine
# lookup.
# - ``save(self)`` --> called to save file to disk
# - Mostly mandatory (i.e. should at least exist)
# - book, cur_sheet, path
# - Optional:
# - ``__init__(self, path, engine=None, **kwargs)`` --> always called
# with path as first argument.
# You also need to register the class with ``register_writer()``.
# Technically, ExcelWriter implementations don't need to subclass
# ExcelWriter.
def __new__(cls, path, engine=None, **kwargs):
# only switch class if generic(ExcelWriter)
if cls is ExcelWriter:
if engine is None or (isinstance(engine, str) and engine == "auto"):
if isinstance(path, str):
ext = os.path.splitext(path)[-1][1:]
else:
ext = "xlsx"
try:
engine = config.get_option("io.excel.{ext}.writer".format(ext=ext))
if engine == "auto":
engine = _get_default_writer(ext)
except KeyError:
raise ValueError("No engine for filetype: '{ext}'".format(ext=ext))
cls = get_writer(engine)
return object.__new__(cls)
# declare external properties you can count on
book = None
curr_sheet = None
path = None
@property
@abc.abstractmethod
def supported_extensions(self):
"""Extensions that writer engine supports."""
pass
@property
@abc.abstractmethod
def engine(self):
"""Name of engine."""
pass
@abc.abstractmethod
def write_cells(
self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None
):
"""
Write given formatted cells into Excel an excel sheet
Parameters
----------
cells : generator
cell of formatted data to save to Excel sheet
sheet_name : string, default None
Name of Excel sheet, if None, then use self.cur_sheet
startrow : upper left cell row to dump data frame
startcol : upper left cell column to dump data frame
freeze_panes: integer tuple of length 2
contains the bottom-most row and right-most column to freeze
"""
pass
@abc.abstractmethod
def save(self):
"""
Save workbook to disk.
"""
pass
def __init__(
self,
path,
engine=None,
date_format=None,
datetime_format=None,
mode="w",
**engine_kwargs
):
# validate that this engine can handle the extension
if isinstance(path, str):
ext = os.path.splitext(path)[-1]
else:
ext = "xls" if engine == "xlwt" else "xlsx"
self.check_extension(ext)
self.path = path
self.sheets = {}
self.cur_sheet = None
if date_format is None:
self.date_format = "YYYY-MM-DD"
else:
self.date_format = date_format
if datetime_format is None:
self.datetime_format = "YYYY-MM-DD HH:MM:SS"
else:
self.datetime_format = datetime_format
self.mode = mode
def __fspath__(self):
return _stringify_path(self.path)
def _get_sheet_name(self, sheet_name):
if sheet_name is None:
sheet_name = self.cur_sheet
if sheet_name is None: # pragma: no cover
raise ValueError(
"Must pass explicit sheet_name or set " "cur_sheet property"
)
return sheet_name
def _value_with_fmt(self, val):
"""Convert numpy types to Python types for the Excel writers.
Parameters
----------
val : object
Value to be written into cells
Returns
-------
Tuple with the first element being the converted value and the second
being an optional format
"""
fmt = None
if is_integer(val):
val = int(val)
elif is_float(val):
val = float(val)
elif is_bool(val):
val = bool(val)
elif isinstance(val, datetime):
fmt = self.datetime_format
elif isinstance(val, date):
fmt = self.date_format
elif isinstance(val, timedelta):
val = val.total_seconds() / float(86400)
fmt = "0"
else:
val = str(val)
return val, fmt
@classmethod
def check_extension(cls, ext):
"""checks that path's extension against the Writer's supported
extensions. If it isn't supported, raises UnsupportedFiletypeError."""
if ext.startswith("."):
ext = ext[1:]
if not any(ext in extension for extension in cls.supported_extensions):
msg = "Invalid extension for engine '{engine}': '{ext}'".format(
engine=pprint_thing(cls.engine), ext=pprint_thing(ext)
)
raise ValueError(msg)
else:
return True
# Allow use as a contextmanager
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def close(self):
"""synonym for save, to make it more file-like"""
return self.save()
class ExcelFile:
"""
Class for parsing tabular excel sheets into DataFrame objects.
Uses xlrd. See read_excel for more documentation
Parameters
----------
io : string, path object (pathlib.Path or py._path.local.LocalPath),
file-like object or xlrd workbook
If a string or path object, expected to be a path to xls or xlsx file.
engine : string, default None
If io is not a buffer or path, this must be set to identify io.
Acceptable values are None or ``xlrd``.
"""
from pandas.io.excel._odfreader import _ODFReader
from pandas.io.excel._openpyxl import _OpenpyxlReader
from pandas.io.excel._xlrd import _XlrdReader
_engines = {"xlrd": _XlrdReader, "openpyxl": _OpenpyxlReader, "odf": _ODFReader}
def __init__(self, io, engine=None):
if engine is None:
engine = "xlrd"
if engine not in self._engines:
raise ValueError("Unknown engine: {engine}".format(engine=engine))
self.engine = engine
# could be a str, ExcelFile, Book, etc.
self.io = io
# Always a string
self._io = _stringify_path(io)
self._reader = self._engines[engine](self._io)
def __fspath__(self):
return self._io
def parse(
self,
sheet_name=0,
header=0,
names=None,
index_col=None,
usecols=None,
squeeze=False,
converters=None,
true_values=None,
false_values=None,
skiprows=None,
nrows=None,
na_values=None,
parse_dates=False,
date_parser=None,
thousands=None,
comment=None,
skipfooter=0,
convert_float=True,
mangle_dupe_cols=True,
**kwds
):
"""
Parse specified sheet(s) into a DataFrame
Equivalent to read_excel(ExcelFile, ...) See the read_excel
docstring for more info on accepted parameters
Returns
-------
DataFrame or dict of DataFrames
DataFrame from the passed in Excel file.
"""
if "chunksize" in kwds:
raise NotImplementedError(
"chunksize keyword of read_excel " "is not implemented"
)
return self._reader.parse(
sheet_name=sheet_name,
header=header,
names=names,
index_col=index_col,
usecols=usecols,
squeeze=squeeze,
converters=converters,
true_values=true_values,
false_values=false_values,
skiprows=skiprows,
nrows=nrows,
na_values=na_values,
parse_dates=parse_dates,
date_parser=date_parser,
thousands=thousands,
comment=comment,
skipfooter=skipfooter,
convert_float=convert_float,
mangle_dupe_cols=mangle_dupe_cols,
**kwds
)
@property
def book(self):
return self._reader.book
@property
def sheet_names(self):
return self._reader.sheet_names
def close(self):
"""close io if necessary"""
if hasattr(self.io, "close"):
self.io.close()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()

View File

@@ -0,0 +1,180 @@
from typing import List
from pandas.compat._optional import import_optional_dependency
import pandas as pd
from pandas._typing import FilePathOrBuffer, Scalar
from pandas.io.excel._base import _BaseExcelReader
class _ODFReader(_BaseExcelReader):
"""Read tables out of OpenDocument formatted files
Parameters
----------
filepath_or_buffer: string, path to be parsed or
an open readable stream.
"""
def __init__(self, filepath_or_buffer: FilePathOrBuffer):
import_optional_dependency("odf")
super().__init__(filepath_or_buffer)
@property
def _workbook_class(self):
from odf.opendocument import OpenDocument
return OpenDocument
def load_workbook(self, filepath_or_buffer: FilePathOrBuffer):
from odf.opendocument import load
return load(filepath_or_buffer)
@property
def empty_value(self) -> str:
"""Property for compat with other readers."""
return ""
@property
def sheet_names(self) -> List[str]:
"""Return a list of sheet names present in the document"""
from odf.table import Table
tables = self.book.getElementsByType(Table)
return [t.getAttribute("name") for t in tables]
def get_sheet_by_index(self, index: int):
from odf.table import Table
tables = self.book.getElementsByType(Table)
return tables[index]
def get_sheet_by_name(self, name: str):
from odf.table import Table
tables = self.book.getElementsByType(Table)
for table in tables:
if table.getAttribute("name") == name:
return table
raise ValueError("sheet {name} not found".format(name))
def get_sheet_data(self, sheet, convert_float: bool) -> List[List[Scalar]]:
"""Parse an ODF Table into a list of lists
"""
from odf.table import CoveredTableCell, TableCell, TableRow
covered_cell_name = CoveredTableCell().qname
table_cell_name = TableCell().qname
cell_names = {covered_cell_name, table_cell_name}
sheet_rows = sheet.getElementsByType(TableRow)
empty_rows = 0
max_row_len = 0
table = [] # type: List[List[Scalar]]
for i, sheet_row in enumerate(sheet_rows):
sheet_cells = [x for x in sheet_row.childNodes if x.qname in cell_names]
empty_cells = 0
table_row = [] # type: List[Scalar]
for j, sheet_cell in enumerate(sheet_cells):
if sheet_cell.qname == table_cell_name:
value = self._get_cell_value(sheet_cell, convert_float)
else:
value = self.empty_value
column_repeat = self._get_column_repeat(sheet_cell)
# Queue up empty values, writing only if content succeeds them
if value == self.empty_value:
empty_cells += column_repeat
else:
table_row.extend([self.empty_value] * empty_cells)
empty_cells = 0
table_row.extend([value] * column_repeat)
if max_row_len < len(table_row):
max_row_len = len(table_row)
row_repeat = self._get_row_repeat(sheet_row)
if self._is_empty_row(sheet_row):
empty_rows += row_repeat
else:
# add blank rows to our table
table.extend([[self.empty_value]] * empty_rows)
empty_rows = 0
for _ in range(row_repeat):
table.append(table_row)
# Make our table square
for row in table:
if len(row) < max_row_len:
row.extend([self.empty_value] * (max_row_len - len(row)))
return table
def _get_row_repeat(self, row) -> int:
"""Return number of times this row was repeated
Repeating an empty row appeared to be a common way
of representing sparse rows in the table.
"""
from odf.namespaces import TABLENS
return int(row.attributes.get((TABLENS, "number-rows-repeated"), 1))
def _get_column_repeat(self, cell) -> int:
from odf.namespaces import TABLENS
return int(cell.attributes.get((TABLENS, "number-columns-repeated"), 1))
def _is_empty_row(self, row) -> bool:
"""Helper function to find empty rows
"""
for column in row.childNodes:
if len(column.childNodes) > 0:
return False
return True
def _get_cell_value(self, cell, convert_float: bool) -> Scalar:
from odf.namespaces import OFFICENS
cell_type = cell.attributes.get((OFFICENS, "value-type"))
if cell_type == "boolean":
if str(cell) == "TRUE":
return True
return False
if cell_type is None:
return self.empty_value
elif cell_type == "float":
# GH5394
cell_value = float(cell.attributes.get((OFFICENS, "value")))
if cell_value == 0.0 and str(cell) != cell_value: # NA handling
return str(cell)
if convert_float:
val = int(cell_value)
if val == cell_value:
return val
return cell_value
elif cell_type == "percentage":
cell_value = cell.attributes.get((OFFICENS, "value"))
return float(cell_value)
elif cell_type == "string":
return str(cell)
elif cell_type == "currency":
cell_value = cell.attributes.get((OFFICENS, "value"))
return float(cell_value)
elif cell_type == "date":
cell_value = cell.attributes.get((OFFICENS, "date-value"))
return pd.to_datetime(cell_value)
elif cell_type == "time":
return pd.to_datetime(str(cell)).time()
else:
raise ValueError("Unrecognized type {}".format(cell_type))

View File

@@ -0,0 +1,522 @@
from typing import List
import numpy as np
from pandas.compat._optional import import_optional_dependency
from pandas._typing import FilePathOrBuffer, Scalar
from pandas.io.excel._base import ExcelWriter, _BaseExcelReader
from pandas.io.excel._util import _validate_freeze_panes
class _OpenpyxlWriter(ExcelWriter):
engine = "openpyxl"
supported_extensions = (".xlsx", ".xlsm")
def __init__(self, path, engine=None, mode="w", **engine_kwargs):
# Use the openpyxl module as the Excel writer.
from openpyxl.workbook import Workbook
super().__init__(path, mode=mode, **engine_kwargs)
if self.mode == "a": # Load from existing workbook
from openpyxl import load_workbook
book = load_workbook(self.path)
self.book = book
else:
# Create workbook object with default optimized_write=True.
self.book = Workbook()
if self.book.worksheets:
try:
self.book.remove(self.book.worksheets[0])
except AttributeError:
# compat - for openpyxl <= 2.4
self.book.remove_sheet(self.book.worksheets[0])
def save(self):
"""
Save workbook to disk.
"""
return self.book.save(self.path)
@classmethod
def _convert_to_style(cls, style_dict):
"""
converts a style_dict to an openpyxl style object
Parameters
----------
style_dict : style dictionary to convert
"""
from openpyxl.style import Style
xls_style = Style()
for key, value in style_dict.items():
for nk, nv in value.items():
if key == "borders":
(
xls_style.borders.__getattribute__(nk).__setattr__(
"border_style", nv
)
)
else:
xls_style.__getattribute__(key).__setattr__(nk, nv)
return xls_style
@classmethod
def _convert_to_style_kwargs(cls, style_dict):
"""
Convert a style_dict to a set of kwargs suitable for initializing
or updating-on-copy an openpyxl v2 style object
Parameters
----------
style_dict : dict
A dict with zero or more of the following keys (or their synonyms).
'font'
'fill'
'border' ('borders')
'alignment'
'number_format'
'protection'
Returns
-------
style_kwargs : dict
A dict with the same, normalized keys as ``style_dict`` but each
value has been replaced with a native openpyxl style object of the
appropriate class.
"""
_style_key_map = {"borders": "border"}
style_kwargs = {}
for k, v in style_dict.items():
if k in _style_key_map:
k = _style_key_map[k]
_conv_to_x = getattr(cls, "_convert_to_{k}".format(k=k), lambda x: None)
new_v = _conv_to_x(v)
if new_v:
style_kwargs[k] = new_v
return style_kwargs
@classmethod
def _convert_to_color(cls, color_spec):
"""
Convert ``color_spec`` to an openpyxl v2 Color object
Parameters
----------
color_spec : str, dict
A 32-bit ARGB hex string, or a dict with zero or more of the
following keys.
'rgb'
'indexed'
'auto'
'theme'
'tint'
'index'
'type'
Returns
-------
color : openpyxl.styles.Color
"""
from openpyxl.styles import Color
if isinstance(color_spec, str):
return Color(color_spec)
else:
return Color(**color_spec)
@classmethod
def _convert_to_font(cls, font_dict):
"""
Convert ``font_dict`` to an openpyxl v2 Font object
Parameters
----------
font_dict : dict
A dict with zero or more of the following keys (or their synonyms).
'name'
'size' ('sz')
'bold' ('b')
'italic' ('i')
'underline' ('u')
'strikethrough' ('strike')
'color'
'vertAlign' ('vertalign')
'charset'
'scheme'
'family'
'outline'
'shadow'
'condense'
Returns
-------
font : openpyxl.styles.Font
"""
from openpyxl.styles import Font
_font_key_map = {
"sz": "size",
"b": "bold",
"i": "italic",
"u": "underline",
"strike": "strikethrough",
"vertalign": "vertAlign",
}
font_kwargs = {}
for k, v in font_dict.items():
if k in _font_key_map:
k = _font_key_map[k]
if k == "color":
v = cls._convert_to_color(v)
font_kwargs[k] = v
return Font(**font_kwargs)
@classmethod
def _convert_to_stop(cls, stop_seq):
"""
Convert ``stop_seq`` to a list of openpyxl v2 Color objects,
suitable for initializing the ``GradientFill`` ``stop`` parameter.
Parameters
----------
stop_seq : iterable
An iterable that yields objects suitable for consumption by
``_convert_to_color``.
Returns
-------
stop : list of openpyxl.styles.Color
"""
return map(cls._convert_to_color, stop_seq)
@classmethod
def _convert_to_fill(cls, fill_dict):
"""
Convert ``fill_dict`` to an openpyxl v2 Fill object
Parameters
----------
fill_dict : dict
A dict with one or more of the following keys (or their synonyms),
'fill_type' ('patternType', 'patterntype')
'start_color' ('fgColor', 'fgcolor')
'end_color' ('bgColor', 'bgcolor')
or one or more of the following keys (or their synonyms).
'type' ('fill_type')
'degree'
'left'
'right'
'top'
'bottom'
'stop'
Returns
-------
fill : openpyxl.styles.Fill
"""
from openpyxl.styles import PatternFill, GradientFill
_pattern_fill_key_map = {
"patternType": "fill_type",
"patterntype": "fill_type",
"fgColor": "start_color",
"fgcolor": "start_color",
"bgColor": "end_color",
"bgcolor": "end_color",
}
_gradient_fill_key_map = {"fill_type": "type"}
pfill_kwargs = {}
gfill_kwargs = {}
for k, v in fill_dict.items():
pk = gk = None
if k in _pattern_fill_key_map:
pk = _pattern_fill_key_map[k]
if k in _gradient_fill_key_map:
gk = _gradient_fill_key_map[k]
if pk in ["start_color", "end_color"]:
v = cls._convert_to_color(v)
if gk == "stop":
v = cls._convert_to_stop(v)
if pk:
pfill_kwargs[pk] = v
elif gk:
gfill_kwargs[gk] = v
else:
pfill_kwargs[k] = v
gfill_kwargs[k] = v
try:
return PatternFill(**pfill_kwargs)
except TypeError:
return GradientFill(**gfill_kwargs)
@classmethod
def _convert_to_side(cls, side_spec):
"""
Convert ``side_spec`` to an openpyxl v2 Side object
Parameters
----------
side_spec : str, dict
A string specifying the border style, or a dict with zero or more
of the following keys (or their synonyms).
'style' ('border_style')
'color'
Returns
-------
side : openpyxl.styles.Side
"""
from openpyxl.styles import Side
_side_key_map = {"border_style": "style"}
if isinstance(side_spec, str):
return Side(style=side_spec)
side_kwargs = {}
for k, v in side_spec.items():
if k in _side_key_map:
k = _side_key_map[k]
if k == "color":
v = cls._convert_to_color(v)
side_kwargs[k] = v
return Side(**side_kwargs)
@classmethod
def _convert_to_border(cls, border_dict):
"""
Convert ``border_dict`` to an openpyxl v2 Border object
Parameters
----------
border_dict : dict
A dict with zero or more of the following keys (or their synonyms).
'left'
'right'
'top'
'bottom'
'diagonal'
'diagonal_direction'
'vertical'
'horizontal'
'diagonalUp' ('diagonalup')
'diagonalDown' ('diagonaldown')
'outline'
Returns
-------
border : openpyxl.styles.Border
"""
from openpyxl.styles import Border
_border_key_map = {"diagonalup": "diagonalUp", "diagonaldown": "diagonalDown"}
border_kwargs = {}
for k, v in border_dict.items():
if k in _border_key_map:
k = _border_key_map[k]
if k == "color":
v = cls._convert_to_color(v)
if k in ["left", "right", "top", "bottom", "diagonal"]:
v = cls._convert_to_side(v)
border_kwargs[k] = v
return Border(**border_kwargs)
@classmethod
def _convert_to_alignment(cls, alignment_dict):
"""
Convert ``alignment_dict`` to an openpyxl v2 Alignment object
Parameters
----------
alignment_dict : dict
A dict with zero or more of the following keys (or their synonyms).
'horizontal'
'vertical'
'text_rotation'
'wrap_text'
'shrink_to_fit'
'indent'
Returns
-------
alignment : openpyxl.styles.Alignment
"""
from openpyxl.styles import Alignment
return Alignment(**alignment_dict)
@classmethod
def _convert_to_number_format(cls, number_format_dict):
"""
Convert ``number_format_dict`` to an openpyxl v2.1.0 number format
initializer.
Parameters
----------
number_format_dict : dict
A dict with zero or more of the following keys.
'format_code' : str
Returns
-------
number_format : str
"""
return number_format_dict["format_code"]
@classmethod
def _convert_to_protection(cls, protection_dict):
"""
Convert ``protection_dict`` to an openpyxl v2 Protection object.
Parameters
----------
protection_dict : dict
A dict with zero or more of the following keys.
'locked'
'hidden'
Returns
-------
"""
from openpyxl.styles import Protection
return Protection(**protection_dict)
def write_cells(
self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None
):
# Write the frame cells using openpyxl.
sheet_name = self._get_sheet_name(sheet_name)
_style_cache = {}
if sheet_name in self.sheets:
wks = self.sheets[sheet_name]
else:
wks = self.book.create_sheet()
wks.title = sheet_name
self.sheets[sheet_name] = wks
if _validate_freeze_panes(freeze_panes):
wks.freeze_panes = wks.cell(
row=freeze_panes[0] + 1, column=freeze_panes[1] + 1
)
for cell in cells:
xcell = wks.cell(
row=startrow + cell.row + 1, column=startcol + cell.col + 1
)
xcell.value, fmt = self._value_with_fmt(cell.val)
if fmt:
xcell.number_format = fmt
style_kwargs = {}
if cell.style:
key = str(cell.style)
style_kwargs = _style_cache.get(key)
if style_kwargs is None:
style_kwargs = self._convert_to_style_kwargs(cell.style)
_style_cache[key] = style_kwargs
if style_kwargs:
for k, v in style_kwargs.items():
setattr(xcell, k, v)
if cell.mergestart is not None and cell.mergeend is not None:
wks.merge_cells(
start_row=startrow + cell.row + 1,
start_column=startcol + cell.col + 1,
end_column=startcol + cell.mergeend + 1,
end_row=startrow + cell.mergestart + 1,
)
# When cells are merged only the top-left cell is preserved
# The behaviour of the other cells in a merged range is
# undefined
if style_kwargs:
first_row = startrow + cell.row + 1
last_row = startrow + cell.mergestart + 1
first_col = startcol + cell.col + 1
last_col = startcol + cell.mergeend + 1
for row in range(first_row, last_row + 1):
for col in range(first_col, last_col + 1):
if row == first_row and col == first_col:
# Ignore first cell. It is already handled.
continue
xcell = wks.cell(column=col, row=row)
for k, v in style_kwargs.items():
setattr(xcell, k, v)
class _OpenpyxlReader(_BaseExcelReader):
def __init__(self, filepath_or_buffer: FilePathOrBuffer) -> None:
"""Reader using openpyxl engine.
Parameters
----------
filepath_or_buffer : string, path object or Workbook
Object to be parsed.
"""
import_optional_dependency("openpyxl")
super().__init__(filepath_or_buffer)
@property
def _workbook_class(self):
from openpyxl import Workbook
return Workbook
def load_workbook(self, filepath_or_buffer: FilePathOrBuffer):
from openpyxl import load_workbook
return load_workbook(
filepath_or_buffer, read_only=True, data_only=True, keep_links=False
)
@property
def sheet_names(self) -> List[str]:
return self.book.sheetnames
def get_sheet_by_name(self, name: str):
return self.book[name]
def get_sheet_by_index(self, index: int):
return self.book.worksheets[index]
def _convert_cell(self, cell, convert_float: bool) -> Scalar:
# TODO: replace with openpyxl constants
if cell.is_date:
return cell.value
elif cell.data_type == "e":
return np.nan
elif cell.data_type == "b":
return bool(cell.value)
elif cell.value is None:
return "" # compat with xlrd
elif cell.data_type == "n":
# GH5394
if convert_float:
val = int(cell.value)
if val == cell.value:
return val
else:
return float(cell.value)
return cell.value
def get_sheet_data(self, sheet, convert_float: bool) -> List[List[Scalar]]:
data = [] # type: List[List[Scalar]]
for row in sheet.rows:
data.append([self._convert_cell(cell, convert_float) for cell in row])
return data

View File

@@ -0,0 +1,236 @@
import warnings
from pandas.compat._optional import import_optional_dependency
from pandas.core.dtypes.common import is_integer, is_list_like
_writers = {}
def register_writer(klass):
"""
Add engine to the excel writer registry.io.excel.
You must use this method to integrate with ``to_excel``.
Parameters
----------
klass : ExcelWriter
"""
if not callable(klass):
raise ValueError("Can only register callables as engines")
engine_name = klass.engine
_writers[engine_name] = klass
def _get_default_writer(ext):
"""
Return the default writer for the given extension.
Parameters
----------
ext : str
The excel file extension for which to get the default engine.
Returns
-------
str
The default engine for the extension.
"""
_default_writers = {"xlsx": "openpyxl", "xlsm": "openpyxl", "xls": "xlwt"}
xlsxwriter = import_optional_dependency(
"xlsxwriter", raise_on_missing=False, on_version="warn"
)
if xlsxwriter:
_default_writers["xlsx"] = "xlsxwriter"
return _default_writers[ext]
def get_writer(engine_name):
try:
return _writers[engine_name]
except KeyError:
raise ValueError("No Excel writer '{engine}'".format(engine=engine_name))
def _excel2num(x):
"""
Convert Excel column name like 'AB' to 0-based column index.
Parameters
----------
x : str
The Excel column name to convert to a 0-based column index.
Returns
-------
num : int
The column index corresponding to the name.
Raises
------
ValueError
Part of the Excel column name was invalid.
"""
index = 0
for c in x.upper().strip():
cp = ord(c)
if cp < ord("A") or cp > ord("Z"):
raise ValueError("Invalid column name: {x}".format(x=x))
index = index * 26 + cp - ord("A") + 1
return index - 1
def _range2cols(areas):
"""
Convert comma separated list of column names and ranges to indices.
Parameters
----------
areas : str
A string containing a sequence of column ranges (or areas).
Returns
-------
cols : list
A list of 0-based column indices.
Examples
--------
>>> _range2cols('A:E')
[0, 1, 2, 3, 4]
>>> _range2cols('A,C,Z:AB')
[0, 2, 25, 26, 27]
"""
cols = []
for rng in areas.split(","):
if ":" in rng:
rng = rng.split(":")
cols.extend(range(_excel2num(rng[0]), _excel2num(rng[1]) + 1))
else:
cols.append(_excel2num(rng))
return cols
def _maybe_convert_usecols(usecols):
"""
Convert `usecols` into a compatible format for parsing in `parsers.py`.
Parameters
----------
usecols : object
The use-columns object to potentially convert.
Returns
-------
converted : object
The compatible format of `usecols`.
"""
if usecols is None:
return usecols
if is_integer(usecols):
warnings.warn(
(
"Passing in an integer for `usecols` has been "
"deprecated. Please pass in a list of int from "
"0 to `usecols` inclusive instead."
),
FutureWarning,
stacklevel=2,
)
return list(range(usecols + 1))
if isinstance(usecols, str):
return _range2cols(usecols)
return usecols
def _validate_freeze_panes(freeze_panes):
if freeze_panes is not None:
if len(freeze_panes) == 2 and all(
isinstance(item, int) for item in freeze_panes
):
return True
raise ValueError(
"freeze_panes must be of form (row, column)"
" where row and column are integers"
)
# freeze_panes wasn't specified, return False so it won't be applied
# to output sheet
return False
def _trim_excel_header(row):
# trim header row so auto-index inference works
# xlrd uses '' , openpyxl None
while len(row) > 0 and (row[0] == "" or row[0] is None):
row = row[1:]
return row
def _fill_mi_header(row, control_row):
"""Forward fill blank entries in row but only inside the same parent index.
Used for creating headers in Multiindex.
Parameters
----------
row : list
List of items in a single row.
control_row : list of bool
Helps to determine if particular column is in same parent index as the
previous value. Used to stop propagation of empty cells between
different indexes.
Returns
-------
Returns changed row and control_row
"""
last = row[0]
for i in range(1, len(row)):
if not control_row[i]:
last = row[i]
if row[i] == "" or row[i] is None:
row[i] = last
else:
control_row[i] = False
last = row[i]
return row, control_row
def _pop_header_name(row, index_col):
"""
Pop the header name for MultiIndex parsing.
Parameters
----------
row : list
The data row to parse for the header name.
index_col : int, list
The index columns for our data. Assumed to be non-null.
Returns
-------
header_name : str
The extracted header name.
trimmed_row : list
The original data row with the header name removed.
"""
# Pop out header name and fill w/blank.
i = index_col if not is_list_like(index_col) else max(index_col)
header_name = row[i]
header_name = None if header_name == "" else header_name
return header_name, row[:i] + [""] + row[i + 1 :]

View File

@@ -0,0 +1,106 @@
from datetime import time
import numpy as np
from pandas.compat._optional import import_optional_dependency
from pandas.io.excel._base import _BaseExcelReader
class _XlrdReader(_BaseExcelReader):
def __init__(self, filepath_or_buffer):
"""Reader using xlrd engine.
Parameters
----------
filepath_or_buffer : string, path object or Workbook
Object to be parsed.
"""
err_msg = "Install xlrd >= 1.0.0 for Excel support"
import_optional_dependency("xlrd", extra=err_msg)
super().__init__(filepath_or_buffer)
@property
def _workbook_class(self):
from xlrd import Book
return Book
def load_workbook(self, filepath_or_buffer):
from xlrd import open_workbook
if hasattr(filepath_or_buffer, "read"):
data = filepath_or_buffer.read()
return open_workbook(file_contents=data)
else:
return open_workbook(filepath_or_buffer)
@property
def sheet_names(self):
return self.book.sheet_names()
def get_sheet_by_name(self, name):
return self.book.sheet_by_name(name)
def get_sheet_by_index(self, index):
return self.book.sheet_by_index(index)
def get_sheet_data(self, sheet, convert_float):
from xlrd import (
xldate,
XL_CELL_DATE,
XL_CELL_ERROR,
XL_CELL_BOOLEAN,
XL_CELL_NUMBER,
)
epoch1904 = self.book.datemode
def _parse_cell(cell_contents, cell_typ):
"""converts the contents of the cell into a pandas
appropriate object"""
if cell_typ == XL_CELL_DATE:
# Use the newer xlrd datetime handling.
try:
cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
except OverflowError:
return cell_contents
# Excel doesn't distinguish between dates and time,
# so we treat dates on the epoch as times only.
# Also, Excel supports 1900 and 1904 epochs.
year = (cell_contents.timetuple())[0:3]
if (not epoch1904 and year == (1899, 12, 31)) or (
epoch1904 and year == (1904, 1, 1)
):
cell_contents = time(
cell_contents.hour,
cell_contents.minute,
cell_contents.second,
cell_contents.microsecond,
)
elif cell_typ == XL_CELL_ERROR:
cell_contents = np.nan
elif cell_typ == XL_CELL_BOOLEAN:
cell_contents = bool(cell_contents)
elif convert_float and cell_typ == XL_CELL_NUMBER:
# GH5394 - Excel 'numbers' are always floats
# it's a minimal perf hit and less surprising
val = int(cell_contents)
if val == cell_contents:
cell_contents = val
return cell_contents
data = []
for i in range(sheet.nrows):
row = [
_parse_cell(value, typ)
for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
]
data.append(row)
return data

View File

@@ -0,0 +1,237 @@
import pandas._libs.json as json
from pandas.io.excel._base import ExcelWriter
from pandas.io.excel._util import _validate_freeze_panes
class _XlsxStyler:
# Map from openpyxl-oriented styles to flatter xlsxwriter representation
# Ordering necessary for both determinism and because some are keyed by
# prefixes of others.
STYLE_MAPPING = {
"font": [
(("name",), "font_name"),
(("sz",), "font_size"),
(("size",), "font_size"),
(("color", "rgb"), "font_color"),
(("color",), "font_color"),
(("b",), "bold"),
(("bold",), "bold"),
(("i",), "italic"),
(("italic",), "italic"),
(("u",), "underline"),
(("underline",), "underline"),
(("strike",), "font_strikeout"),
(("vertAlign",), "font_script"),
(("vertalign",), "font_script"),
],
"number_format": [(("format_code",), "num_format"), ((), "num_format")],
"protection": [(("locked",), "locked"), (("hidden",), "hidden")],
"alignment": [
(("horizontal",), "align"),
(("vertical",), "valign"),
(("text_rotation",), "rotation"),
(("wrap_text",), "text_wrap"),
(("indent",), "indent"),
(("shrink_to_fit",), "shrink"),
],
"fill": [
(("patternType",), "pattern"),
(("patterntype",), "pattern"),
(("fill_type",), "pattern"),
(("start_color", "rgb"), "fg_color"),
(("fgColor", "rgb"), "fg_color"),
(("fgcolor", "rgb"), "fg_color"),
(("start_color",), "fg_color"),
(("fgColor",), "fg_color"),
(("fgcolor",), "fg_color"),
(("end_color", "rgb"), "bg_color"),
(("bgColor", "rgb"), "bg_color"),
(("bgcolor", "rgb"), "bg_color"),
(("end_color",), "bg_color"),
(("bgColor",), "bg_color"),
(("bgcolor",), "bg_color"),
],
"border": [
(("color", "rgb"), "border_color"),
(("color",), "border_color"),
(("style",), "border"),
(("top", "color", "rgb"), "top_color"),
(("top", "color"), "top_color"),
(("top", "style"), "top"),
(("top",), "top"),
(("right", "color", "rgb"), "right_color"),
(("right", "color"), "right_color"),
(("right", "style"), "right"),
(("right",), "right"),
(("bottom", "color", "rgb"), "bottom_color"),
(("bottom", "color"), "bottom_color"),
(("bottom", "style"), "bottom"),
(("bottom",), "bottom"),
(("left", "color", "rgb"), "left_color"),
(("left", "color"), "left_color"),
(("left", "style"), "left"),
(("left",), "left"),
],
}
@classmethod
def convert(cls, style_dict, num_format_str=None):
"""
converts a style_dict to an xlsxwriter format dict
Parameters
----------
style_dict : style dictionary to convert
num_format_str : optional number format string
"""
# Create a XlsxWriter format object.
props = {}
if num_format_str is not None:
props["num_format"] = num_format_str
if style_dict is None:
return props
if "borders" in style_dict:
style_dict = style_dict.copy()
style_dict["border"] = style_dict.pop("borders")
for style_group_key, style_group in style_dict.items():
for src, dst in cls.STYLE_MAPPING.get(style_group_key, []):
# src is a sequence of keys into a nested dict
# dst is a flat key
if dst in props:
continue
v = style_group
for k in src:
try:
v = v[k]
except (KeyError, TypeError):
break
else:
props[dst] = v
if isinstance(props.get("pattern"), str):
# TODO: support other fill patterns
props["pattern"] = 0 if props["pattern"] == "none" else 1
for k in ["border", "top", "right", "bottom", "left"]:
if isinstance(props.get(k), str):
try:
props[k] = [
"none",
"thin",
"medium",
"dashed",
"dotted",
"thick",
"double",
"hair",
"mediumDashed",
"dashDot",
"mediumDashDot",
"dashDotDot",
"mediumDashDotDot",
"slantDashDot",
].index(props[k])
except ValueError:
props[k] = 2
if isinstance(props.get("font_script"), str):
props["font_script"] = ["baseline", "superscript", "subscript"].index(
props["font_script"]
)
if isinstance(props.get("underline"), str):
props["underline"] = {
"none": 0,
"single": 1,
"double": 2,
"singleAccounting": 33,
"doubleAccounting": 34,
}[props["underline"]]
return props
class _XlsxWriter(ExcelWriter):
engine = "xlsxwriter"
supported_extensions = (".xlsx",)
def __init__(
self,
path,
engine=None,
date_format=None,
datetime_format=None,
mode="w",
**engine_kwargs
):
# Use the xlsxwriter module as the Excel writer.
import xlsxwriter
if mode == "a":
raise ValueError("Append mode is not supported with xlsxwriter!")
super().__init__(
path,
engine=engine,
date_format=date_format,
datetime_format=datetime_format,
mode=mode,
**engine_kwargs
)
self.book = xlsxwriter.Workbook(path, **engine_kwargs)
def save(self):
"""
Save workbook to disk.
"""
return self.book.close()
def write_cells(
self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None
):
# Write the frame cells using xlsxwriter.
sheet_name = self._get_sheet_name(sheet_name)
if sheet_name in self.sheets:
wks = self.sheets[sheet_name]
else:
wks = self.book.add_worksheet(sheet_name)
self.sheets[sheet_name] = wks
style_dict = {"null": None}
if _validate_freeze_panes(freeze_panes):
wks.freeze_panes(*(freeze_panes))
for cell in cells:
val, fmt = self._value_with_fmt(cell.val)
stylekey = json.dumps(cell.style)
if fmt:
stylekey += fmt
if stylekey in style_dict:
style = style_dict[stylekey]
else:
style = self.book.add_format(_XlsxStyler.convert(cell.style, fmt))
style_dict[stylekey] = style
if cell.mergestart is not None and cell.mergeend is not None:
wks.merge_range(
startrow + cell.row,
startcol + cell.col,
startrow + cell.mergestart,
startcol + cell.mergeend,
val,
style,
)
else:
wks.write(startrow + cell.row, startcol + cell.col, val, style)

View File

@@ -0,0 +1,135 @@
import pandas._libs.json as json
from pandas.io.excel._base import ExcelWriter
from pandas.io.excel._util import _validate_freeze_panes
class _XlwtWriter(ExcelWriter):
engine = "xlwt"
supported_extensions = (".xls",)
def __init__(self, path, engine=None, encoding=None, mode="w", **engine_kwargs):
# Use the xlwt module as the Excel writer.
import xlwt
engine_kwargs["engine"] = engine
if mode == "a":
raise ValueError("Append mode is not supported with xlwt!")
super().__init__(path, mode=mode, **engine_kwargs)
if encoding is None:
encoding = "ascii"
self.book = xlwt.Workbook(encoding=encoding)
self.fm_datetime = xlwt.easyxf(num_format_str=self.datetime_format)
self.fm_date = xlwt.easyxf(num_format_str=self.date_format)
def save(self):
"""
Save workbook to disk.
"""
return self.book.save(self.path)
def write_cells(
self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None
):
# Write the frame cells using xlwt.
sheet_name = self._get_sheet_name(sheet_name)
if sheet_name in self.sheets:
wks = self.sheets[sheet_name]
else:
wks = self.book.add_sheet(sheet_name)
self.sheets[sheet_name] = wks
if _validate_freeze_panes(freeze_panes):
wks.set_panes_frozen(True)
wks.set_horz_split_pos(freeze_panes[0])
wks.set_vert_split_pos(freeze_panes[1])
style_dict = {}
for cell in cells:
val, fmt = self._value_with_fmt(cell.val)
stylekey = json.dumps(cell.style)
if fmt:
stylekey += fmt
if stylekey in style_dict:
style = style_dict[stylekey]
else:
style = self._convert_to_style(cell.style, fmt)
style_dict[stylekey] = style
if cell.mergestart is not None and cell.mergeend is not None:
wks.write_merge(
startrow + cell.row,
startrow + cell.mergestart,
startcol + cell.col,
startcol + cell.mergeend,
val,
style,
)
else:
wks.write(startrow + cell.row, startcol + cell.col, val, style)
@classmethod
def _style_to_xlwt(cls, item, firstlevel=True, field_sep=",", line_sep=";"):
"""helper which recursively generate an xlwt easy style string
for example:
hstyle = {"font": {"bold": True},
"border": {"top": "thin",
"right": "thin",
"bottom": "thin",
"left": "thin"},
"align": {"horiz": "center"}}
will be converted to
font: bold on; \
border: top thin, right thin, bottom thin, left thin; \
align: horiz center;
"""
if hasattr(item, "items"):
if firstlevel:
it = [
"{key}: {val}".format(key=key, val=cls._style_to_xlwt(value, False))
for key, value in item.items()
]
out = "{sep} ".format(sep=(line_sep).join(it))
return out
else:
it = [
"{key} {val}".format(key=key, val=cls._style_to_xlwt(value, False))
for key, value in item.items()
]
out = "{sep} ".format(sep=(field_sep).join(it))
return out
else:
item = "{item}".format(item=item)
item = item.replace("True", "on")
item = item.replace("False", "off")
return item
@classmethod
def _convert_to_style(cls, style_dict, num_format_str=None):
"""
converts a style_dict to an xlwt style object
Parameters
----------
style_dict : style dictionary to convert
num_format_str : optional number format string
"""
import xlwt
if style_dict:
xlwt_stylestr = cls._style_to_xlwt(style_dict)
style = xlwt.easyxf(xlwt_stylestr, field_sep=",", line_sep=";")
else:
style = xlwt.XFStyle()
if num_format_str is not None:
style.num_format_str = num_format_str
return style