8th day of python challenges 111-117
This commit is contained in:
316
venv/lib/python3.6/site-packages/pandas/tests/frame/test_rank.py
Normal file
316
venv/lib/python3.6/site-packages/pandas/tests/frame/test_rank.py
Normal file
@@ -0,0 +1,316 @@
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import DataFrame, Series
|
||||
import pandas.util.testing as tm
|
||||
from pandas.util.testing import assert_frame_equal
|
||||
|
||||
|
||||
class TestRank:
|
||||
s = Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])
|
||||
df = DataFrame({"A": s, "B": s})
|
||||
|
||||
results = {
|
||||
"average": np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5]),
|
||||
"min": np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5]),
|
||||
"max": np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6]),
|
||||
"first": np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6]),
|
||||
"dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]),
|
||||
}
|
||||
|
||||
@pytest.fixture(params=["average", "min", "max", "first", "dense"])
|
||||
def method(self, request):
|
||||
"""
|
||||
Fixture for trying all rank methods
|
||||
"""
|
||||
return request.param
|
||||
|
||||
def test_rank(self, float_frame):
|
||||
rankdata = pytest.importorskip("scipy.stats.rankdata")
|
||||
|
||||
float_frame["A"][::2] = np.nan
|
||||
float_frame["B"][::3] = np.nan
|
||||
float_frame["C"][::4] = np.nan
|
||||
float_frame["D"][::5] = np.nan
|
||||
|
||||
ranks0 = float_frame.rank()
|
||||
ranks1 = float_frame.rank(1)
|
||||
mask = np.isnan(float_frame.values)
|
||||
|
||||
fvals = float_frame.fillna(np.inf).values
|
||||
|
||||
exp0 = np.apply_along_axis(rankdata, 0, fvals)
|
||||
exp0[mask] = np.nan
|
||||
|
||||
exp1 = np.apply_along_axis(rankdata, 1, fvals)
|
||||
exp1[mask] = np.nan
|
||||
|
||||
tm.assert_almost_equal(ranks0.values, exp0)
|
||||
tm.assert_almost_equal(ranks1.values, exp1)
|
||||
|
||||
# integers
|
||||
df = DataFrame(np.random.randint(0, 5, size=40).reshape((10, 4)))
|
||||
|
||||
result = df.rank()
|
||||
exp = df.astype(float).rank()
|
||||
tm.assert_frame_equal(result, exp)
|
||||
|
||||
result = df.rank(1)
|
||||
exp = df.astype(float).rank(1)
|
||||
tm.assert_frame_equal(result, exp)
|
||||
|
||||
def test_rank2(self):
|
||||
df = DataFrame([[1, 3, 2], [1, 2, 3]])
|
||||
expected = DataFrame([[1.0, 3.0, 2.0], [1, 2, 3]]) / 3.0
|
||||
result = df.rank(1, pct=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df = DataFrame([[1, 3, 2], [1, 2, 3]])
|
||||
expected = df.rank(0) / 2.0
|
||||
result = df.rank(0, pct=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df = DataFrame([["b", "c", "a"], ["a", "c", "b"]])
|
||||
expected = DataFrame([[2.0, 3.0, 1.0], [1, 3, 2]])
|
||||
result = df.rank(1, numeric_only=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame([[2.0, 1.5, 1.0], [1, 1.5, 2]])
|
||||
result = df.rank(0, numeric_only=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df = DataFrame([["b", np.nan, "a"], ["a", "c", "b"]])
|
||||
expected = DataFrame([[2.0, np.nan, 1.0], [1.0, 3.0, 2.0]])
|
||||
result = df.rank(1, numeric_only=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame([[2.0, np.nan, 1.0], [1.0, 1.0, 2.0]])
|
||||
result = df.rank(0, numeric_only=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# f7u12, this does not work without extensive workaround
|
||||
data = [
|
||||
[datetime(2001, 1, 5), np.nan, datetime(2001, 1, 2)],
|
||||
[datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)],
|
||||
]
|
||||
df = DataFrame(data)
|
||||
|
||||
# check the rank
|
||||
expected = DataFrame([[2.0, np.nan, 1.0], [2.0, 3.0, 1.0]])
|
||||
result = df.rank(1, numeric_only=False, ascending=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = DataFrame([[1.0, np.nan, 2.0], [2.0, 1.0, 3.0]])
|
||||
result = df.rank(1, numeric_only=False, ascending=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df = DataFrame({"a": [1e-20, -5, 1e-20 + 1e-40, 10, 1e60, 1e80, 1e-30]})
|
||||
exp = DataFrame({"a": [3.5, 1.0, 3.5, 5.0, 6.0, 7.0, 2.0]})
|
||||
tm.assert_frame_equal(df.rank(), exp)
|
||||
|
||||
def test_rank_mixed_frame(self, float_string_frame):
|
||||
float_string_frame["datetime"] = datetime.now()
|
||||
float_string_frame["timedelta"] = timedelta(days=1, seconds=1)
|
||||
|
||||
result = float_string_frame.rank(1)
|
||||
expected = float_string_frame.rank(1, numeric_only=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_rank_na_option(self, float_frame):
|
||||
rankdata = pytest.importorskip("scipy.stats.rankdata")
|
||||
|
||||
float_frame["A"][::2] = np.nan
|
||||
float_frame["B"][::3] = np.nan
|
||||
float_frame["C"][::4] = np.nan
|
||||
float_frame["D"][::5] = np.nan
|
||||
|
||||
# bottom
|
||||
ranks0 = float_frame.rank(na_option="bottom")
|
||||
ranks1 = float_frame.rank(1, na_option="bottom")
|
||||
|
||||
fvals = float_frame.fillna(np.inf).values
|
||||
|
||||
exp0 = np.apply_along_axis(rankdata, 0, fvals)
|
||||
exp1 = np.apply_along_axis(rankdata, 1, fvals)
|
||||
|
||||
tm.assert_almost_equal(ranks0.values, exp0)
|
||||
tm.assert_almost_equal(ranks1.values, exp1)
|
||||
|
||||
# top
|
||||
ranks0 = float_frame.rank(na_option="top")
|
||||
ranks1 = float_frame.rank(1, na_option="top")
|
||||
|
||||
fval0 = float_frame.fillna((float_frame.min() - 1).to_dict()).values
|
||||
fval1 = float_frame.T
|
||||
fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
|
||||
fval1 = fval1.fillna(np.inf).values
|
||||
|
||||
exp0 = np.apply_along_axis(rankdata, 0, fval0)
|
||||
exp1 = np.apply_along_axis(rankdata, 1, fval1)
|
||||
|
||||
tm.assert_almost_equal(ranks0.values, exp0)
|
||||
tm.assert_almost_equal(ranks1.values, exp1)
|
||||
|
||||
# descending
|
||||
|
||||
# bottom
|
||||
ranks0 = float_frame.rank(na_option="top", ascending=False)
|
||||
ranks1 = float_frame.rank(1, na_option="top", ascending=False)
|
||||
|
||||
fvals = float_frame.fillna(np.inf).values
|
||||
|
||||
exp0 = np.apply_along_axis(rankdata, 0, -fvals)
|
||||
exp1 = np.apply_along_axis(rankdata, 1, -fvals)
|
||||
|
||||
tm.assert_almost_equal(ranks0.values, exp0)
|
||||
tm.assert_almost_equal(ranks1.values, exp1)
|
||||
|
||||
# descending
|
||||
|
||||
# top
|
||||
ranks0 = float_frame.rank(na_option="bottom", ascending=False)
|
||||
ranks1 = float_frame.rank(1, na_option="bottom", ascending=False)
|
||||
|
||||
fval0 = float_frame.fillna((float_frame.min() - 1).to_dict()).values
|
||||
fval1 = float_frame.T
|
||||
fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
|
||||
fval1 = fval1.fillna(np.inf).values
|
||||
|
||||
exp0 = np.apply_along_axis(rankdata, 0, -fval0)
|
||||
exp1 = np.apply_along_axis(rankdata, 1, -fval1)
|
||||
|
||||
tm.assert_numpy_array_equal(ranks0.values, exp0)
|
||||
tm.assert_numpy_array_equal(ranks1.values, exp1)
|
||||
|
||||
# bad values throw error
|
||||
msg = "na_option must be one of 'keep', 'top', or 'bottom'"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
float_frame.rank(na_option="bad", ascending=False)
|
||||
|
||||
# invalid type
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
float_frame.rank(na_option=True, ascending=False)
|
||||
|
||||
def test_rank_axis(self):
|
||||
# check if using axes' names gives the same result
|
||||
df = DataFrame([[2, 1], [4, 3]])
|
||||
tm.assert_frame_equal(df.rank(axis=0), df.rank(axis="index"))
|
||||
tm.assert_frame_equal(df.rank(axis=1), df.rank(axis="columns"))
|
||||
|
||||
def test_rank_methods_frame(self):
|
||||
pytest.importorskip("scipy.stats.special")
|
||||
rankdata = pytest.importorskip("scipy.stats.rankdata")
|
||||
|
||||
xs = np.random.randint(0, 21, (100, 26))
|
||||
xs = (xs - 10.0) / 10.0
|
||||
cols = [chr(ord("z") - i) for i in range(xs.shape[1])]
|
||||
|
||||
for vals in [xs, xs + 1e6, xs * 1e-6]:
|
||||
df = DataFrame(vals, columns=cols)
|
||||
|
||||
for ax in [0, 1]:
|
||||
for m in ["average", "min", "max", "first", "dense"]:
|
||||
result = df.rank(axis=ax, method=m)
|
||||
sprank = np.apply_along_axis(
|
||||
rankdata, ax, vals, m if m != "first" else "ordinal"
|
||||
)
|
||||
sprank = sprank.astype(np.float64)
|
||||
expected = DataFrame(sprank, columns=cols).astype("float64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["O", "f8", "i8"])
|
||||
def test_rank_descending(self, method, dtype):
|
||||
|
||||
if "i" in dtype:
|
||||
df = self.df.dropna()
|
||||
else:
|
||||
df = self.df.astype(dtype)
|
||||
|
||||
res = df.rank(ascending=False)
|
||||
expected = (df.max() - df).rank()
|
||||
assert_frame_equal(res, expected)
|
||||
|
||||
if method == "first" and dtype == "O":
|
||||
return
|
||||
|
||||
expected = (df.max() - df).rank(method=method)
|
||||
|
||||
if dtype != "O":
|
||||
res2 = df.rank(method=method, ascending=False, numeric_only=True)
|
||||
assert_frame_equal(res2, expected)
|
||||
|
||||
res3 = df.rank(method=method, ascending=False, numeric_only=False)
|
||||
assert_frame_equal(res3, expected)
|
||||
|
||||
@pytest.mark.parametrize("axis", [0, 1])
|
||||
@pytest.mark.parametrize("dtype", [None, object])
|
||||
def test_rank_2d_tie_methods(self, method, axis, dtype):
|
||||
df = self.df
|
||||
|
||||
def _check2d(df, expected, method="average", axis=0):
|
||||
exp_df = DataFrame({"A": expected, "B": expected})
|
||||
|
||||
if axis == 1:
|
||||
df = df.T
|
||||
exp_df = exp_df.T
|
||||
|
||||
result = df.rank(method=method, axis=axis)
|
||||
assert_frame_equal(result, exp_df)
|
||||
|
||||
disabled = {(object, "first")}
|
||||
if (dtype, method) in disabled:
|
||||
return
|
||||
frame = df if dtype is None else df.astype(dtype)
|
||||
_check2d(frame, self.results[method], method=method, axis=axis)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"method,exp",
|
||||
[
|
||||
("dense", [[1.0, 1.0, 1.0], [1.0, 0.5, 2.0 / 3], [1.0, 0.5, 1.0 / 3]]),
|
||||
(
|
||||
"min",
|
||||
[
|
||||
[1.0 / 3, 1.0, 1.0],
|
||||
[1.0 / 3, 1.0 / 3, 2.0 / 3],
|
||||
[1.0 / 3, 1.0 / 3, 1.0 / 3],
|
||||
],
|
||||
),
|
||||
(
|
||||
"max",
|
||||
[[1.0, 1.0, 1.0], [1.0, 2.0 / 3, 2.0 / 3], [1.0, 2.0 / 3, 1.0 / 3]],
|
||||
),
|
||||
(
|
||||
"average",
|
||||
[[2.0 / 3, 1.0, 1.0], [2.0 / 3, 0.5, 2.0 / 3], [2.0 / 3, 0.5, 1.0 / 3]],
|
||||
),
|
||||
(
|
||||
"first",
|
||||
[
|
||||
[1.0 / 3, 1.0, 1.0],
|
||||
[2.0 / 3, 1.0 / 3, 2.0 / 3],
|
||||
[3.0 / 3, 2.0 / 3, 1.0 / 3],
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_rank_pct_true(self, method, exp):
|
||||
# see gh-15630.
|
||||
|
||||
df = DataFrame([[2012, 66, 3], [2012, 65, 2], [2012, 65, 1]])
|
||||
result = df.rank(method=method, pct=True)
|
||||
|
||||
expected = DataFrame(exp)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.single
|
||||
@pytest.mark.high_memory
|
||||
def test_pct_max_many_rows(self):
|
||||
# GH 18271
|
||||
df = DataFrame(
|
||||
{"A": np.arange(2 ** 24 + 1), "B": np.arange(2 ** 24 + 1, 0, -1)}
|
||||
)
|
||||
result = df.rank(pct=True).max()
|
||||
assert (result == 1).all()
|
||||
Reference in New Issue
Block a user