8th day of python challenges 111-117

This commit is contained in:
abd.shallal
2019-08-04 15:26:35 +03:00
parent b04c1b055f
commit 627802c383
3215 changed files with 760227 additions and 491 deletions

View File

@@ -0,0 +1,292 @@
from datetime import timedelta
import numpy as np
import pytest
from pandas.errors import NullFrequencyError
import pandas as pd
from pandas import Timedelta, TimedeltaIndex, timedelta_range
import pandas.util.testing as tm
@pytest.fixture(
params=[
pd.offsets.Hour(2),
timedelta(hours=2),
np.timedelta64(2, "h"),
Timedelta(hours=2),
],
ids=str,
)
def delta(request):
# Several ways of representing two hours
return request.param
@pytest.fixture(params=["B", "D"])
def freq(request):
return request.param
class TestTimedeltaIndexArithmetic:
# Addition and Subtraction Operations
# -------------------------------------------------------------
# TimedeltaIndex.shift is used by __add__/__sub__
def test_tdi_shift_empty(self):
# GH#9903
idx = pd.TimedeltaIndex([], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
tm.assert_index_equal(idx.shift(3, freq="H"), idx)
def test_tdi_shift_hours(self):
# GH#9903
idx = pd.TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
exp = pd.TimedeltaIndex(["8 hours", "9 hours", "12 hours"], name="xxx")
tm.assert_index_equal(idx.shift(3, freq="H"), exp)
exp = pd.TimedeltaIndex(["2 hours", "3 hours", "6 hours"], name="xxx")
tm.assert_index_equal(idx.shift(-3, freq="H"), exp)
def test_tdi_shift_minutes(self):
# GH#9903
idx = pd.TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="T"), idx)
exp = pd.TimedeltaIndex(["05:03:00", "06:03:00", "9:03:00"], name="xxx")
tm.assert_index_equal(idx.shift(3, freq="T"), exp)
exp = pd.TimedeltaIndex(["04:57:00", "05:57:00", "8:57:00"], name="xxx")
tm.assert_index_equal(idx.shift(-3, freq="T"), exp)
def test_tdi_shift_int(self):
# GH#8083
trange = pd.to_timedelta(range(5), unit="d") + pd.offsets.Hour(1)
result = trange.shift(1)
expected = TimedeltaIndex(
[
"1 days 01:00:00",
"2 days 01:00:00",
"3 days 01:00:00",
"4 days 01:00:00",
"5 days 01:00:00",
],
freq="D",
)
tm.assert_index_equal(result, expected)
def test_tdi_shift_nonstandard_freq(self):
# GH#8083
trange = pd.to_timedelta(range(5), unit="d") + pd.offsets.Hour(1)
result = trange.shift(3, freq="2D 1s")
expected = TimedeltaIndex(
[
"6 days 01:00:03",
"7 days 01:00:03",
"8 days 01:00:03",
"9 days 01:00:03",
"10 days 01:00:03",
],
freq="D",
)
tm.assert_index_equal(result, expected)
def test_shift_no_freq(self):
# GH#19147
tdi = TimedeltaIndex(["1 days 01:00:00", "2 days 01:00:00"], freq=None)
with pytest.raises(NullFrequencyError):
tdi.shift(2)
# -------------------------------------------------------------
# Binary operations TimedeltaIndex and integer
def test_tdi_add_int(self, one):
# Variants of `one` for #19012
rng = timedelta_range("1 days 09:00:00", freq="H", periods=10)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = rng + one
expected = timedelta_range("1 days 10:00:00", freq="H", periods=10)
tm.assert_index_equal(result, expected)
def test_tdi_iadd_int(self, one):
rng = timedelta_range("1 days 09:00:00", freq="H", periods=10)
expected = timedelta_range("1 days 10:00:00", freq="H", periods=10)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
rng += one
tm.assert_index_equal(rng, expected)
def test_tdi_sub_int(self, one):
rng = timedelta_range("1 days 09:00:00", freq="H", periods=10)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = rng - one
expected = timedelta_range("1 days 08:00:00", freq="H", periods=10)
tm.assert_index_equal(result, expected)
def test_tdi_isub_int(self, one):
rng = timedelta_range("1 days 09:00:00", freq="H", periods=10)
expected = timedelta_range("1 days 08:00:00", freq="H", periods=10)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
rng -= one
tm.assert_index_equal(rng, expected)
# -------------------------------------------------------------
# __add__/__sub__ with integer arrays
@pytest.mark.parametrize("box", [np.array, pd.Index])
def test_tdi_add_integer_array(self, box):
# GH#19959
rng = timedelta_range("1 days 09:00:00", freq="H", periods=3)
other = box([4, 3, 2])
expected = TimedeltaIndex(["1 day 13:00:00"] * 3)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = rng + other
tm.assert_index_equal(result, expected)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = other + rng
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("box", [np.array, pd.Index])
def test_tdi_sub_integer_array(self, box):
# GH#19959
rng = timedelta_range("9H", freq="H", periods=3)
other = box([4, 3, 2])
expected = TimedeltaIndex(["5H", "7H", "9H"])
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = rng - other
tm.assert_index_equal(result, expected)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# GH#22535
result = other - rng
tm.assert_index_equal(result, -expected)
@pytest.mark.parametrize("box", [np.array, pd.Index])
def test_tdi_addsub_integer_array_no_freq(self, box):
# GH#19959
tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"])
other = box([14, -1, 16])
with pytest.raises(NullFrequencyError):
tdi + other
with pytest.raises(NullFrequencyError):
other + tdi
with pytest.raises(NullFrequencyError):
tdi - other
with pytest.raises(NullFrequencyError):
other - tdi
# -------------------------------------------------------------
# Binary operations TimedeltaIndex and timedelta-like
# Note: add and sub are tested in tests.test_arithmetic, in-place
# tests are kept here because their behavior is Index-specific
def test_tdi_iadd_timedeltalike(self, delta):
# only test adding/sub offsets as + is now numeric
rng = timedelta_range("1 days", "10 days")
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
rng += delta
tm.assert_index_equal(rng, expected)
def test_tdi_isub_timedeltalike(self, delta):
# only test adding/sub offsets as - is now numeric
rng = timedelta_range("1 days", "10 days")
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
rng -= delta
tm.assert_index_equal(rng, expected)
# -------------------------------------------------------------
# TODO: after #24365 this probably belongs in scalar tests
def test_ops_ndarray(self):
td = Timedelta("1 day")
# timedelta, timedelta
other = pd.to_timedelta(["1 day"]).values
expected = pd.to_timedelta(["2 days"]).values
tm.assert_numpy_array_equal(td + other, expected)
tm.assert_numpy_array_equal(other + td, expected)
msg = r"unsupported operand type\(s\) for \+: 'Timedelta' and 'int'"
with pytest.raises(TypeError, match=msg):
td + np.array([1])
msg = r"unsupported operand type\(s\) for \+: 'numpy.ndarray' and 'Timedelta'"
with pytest.raises(TypeError, match=msg):
np.array([1]) + td
expected = pd.to_timedelta(["0 days"]).values
tm.assert_numpy_array_equal(td - other, expected)
tm.assert_numpy_array_equal(-other + td, expected)
msg = r"unsupported operand type\(s\) for -: 'Timedelta' and 'int'"
with pytest.raises(TypeError, match=msg):
td - np.array([1])
msg = r"unsupported operand type\(s\) for -: 'numpy.ndarray' and 'Timedelta'"
with pytest.raises(TypeError, match=msg):
np.array([1]) - td
expected = pd.to_timedelta(["2 days"]).values
tm.assert_numpy_array_equal(td * np.array([2]), expected)
tm.assert_numpy_array_equal(np.array([2]) * td, expected)
msg = (
"ufunc '?multiply'? cannot use operands with types"
r" dtype\('<m8\[ns\]'\) and dtype\('<m8\[ns\]'\)"
)
with pytest.raises(TypeError, match=msg):
td * other
with pytest.raises(TypeError, match=msg):
other * td
tm.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64))
tm.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64))
# timedelta, datetime
other = pd.to_datetime(["2000-01-01"]).values
expected = pd.to_datetime(["2000-01-02"]).values
tm.assert_numpy_array_equal(td + other, expected)
tm.assert_numpy_array_equal(other + td, expected)
expected = pd.to_datetime(["1999-12-31"]).values
tm.assert_numpy_array_equal(-td + other, expected)
tm.assert_numpy_array_equal(other - td, expected)
def test_tdi_ops_attributes(self):
rng = timedelta_range("2 days", periods=5, freq="2D", name="x")
result = rng + 1 * rng.freq
exp = timedelta_range("4 days", periods=5, freq="2D", name="x")
tm.assert_index_equal(result, exp)
assert result.freq == "2D"
result = rng - 2 * rng.freq
exp = timedelta_range("-2 days", periods=5, freq="2D", name="x")
tm.assert_index_equal(result, exp)
assert result.freq == "2D"
result = rng * 2
exp = timedelta_range("4 days", periods=5, freq="4D", name="x")
tm.assert_index_equal(result, exp)
assert result.freq == "4D"
result = rng / 2
exp = timedelta_range("1 days", periods=5, freq="D", name="x")
tm.assert_index_equal(result, exp)
assert result.freq == "D"
result = -rng
exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x")
tm.assert_index_equal(result, exp)
assert result.freq == "-2D"
rng = pd.timedelta_range("-2 days", periods=5, freq="D", name="x")
result = abs(rng)
exp = TimedeltaIndex(
["2 days", "1 days", "0 days", "1 days", "2 days"], name="x"
)
tm.assert_index_equal(result, exp)
assert result.freq is None

View File

@@ -0,0 +1,123 @@
from datetime import timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import (
Float64Index,
Index,
Int64Index,
NaT,
Timedelta,
TimedeltaIndex,
timedelta_range,
)
import pandas.util.testing as tm
class TestTimedeltaIndex:
def test_astype_object(self):
idx = timedelta_range(start="1 days", periods=4, freq="D", name="idx")
expected_list = [
Timedelta("1 days"),
Timedelta("2 days"),
Timedelta("3 days"),
Timedelta("4 days"),
]
result = idx.astype(object)
expected = Index(expected_list, dtype=object, name="idx")
tm.assert_index_equal(result, expected)
assert idx.tolist() == expected_list
def test_astype_object_with_nat(self):
idx = TimedeltaIndex(
[timedelta(days=1), timedelta(days=2), NaT, timedelta(days=4)], name="idx"
)
expected_list = [
Timedelta("1 days"),
Timedelta("2 days"),
NaT,
Timedelta("4 days"),
]
result = idx.astype(object)
expected = Index(expected_list, dtype=object, name="idx")
tm.assert_index_equal(result, expected)
assert idx.tolist() == expected_list
def test_astype(self):
# GH 13149, GH 13209
idx = TimedeltaIndex([1e14, "NaT", NaT, np.NaN])
result = idx.astype(object)
expected = Index([Timedelta("1 days 03:46:40")] + [NaT] * 3, dtype=object)
tm.assert_index_equal(result, expected)
result = idx.astype(int)
expected = Int64Index(
[100000000000000] + [-9223372036854775808] * 3, dtype=np.int64
)
tm.assert_index_equal(result, expected)
result = idx.astype(str)
expected = Index(str(x) for x in idx)
tm.assert_index_equal(result, expected)
rng = timedelta_range("1 days", periods=10)
result = rng.astype("i8")
tm.assert_index_equal(result, Index(rng.asi8))
tm.assert_numpy_array_equal(rng.asi8, result.values)
def test_astype_uint(self):
arr = timedelta_range("1H", periods=2)
expected = pd.UInt64Index(
np.array([3600000000000, 90000000000000], dtype="uint64")
)
tm.assert_index_equal(arr.astype("uint64"), expected)
tm.assert_index_equal(arr.astype("uint32"), expected)
def test_astype_timedelta64(self):
# GH 13149, GH 13209
idx = TimedeltaIndex([1e14, "NaT", NaT, np.NaN])
result = idx.astype("timedelta64")
expected = Float64Index([1e14] + [np.NaN] * 3, dtype="float64")
tm.assert_index_equal(result, expected)
result = idx.astype("timedelta64[ns]")
tm.assert_index_equal(result, idx)
assert result is not idx
result = idx.astype("timedelta64[ns]", copy=False)
tm.assert_index_equal(result, idx)
assert result is idx
@pytest.mark.parametrize("dtype", [float, "datetime64", "datetime64[ns]"])
def test_astype_raises(self, dtype):
# GH 13149, GH 13209
idx = TimedeltaIndex([1e14, "NaT", NaT, np.NaN])
msg = "Cannot cast TimedeltaArray to dtype"
with pytest.raises(TypeError, match=msg):
idx.astype(dtype)
def test_astype_category(self):
obj = pd.timedelta_range("1H", periods=2, freq="H")
result = obj.astype("category")
expected = pd.CategoricalIndex([pd.Timedelta("1H"), pd.Timedelta("2H")])
tm.assert_index_equal(result, expected)
result = obj._data.astype("category")
expected = expected.values
tm.assert_categorical_equal(result, expected)
def test_astype_array_fallback(self):
obj = pd.timedelta_range("1H", periods=2)
result = obj.astype(bool)
expected = pd.Index(np.array([True, True]))
tm.assert_index_equal(result, expected)
result = obj._data.astype(bool)
expected = np.array([True, True])
tm.assert_numpy_array_equal(result, expected)

View File

@@ -0,0 +1,229 @@
from datetime import timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import Timedelta, TimedeltaIndex, timedelta_range, to_timedelta
from pandas.core.arrays import TimedeltaArray
import pandas.util.testing as tm
class TestTimedeltaIndex:
def test_verify_integrity_deprecated(self):
# GH#23919
with tm.assert_produces_warning(FutureWarning):
TimedeltaIndex(["1 Day"], verify_integrity=False)
def test_range_kwargs_deprecated(self):
# GH#23919
with tm.assert_produces_warning(FutureWarning):
TimedeltaIndex(start="1 Day", end="3 Days", freq="D")
def test_int64_nocopy(self):
# GH#23539 check that a copy isn't made when we pass int64 data
# and copy=False
arr = np.arange(10, dtype=np.int64)
tdi = TimedeltaIndex(arr, copy=False)
assert tdi._data._data.base is arr
def test_infer_from_tdi(self):
# GH#23539
# fast-path for inferring a frequency if the passed data already
# has one
tdi = pd.timedelta_range("1 second", periods=10 ** 7, freq="1s")
result = pd.TimedeltaIndex(tdi, freq="infer")
assert result.freq == tdi.freq
# check that inferred_freq was not called by checking that the
# value has not been cached
assert "inferred_freq" not in getattr(result, "_cache", {})
def test_infer_from_tdi_mismatch(self):
# GH#23539
# fast-path for invalidating a frequency if the passed data already
# has one and it does not match the `freq` input
tdi = pd.timedelta_range("1 second", periods=100, freq="1s")
msg = (
"Inferred frequency .* from passed values does "
"not conform to passed frequency"
)
with pytest.raises(ValueError, match=msg):
TimedeltaIndex(tdi, freq="D")
with pytest.raises(ValueError, match=msg):
# GH#23789
TimedeltaArray(tdi, freq="D")
def test_dt64_data_invalid(self):
# GH#23539
# passing tz-aware DatetimeIndex raises, naive or ndarray[datetime64]
# does not yet, but will in the future
dti = pd.date_range("2016-01-01", periods=3)
msg = "cannot be converted to timedelta64"
with pytest.raises(TypeError, match=msg):
TimedeltaIndex(dti.tz_localize("Europe/Brussels"))
with tm.assert_produces_warning(FutureWarning):
TimedeltaIndex(dti)
with tm.assert_produces_warning(FutureWarning):
TimedeltaIndex(np.asarray(dti))
def test_float64_ns_rounded(self):
# GH#23539 without specifying a unit, floats are regarded as nanos,
# and fractional portions are truncated
tdi = TimedeltaIndex([2.3, 9.7])
expected = TimedeltaIndex([2, 9])
tm.assert_index_equal(tdi, expected)
# integral floats are non-lossy
tdi = TimedeltaIndex([2.0, 9.0])
expected = TimedeltaIndex([2, 9])
tm.assert_index_equal(tdi, expected)
# NaNs get converted to NaT
tdi = TimedeltaIndex([2.0, np.nan])
expected = TimedeltaIndex([pd.Timedelta(nanoseconds=2), pd.NaT])
tm.assert_index_equal(tdi, expected)
def test_float64_unit_conversion(self):
# GH#23539
tdi = TimedeltaIndex([1.5, 2.25], unit="D")
expected = TimedeltaIndex([Timedelta(days=1.5), Timedelta(days=2.25)])
tm.assert_index_equal(tdi, expected)
def test_construction_base_constructor(self):
arr = [pd.Timedelta("1 days"), pd.NaT, pd.Timedelta("3 days")]
tm.assert_index_equal(pd.Index(arr), pd.TimedeltaIndex(arr))
tm.assert_index_equal(pd.Index(np.array(arr)), pd.TimedeltaIndex(np.array(arr)))
arr = [np.nan, pd.NaT, pd.Timedelta("1 days")]
tm.assert_index_equal(pd.Index(arr), pd.TimedeltaIndex(arr))
tm.assert_index_equal(pd.Index(np.array(arr)), pd.TimedeltaIndex(np.array(arr)))
def test_constructor(self):
expected = TimedeltaIndex(
[
"1 days",
"1 days 00:00:05",
"2 days",
"2 days 00:00:02",
"0 days 00:00:03",
]
)
result = TimedeltaIndex(
[
"1 days",
"1 days, 00:00:05",
np.timedelta64(2, "D"),
timedelta(days=2, seconds=2),
pd.offsets.Second(3),
]
)
tm.assert_index_equal(result, expected)
# unicode
result = TimedeltaIndex(
[
"1 days",
"1 days, 00:00:05",
np.timedelta64(2, "D"),
timedelta(days=2, seconds=2),
pd.offsets.Second(3),
]
)
expected = TimedeltaIndex(
["0 days 00:00:00", "0 days 00:00:01", "0 days 00:00:02"]
)
tm.assert_index_equal(TimedeltaIndex(range(3), unit="s"), expected)
expected = TimedeltaIndex(
["0 days 00:00:00", "0 days 00:00:05", "0 days 00:00:09"]
)
tm.assert_index_equal(TimedeltaIndex([0, 5, 9], unit="s"), expected)
expected = TimedeltaIndex(
["0 days 00:00:00.400", "0 days 00:00:00.450", "0 days 00:00:01.200"]
)
tm.assert_index_equal(TimedeltaIndex([400, 450, 1200], unit="ms"), expected)
def test_constructor_iso(self):
# GH #21877
expected = timedelta_range("1s", periods=9, freq="s")
durations = ["P0DT0H0M{}S".format(i) for i in range(1, 10)]
result = to_timedelta(durations)
tm.assert_index_equal(result, expected)
def test_constructor_coverage(self):
rng = timedelta_range("1 days", periods=10.5)
exp = timedelta_range("1 days", periods=10)
tm.assert_index_equal(rng, exp)
msg = "periods must be a number, got foo"
with pytest.raises(TypeError, match=msg):
timedelta_range(start="1 days", periods="foo", freq="D")
with pytest.raises(ValueError):
with tm.assert_produces_warning(FutureWarning):
TimedeltaIndex(start="1 days", end="10 days")
with pytest.raises(TypeError):
TimedeltaIndex("1 days")
# generator expression
gen = (timedelta(i) for i in range(10))
result = TimedeltaIndex(gen)
expected = TimedeltaIndex([timedelta(i) for i in range(10)])
tm.assert_index_equal(result, expected)
# NumPy string array
strings = np.array(["1 days", "2 days", "3 days"])
result = TimedeltaIndex(strings)
expected = to_timedelta([1, 2, 3], unit="d")
tm.assert_index_equal(result, expected)
from_ints = TimedeltaIndex(expected.asi8)
tm.assert_index_equal(from_ints, expected)
# non-conforming freq
msg = (
"Inferred frequency None from passed values does not conform to"
" passed frequency D"
)
with pytest.raises(ValueError, match=msg):
TimedeltaIndex(["1 days", "2 days", "4 days"], freq="D")
msg = (
"Of the four parameters: start, end, periods, and freq, exactly"
" three must be specified"
)
with pytest.raises(ValueError, match=msg):
timedelta_range(periods=10, freq="D")
def test_constructor_name(self):
idx = timedelta_range(start="1 days", periods=1, freq="D", name="TEST")
assert idx.name == "TEST"
# GH10025
idx2 = TimedeltaIndex(idx, name="something else")
assert idx2.name == "something else"
def test_constructor_no_precision_warns(self):
# GH-24753, GH-24739
expected = pd.TimedeltaIndex(["2000"], dtype="timedelta64[ns]")
# we set the stacklevel for DatetimeIndex
with tm.assert_produces_warning(FutureWarning):
result = pd.TimedeltaIndex(["2000"], dtype="timedelta64")
tm.assert_index_equal(result, expected)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = pd.Index(["2000"], dtype="timedelta64")
tm.assert_index_equal(result, expected)
def test_constructor_wrong_precision_raises(self):
with pytest.raises(ValueError):
pd.TimedeltaIndex(["2000"], dtype="timedelta64[us]")

View File

@@ -0,0 +1,90 @@
import pytest
import pandas as pd
from pandas import TimedeltaIndex
class TestTimedeltaIndexRendering:
@pytest.mark.parametrize("method", ["__repr__", "__str__"])
def test_representation(self, method):
idx1 = TimedeltaIndex([], freq="D")
idx2 = TimedeltaIndex(["1 days"], freq="D")
idx3 = TimedeltaIndex(["1 days", "2 days"], freq="D")
idx4 = TimedeltaIndex(["1 days", "2 days", "3 days"], freq="D")
idx5 = TimedeltaIndex(["1 days 00:00:01", "2 days", "3 days"])
exp1 = "TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')"
exp2 = "TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', freq='D')"
exp3 = "TimedeltaIndex(['1 days', '2 days'], dtype='timedelta64[ns]', freq='D')"
exp4 = (
"TimedeltaIndex(['1 days', '2 days', '3 days'], "
"dtype='timedelta64[ns]', freq='D')"
)
exp5 = (
"TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', "
"'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)"
)
with pd.option_context("display.width", 300):
for idx, expected in zip(
[idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]
):
result = getattr(idx, method)()
assert result == expected
def test_representation_to_series(self):
idx1 = TimedeltaIndex([], freq="D")
idx2 = TimedeltaIndex(["1 days"], freq="D")
idx3 = TimedeltaIndex(["1 days", "2 days"], freq="D")
idx4 = TimedeltaIndex(["1 days", "2 days", "3 days"], freq="D")
idx5 = TimedeltaIndex(["1 days 00:00:01", "2 days", "3 days"])
exp1 = """Series([], dtype: timedelta64[ns])"""
exp2 = "0 1 days\ndtype: timedelta64[ns]"
exp3 = "0 1 days\n1 2 days\ndtype: timedelta64[ns]"
exp4 = "0 1 days\n1 2 days\n2 3 days\ndtype: timedelta64[ns]"
exp5 = (
"0 1 days 00:00:01\n"
"1 2 days 00:00:00\n"
"2 3 days 00:00:00\n"
"dtype: timedelta64[ns]"
)
with pd.option_context("display.width", 300):
for idx, expected in zip(
[idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]
):
result = repr(pd.Series(idx))
assert result == expected
def test_summary(self):
# GH#9116
idx1 = TimedeltaIndex([], freq="D")
idx2 = TimedeltaIndex(["1 days"], freq="D")
idx3 = TimedeltaIndex(["1 days", "2 days"], freq="D")
idx4 = TimedeltaIndex(["1 days", "2 days", "3 days"], freq="D")
idx5 = TimedeltaIndex(["1 days 00:00:01", "2 days", "3 days"])
exp1 = "TimedeltaIndex: 0 entries\nFreq: D"
exp2 = "TimedeltaIndex: 1 entries, 1 days to 1 days\nFreq: D"
exp3 = "TimedeltaIndex: 2 entries, 1 days to 2 days\nFreq: D"
exp4 = "TimedeltaIndex: 3 entries, 1 days to 3 days\nFreq: D"
exp5 = "TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days 00:00:00"
for idx, expected in zip(
[idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]
):
result = idx._summary()
assert result == expected

View File

@@ -0,0 +1,345 @@
from datetime import datetime, timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import Index, Timedelta, TimedeltaIndex, timedelta_range
import pandas.util.testing as tm
class TestGetItem:
def test_ellipsis(self):
# GH#21282
idx = timedelta_range("1 day", "31 day", freq="D", name="idx")
result = idx[...]
assert result.equals(idx)
assert result is not idx
def test_getitem(self):
idx1 = timedelta_range("1 day", "31 day", freq="D", name="idx")
for idx in [idx1]:
result = idx[0]
assert result == Timedelta("1 day")
result = idx[0:5]
expected = timedelta_range("1 day", "5 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[0:10:2]
expected = timedelta_range("1 day", "9 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[-20:-5:3]
expected = timedelta_range("12 day", "24 day", freq="3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[4::-1]
expected = TimedeltaIndex(
["5 day", "4 day", "3 day", "2 day", "1 day"], freq="-1D", name="idx"
)
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
@pytest.mark.parametrize(
"key",
[pd.Timestamp("1970-01-01"), pd.Timestamp("1970-01-02"), datetime(1970, 1, 1)],
)
def test_timestamp_invalid_key(self, key):
# GH#20464
tdi = pd.timedelta_range(0, periods=10)
with pytest.raises(TypeError):
tdi.get_loc(key)
class TestWhere:
# placeholder for symmetry with DatetimeIndex and PeriodIndex tests
pass
class TestTake:
def test_take(self):
# GH 10295
idx1 = timedelta_range("1 day", "31 day", freq="D", name="idx")
for idx in [idx1]:
result = idx.take([0])
assert result == Timedelta("1 day")
result = idx.take([-1])
assert result == Timedelta("31 day")
result = idx.take([0, 1, 2])
expected = timedelta_range("1 day", "3 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([0, 2, 4])
expected = timedelta_range("1 day", "5 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([7, 4, 1])
expected = timedelta_range("8 day", "2 day", freq="-3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([3, 2, 5])
expected = TimedeltaIndex(["4 day", "3 day", "6 day"], name="idx")
tm.assert_index_equal(result, expected)
assert result.freq is None
result = idx.take([-3, 2, 5])
expected = TimedeltaIndex(["29 day", "3 day", "6 day"], name="idx")
tm.assert_index_equal(result, expected)
assert result.freq is None
def test_take_invalid_kwargs(self):
idx = timedelta_range("1 day", "31 day", freq="D", name="idx")
indices = [1, 6, 5, 9, 10, 13, 15, 3]
msg = r"take\(\) got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=msg):
idx.take(indices, foo=2)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
idx.take(indices, out=indices)
msg = "the 'mode' parameter is not supported"
with pytest.raises(ValueError, match=msg):
idx.take(indices, mode="clip")
# TODO: This method came from test_timedelta; de-dup with version above
def test_take2(self):
tds = ["1day 02:00:00", "1 day 04:00:00", "1 day 10:00:00"]
idx = timedelta_range(start="1d", end="2d", freq="H", name="idx")
expected = TimedeltaIndex(tds, freq=None, name="idx")
taken1 = idx.take([2, 4, 10])
taken2 = idx[[2, 4, 10]]
for taken in [taken1, taken2]:
tm.assert_index_equal(taken, expected)
assert isinstance(taken, TimedeltaIndex)
assert taken.freq is None
assert taken.name == expected.name
def test_take_fill_value(self):
# GH 12631
idx = TimedeltaIndex(["1 days", "2 days", "3 days"], name="xxx")
result = idx.take(np.array([1, 0, -1]))
expected = TimedeltaIndex(["2 days", "1 days", "3 days"], name="xxx")
tm.assert_index_equal(result, expected)
# fill_value
result = idx.take(np.array([1, 0, -1]), fill_value=True)
expected = TimedeltaIndex(["2 days", "1 days", "NaT"], name="xxx")
tm.assert_index_equal(result, expected)
# allow_fill=False
result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
expected = TimedeltaIndex(["2 days", "1 days", "3 days"], name="xxx")
tm.assert_index_equal(result, expected)
msg = (
"When allow_fill=True and fill_value is not None, "
"all indices must be >= -1"
)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -2]), fill_value=True)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -5]), fill_value=True)
with pytest.raises(IndexError):
idx.take(np.array([1, -5]))
class TestTimedeltaIndex:
def test_insert(self):
idx = TimedeltaIndex(["4day", "1day", "2day"], name="idx")
result = idx.insert(2, timedelta(days=5))
exp = TimedeltaIndex(["4day", "1day", "5day", "2day"], name="idx")
tm.assert_index_equal(result, exp)
# insertion of non-datetime should coerce to object index
result = idx.insert(1, "inserted")
expected = Index(
[Timedelta("4day"), "inserted", Timedelta("1day"), Timedelta("2day")],
name="idx",
)
assert not isinstance(result, TimedeltaIndex)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
idx = timedelta_range("1day 00:00:01", periods=3, freq="s", name="idx")
# preserve freq
expected_0 = TimedeltaIndex(
["1day", "1day 00:00:01", "1day 00:00:02", "1day 00:00:03"],
name="idx",
freq="s",
)
expected_3 = TimedeltaIndex(
["1day 00:00:01", "1day 00:00:02", "1day 00:00:03", "1day 00:00:04"],
name="idx",
freq="s",
)
# reset freq to None
expected_1_nofreq = TimedeltaIndex(
["1day 00:00:01", "1day 00:00:01", "1day 00:00:02", "1day 00:00:03"],
name="idx",
freq=None,
)
expected_3_nofreq = TimedeltaIndex(
["1day 00:00:01", "1day 00:00:02", "1day 00:00:03", "1day 00:00:05"],
name="idx",
freq=None,
)
cases = [
(0, Timedelta("1day"), expected_0),
(-3, Timedelta("1day"), expected_0),
(3, Timedelta("1day 00:00:04"), expected_3),
(1, Timedelta("1day 00:00:01"), expected_1_nofreq),
(3, Timedelta("1day 00:00:05"), expected_3_nofreq),
]
for n, d, expected in cases:
result = idx.insert(n, d)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
# GH 18295 (test missing)
expected = TimedeltaIndex(["1day", pd.NaT, "2day", "3day"])
for na in (np.nan, pd.NaT, None):
result = timedelta_range("1day", "3day").insert(1, na)
tm.assert_index_equal(result, expected)
def test_delete(self):
idx = timedelta_range(start="1 Days", periods=5, freq="D", name="idx")
# prserve freq
expected_0 = timedelta_range(start="2 Days", periods=4, freq="D", name="idx")
expected_4 = timedelta_range(start="1 Days", periods=4, freq="D", name="idx")
# reset freq to None
expected_1 = TimedeltaIndex(
["1 day", "3 day", "4 day", "5 day"], freq=None, name="idx"
)
cases = {
0: expected_0,
-5: expected_0,
-1: expected_4,
4: expected_4,
1: expected_1,
}
for n, expected in cases.items():
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
with pytest.raises((IndexError, ValueError)):
# either depending on numpy version
idx.delete(5)
def test_delete_slice(self):
idx = timedelta_range(start="1 days", periods=10, freq="D", name="idx")
# prserve freq
expected_0_2 = timedelta_range(start="4 days", periods=7, freq="D", name="idx")
expected_7_9 = timedelta_range(start="1 days", periods=7, freq="D", name="idx")
# reset freq to None
expected_3_5 = TimedeltaIndex(
["1 d", "2 d", "3 d", "7 d", "8 d", "9 d", "10d"], freq=None, name="idx"
)
cases = {
(0, 1, 2): expected_0_2,
(7, 8, 9): expected_7_9,
(3, 4, 5): expected_3_5,
}
for n, expected in cases.items():
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
result = idx.delete(slice(n[0], n[-1] + 1))
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
def test_get_loc(self):
idx = pd.to_timedelta(["0 days", "1 days", "2 days"])
for method in [None, "pad", "backfill", "nearest"]:
assert idx.get_loc(idx[1], method) == 1
assert idx.get_loc(idx[1].to_pytimedelta(), method) == 1
assert idx.get_loc(str(idx[1]), method) == 1
assert idx.get_loc(idx[1], "pad", tolerance=Timedelta(0)) == 1
assert idx.get_loc(idx[1], "pad", tolerance=np.timedelta64(0, "s")) == 1
assert idx.get_loc(idx[1], "pad", tolerance=timedelta(0)) == 1
with pytest.raises(ValueError, match="unit abbreviation w/o a number"):
idx.get_loc(idx[1], method="nearest", tolerance="foo")
with pytest.raises(ValueError, match="tolerance size must match"):
idx.get_loc(
idx[1],
method="nearest",
tolerance=[
Timedelta(0).to_timedelta64(),
Timedelta(0).to_timedelta64(),
],
)
for method, loc in [("pad", 1), ("backfill", 2), ("nearest", 1)]:
assert idx.get_loc("1 day 1 hour", method) == loc
# GH 16909
assert idx.get_loc(idx[1].to_timedelta64()) == 1
# GH 16896
assert idx.get_loc("0 days") == 0
def test_get_loc_nat(self):
tidx = TimedeltaIndex(["1 days 01:00:00", "NaT", "2 days 01:00:00"])
assert tidx.get_loc(pd.NaT) == 1
assert tidx.get_loc(None) == 1
assert tidx.get_loc(float("nan")) == 1
assert tidx.get_loc(np.nan) == 1
def test_get_indexer(self):
idx = pd.to_timedelta(["0 days", "1 days", "2 days"])
tm.assert_numpy_array_equal(
idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)
)
target = pd.to_timedelta(["-1 hour", "12 hours", "1 day 1 hour"])
tm.assert_numpy_array_equal(
idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp)
)
tm.assert_numpy_array_equal(
idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp)
)
tm.assert_numpy_array_equal(
idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp)
)
res = idx.get_indexer(target, "nearest", tolerance=Timedelta("1 hour"))
tm.assert_numpy_array_equal(res, np.array([0, -1, 1], dtype=np.intp))

View File

@@ -0,0 +1,303 @@
import numpy as np
import pytest
from pandas.core.dtypes.generic import ABCDateOffset
import pandas as pd
from pandas import Series, TimedeltaIndex, timedelta_range
from pandas.tests.test_base import Ops
import pandas.util.testing as tm
from pandas.tseries.offsets import Day, Hour
class TestTimedeltaIndexOps(Ops):
def setup_method(self, method):
super().setup_method(method)
mask = lambda x: isinstance(x, TimedeltaIndex)
self.is_valid_objs = [o for o in self.objs if mask(o)]
self.not_valid_objs = []
def test_ops_properties(self):
f = lambda x: isinstance(x, TimedeltaIndex)
self.check_ops_properties(TimedeltaIndex._field_ops, f)
self.check_ops_properties(TimedeltaIndex._object_ops, f)
def test_value_counts_unique(self):
# GH 7735
idx = timedelta_range("1 days 09:00:00", freq="H", periods=10)
# create repeated values, 'n'th element is repeated by n+1 times
idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1)))
exp_idx = timedelta_range("1 days 18:00:00", freq="-1H", periods=10)
expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64")
for obj in [idx, Series(idx)]:
tm.assert_series_equal(obj.value_counts(), expected)
expected = timedelta_range("1 days 09:00:00", freq="H", periods=10)
tm.assert_index_equal(idx.unique(), expected)
idx = TimedeltaIndex(
[
"1 days 09:00:00",
"1 days 09:00:00",
"1 days 09:00:00",
"1 days 08:00:00",
"1 days 08:00:00",
pd.NaT,
]
)
exp_idx = TimedeltaIndex(["1 days 09:00:00", "1 days 08:00:00"])
expected = Series([3, 2], index=exp_idx)
for obj in [idx, Series(idx)]:
tm.assert_series_equal(obj.value_counts(), expected)
exp_idx = TimedeltaIndex(["1 days 09:00:00", "1 days 08:00:00", pd.NaT])
expected = Series([3, 2, 1], index=exp_idx)
for obj in [idx, Series(idx)]:
tm.assert_series_equal(obj.value_counts(dropna=False), expected)
tm.assert_index_equal(idx.unique(), exp_idx)
def test_nonunique_contains(self):
# GH 9512
for idx in map(
TimedeltaIndex,
(
[0, 1, 0],
[0, 0, -1],
[0, -1, -1],
["00:01:00", "00:01:00", "00:02:00"],
["00:01:00", "00:01:00", "00:00:01"],
),
):
assert idx[0] in idx
def test_unknown_attribute(self):
# see gh-9680
tdi = pd.timedelta_range(start=0, periods=10, freq="1s")
ts = pd.Series(np.random.normal(size=10), index=tdi)
assert "foo" not in ts.__dict__.keys()
msg = "'Series' object has no attribute 'foo'"
with pytest.raises(AttributeError, match=msg):
ts.foo
def test_order(self):
# GH 10295
idx1 = TimedeltaIndex(["1 day", "2 day", "3 day"], freq="D", name="idx")
idx2 = TimedeltaIndex(["1 hour", "2 hour", "3 hour"], freq="H", name="idx")
for idx in [idx1, idx2]:
ordered = idx.sort_values()
tm.assert_index_equal(ordered, idx)
assert ordered.freq == idx.freq
ordered = idx.sort_values(ascending=False)
expected = idx[::-1]
tm.assert_index_equal(ordered, expected)
assert ordered.freq == expected.freq
assert ordered.freq.n == -1
ordered, indexer = idx.sort_values(return_indexer=True)
tm.assert_index_equal(ordered, idx)
tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False)
assert ordered.freq == idx.freq
ordered, indexer = idx.sort_values(return_indexer=True, ascending=False)
tm.assert_index_equal(ordered, idx[::-1])
assert ordered.freq == expected.freq
assert ordered.freq.n == -1
idx1 = TimedeltaIndex(
["1 hour", "3 hour", "5 hour", "2 hour ", "1 hour"], name="idx1"
)
exp1 = TimedeltaIndex(
["1 hour", "1 hour", "2 hour", "3 hour", "5 hour"], name="idx1"
)
idx2 = TimedeltaIndex(
["1 day", "3 day", "5 day", "2 day", "1 day"], name="idx2"
)
# TODO(wesm): unused?
# exp2 = TimedeltaIndex(['1 day', '1 day', '2 day',
# '3 day', '5 day'], name='idx2')
# idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute',
# '2 minute', pd.NaT], name='idx3')
# exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute',
# '5 minute'], name='idx3')
for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]:
ordered = idx.sort_values()
tm.assert_index_equal(ordered, expected)
assert ordered.freq is None
ordered = idx.sort_values(ascending=False)
tm.assert_index_equal(ordered, expected[::-1])
assert ordered.freq is None
ordered, indexer = idx.sort_values(return_indexer=True)
tm.assert_index_equal(ordered, expected)
exp = np.array([0, 4, 3, 1, 2])
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
assert ordered.freq is None
ordered, indexer = idx.sort_values(return_indexer=True, ascending=False)
tm.assert_index_equal(ordered, expected[::-1])
exp = np.array([2, 1, 3, 4, 0])
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
assert ordered.freq is None
def test_drop_duplicates_metadata(self):
# GH 10115
idx = pd.timedelta_range("1 day", "31 day", freq="D", name="idx")
result = idx.drop_duplicates()
tm.assert_index_equal(idx, result)
assert idx.freq == result.freq
idx_dup = idx.append(idx)
assert idx_dup.freq is None # freq is reset
result = idx_dup.drop_duplicates()
tm.assert_index_equal(idx, result)
assert result.freq is None
def test_drop_duplicates(self):
# to check Index/Series compat
base = pd.timedelta_range("1 day", "31 day", freq="D", name="idx")
idx = base.append(base[:5])
res = idx.drop_duplicates()
tm.assert_index_equal(res, base)
res = Series(idx).drop_duplicates()
tm.assert_series_equal(res, Series(base))
res = idx.drop_duplicates(keep="last")
exp = base[5:].append(base[:5])
tm.assert_index_equal(res, exp)
res = Series(idx).drop_duplicates(keep="last")
tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36)))
res = idx.drop_duplicates(keep=False)
tm.assert_index_equal(res, base[5:])
res = Series(idx).drop_duplicates(keep=False)
tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31)))
@pytest.mark.parametrize(
"freq", ["D", "3D", "-3D", "H", "2H", "-2H", "T", "2T", "S", "-3S"]
)
def test_infer_freq(self, freq):
# GH#11018
idx = pd.timedelta_range("1", freq=freq, periods=10)
result = pd.TimedeltaIndex(idx.asi8, freq="infer")
tm.assert_index_equal(idx, result)
assert result.freq == freq
def test_shift(self):
pass # handled in test_arithmetic.py
def test_repeat(self):
index = pd.timedelta_range("1 days", periods=2, freq="D")
exp = pd.TimedeltaIndex(["1 days", "1 days", "2 days", "2 days"])
for res in [index.repeat(2), np.repeat(index, 2)]:
tm.assert_index_equal(res, exp)
assert res.freq is None
index = TimedeltaIndex(["1 days", "NaT", "3 days"])
exp = TimedeltaIndex(
[
"1 days",
"1 days",
"1 days",
"NaT",
"NaT",
"NaT",
"3 days",
"3 days",
"3 days",
]
)
for res in [index.repeat(3), np.repeat(index, 3)]:
tm.assert_index_equal(res, exp)
assert res.freq is None
def test_nat(self):
assert pd.TimedeltaIndex._na_value is pd.NaT
assert pd.TimedeltaIndex([])._na_value is pd.NaT
idx = pd.TimedeltaIndex(["1 days", "2 days"])
assert idx._can_hold_na
tm.assert_numpy_array_equal(idx._isnan, np.array([False, False]))
assert idx.hasnans is False
tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp))
idx = pd.TimedeltaIndex(["1 days", "NaT"])
assert idx._can_hold_na
tm.assert_numpy_array_equal(idx._isnan, np.array([False, True]))
assert idx.hasnans is True
tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp))
def test_equals(self):
# GH 13107
idx = pd.TimedeltaIndex(["1 days", "2 days", "NaT"])
assert idx.equals(idx)
assert idx.equals(idx.copy())
assert idx.equals(idx.astype(object))
assert idx.astype(object).equals(idx)
assert idx.astype(object).equals(idx.astype(object))
assert not idx.equals(list(idx))
assert not idx.equals(pd.Series(idx))
idx2 = pd.TimedeltaIndex(["2 days", "1 days", "NaT"])
assert not idx.equals(idx2)
assert not idx.equals(idx2.copy())
assert not idx.equals(idx2.astype(object))
assert not idx.astype(object).equals(idx2)
assert not idx.astype(object).equals(idx2.astype(object))
assert not idx.equals(list(idx2))
assert not idx.equals(pd.Series(idx2))
@pytest.mark.parametrize("values", [["0 days", "2 days", "4 days"], []])
@pytest.mark.parametrize("freq", ["2D", Day(2), "48H", Hour(48)])
def test_freq_setter(self, values, freq):
# GH 20678
idx = TimedeltaIndex(values)
# can set to an offset, converting from string if necessary
idx.freq = freq
assert idx.freq == freq
assert isinstance(idx.freq, ABCDateOffset)
# can reset to None
idx.freq = None
assert idx.freq is None
def test_freq_setter_errors(self):
# GH 20678
idx = TimedeltaIndex(["0 days", "2 days", "4 days"])
# setting with an incompatible freq
msg = (
"Inferred frequency 2D from passed values does not conform to "
"passed frequency 5D"
)
with pytest.raises(ValueError, match=msg):
idx.freq = "5D"
# setting with a non-fixed frequency
msg = r"<2 \* BusinessDays> is a non-fixed frequency"
with pytest.raises(ValueError, match=msg):
idx.freq = "2B"
# setting with non-freq string
with pytest.raises(ValueError, match="Invalid frequency"):
idx.freq = "foo"

View File

@@ -0,0 +1,90 @@
import numpy as np
import pytest
import pandas as pd
from pandas import Series, Timedelta, timedelta_range
from pandas.util.testing import assert_series_equal
class TestSlicing:
def test_slice_keeps_name(self):
# GH4226
dr = pd.timedelta_range("1d", "5d", freq="H", name="timebucket")
assert dr[1:].name == dr.name
def test_partial_slice(self):
rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
s = Series(np.arange(len(rng)), index=rng)
result = s["5 day":"6 day"]
expected = s.iloc[86:134]
assert_series_equal(result, expected)
result = s["5 day":]
expected = s.iloc[86:]
assert_series_equal(result, expected)
result = s[:"6 day"]
expected = s.iloc[:134]
assert_series_equal(result, expected)
result = s["6 days, 23:11:12"]
assert result == s.iloc[133]
msg = r"^Timedelta\('50 days 00:00:00'\)$"
with pytest.raises(KeyError, match=msg):
s["50 days"]
def test_partial_slice_high_reso(self):
# higher reso
rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000)
s = Series(np.arange(len(rng)), index=rng)
result = s["1 day 10:11:12":]
expected = s.iloc[0:]
assert_series_equal(result, expected)
result = s["1 day 10:11:12.001":]
expected = s.iloc[1000:]
assert_series_equal(result, expected)
result = s["1 days, 10:11:12.001001"]
assert result == s.iloc[1001]
def test_slice_with_negative_step(self):
ts = Series(np.arange(20), timedelta_range("0", periods=20, freq="H"))
SLC = pd.IndexSlice
def assert_slices_equivalent(l_slc, i_slc):
assert_series_equal(ts[l_slc], ts.iloc[i_slc])
assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
assert_slices_equivalent(SLC[Timedelta(hours=7) :: -1], SLC[7::-1])
assert_slices_equivalent(SLC["7 hours"::-1], SLC[7::-1])
assert_slices_equivalent(SLC[: Timedelta(hours=7) : -1], SLC[:6:-1])
assert_slices_equivalent(SLC[:"7 hours":-1], SLC[:6:-1])
assert_slices_equivalent(SLC["15 hours":"7 hours":-1], SLC[15:6:-1])
assert_slices_equivalent(
SLC[Timedelta(hours=15) : Timedelta(hours=7) : -1], SLC[15:6:-1]
)
assert_slices_equivalent(
SLC["15 hours" : Timedelta(hours=7) : -1], SLC[15:6:-1]
)
assert_slices_equivalent(
SLC[Timedelta(hours=15) : "7 hours" : -1], SLC[15:6:-1]
)
assert_slices_equivalent(SLC["7 hours":"15 hours":-1], SLC[:0])
def test_slice_with_zero_step_raises(self):
ts = Series(np.arange(20), timedelta_range("0", periods=20, freq="H"))
with pytest.raises(ValueError, match="slice step cannot be zero"):
ts[::0]
with pytest.raises(ValueError, match="slice step cannot be zero"):
ts.loc[::0]
with pytest.raises(ValueError, match="slice step cannot be zero"):
ts.loc[::0]

View File

@@ -0,0 +1,71 @@
"""
Tests for TimedeltaIndex methods behaving like their Timedelta counterparts
"""
import numpy as np
import pytest
import pandas as pd
from pandas import Index, Series, Timedelta, TimedeltaIndex, timedelta_range
import pandas.util.testing as tm
class TestVectorizedTimedelta:
def test_tdi_total_seconds(self):
# GH#10939
# test index
rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
expt = [
1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9,
1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456.0 / 1e9,
]
tm.assert_almost_equal(rng.total_seconds(), Index(expt))
# test Series
ser = Series(rng)
s_expt = Series(expt, index=[0, 1])
tm.assert_series_equal(ser.dt.total_seconds(), s_expt)
# with nat
ser[1] = np.nan
s_expt = Series(
[1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9, np.nan],
index=[0, 1],
)
tm.assert_series_equal(ser.dt.total_seconds(), s_expt)
# with both nat
ser = Series([np.nan, np.nan], dtype="timedelta64[ns]")
tm.assert_series_equal(
ser.dt.total_seconds(), Series([np.nan, np.nan], index=[0, 1])
)
def test_tdi_round(self):
td = pd.timedelta_range(start="16801 days", periods=5, freq="30Min")
elt = td[1]
expected_rng = TimedeltaIndex(
[
Timedelta("16801 days 00:00:00"),
Timedelta("16801 days 00:00:00"),
Timedelta("16801 days 01:00:00"),
Timedelta("16801 days 02:00:00"),
Timedelta("16801 days 02:00:00"),
]
)
expected_elt = expected_rng[1]
tm.assert_index_equal(td.round(freq="H"), expected_rng)
assert elt.round(freq="H") == expected_elt
msg = pd._libs.tslibs.frequencies.INVALID_FREQ_ERR_MSG
with pytest.raises(ValueError, match=msg):
td.round(freq="foo")
with pytest.raises(ValueError, match=msg):
elt.round(freq="foo")
msg = "<MonthEnd> is a non-fixed frequency"
with pytest.raises(ValueError, match=msg):
td.round(freq="M")
with pytest.raises(ValueError, match=msg):
elt.round(freq="M")

View File

@@ -0,0 +1,181 @@
import numpy as np
import pytest
import pandas as pd
from pandas import Int64Index, TimedeltaIndex, timedelta_range
import pandas.util.testing as tm
from pandas.tseries.offsets import Hour
class TestTimedeltaIndex:
def test_union(self):
i1 = timedelta_range("1day", periods=5)
i2 = timedelta_range("3day", periods=5)
result = i1.union(i2)
expected = timedelta_range("1day", periods=7)
tm.assert_index_equal(result, expected)
i1 = Int64Index(np.arange(0, 20, 2))
i2 = timedelta_range(start="1 day", periods=10, freq="D")
i1.union(i2) # Works
i2.union(i1) # Fails with "AttributeError: can't set attribute"
def test_union_coverage(self):
idx = TimedeltaIndex(["3d", "1d", "2d"])
ordered = TimedeltaIndex(idx.sort_values(), freq="infer")
result = ordered.union(idx)
tm.assert_index_equal(result, ordered)
result = ordered[:0].union(ordered)
tm.assert_index_equal(result, ordered)
assert result.freq == ordered.freq
def test_union_bug_1730(self):
rng_a = timedelta_range("1 day", periods=4, freq="3H")
rng_b = timedelta_range("1 day", periods=4, freq="4H")
result = rng_a.union(rng_b)
exp = TimedeltaIndex(sorted(set(list(rng_a)) | set(list(rng_b))))
tm.assert_index_equal(result, exp)
def test_union_bug_1745(self):
left = TimedeltaIndex(["1 day 15:19:49.695000"])
right = TimedeltaIndex(
["2 day 13:04:21.322000", "1 day 15:27:24.873000", "1 day 15:31:05.350000"]
)
result = left.union(right)
exp = TimedeltaIndex(sorted(set(list(left)) | set(list(right))))
tm.assert_index_equal(result, exp)
def test_union_bug_4564(self):
left = timedelta_range("1 day", "30d")
right = left + pd.offsets.Minute(15)
result = left.union(right)
exp = TimedeltaIndex(sorted(set(list(left)) | set(list(right))))
tm.assert_index_equal(result, exp)
def test_intersection_bug_1708(self):
index_1 = timedelta_range("1 day", periods=4, freq="h")
index_2 = index_1 + pd.offsets.Hour(5)
result = index_1 & index_2
assert len(result) == 0
index_1 = timedelta_range("1 day", periods=4, freq="h")
index_2 = index_1 + pd.offsets.Hour(1)
result = index_1 & index_2
expected = timedelta_range("1 day 01:00:00", periods=3, freq="h")
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("sort", [None, False])
def test_intersection_equal(self, sort):
# GH 24471 Test intersection outcome given the sort keyword
# for equal indicies intersection should return the original index
first = timedelta_range("1 day", periods=4, freq="h")
second = timedelta_range("1 day", periods=4, freq="h")
intersect = first.intersection(second, sort=sort)
if sort is None:
tm.assert_index_equal(intersect, second.sort_values())
assert tm.equalContents(intersect, second)
# Corner cases
inter = first.intersection(first, sort=sort)
assert inter is first
@pytest.mark.parametrize("period_1, period_2", [(0, 4), (4, 0)])
@pytest.mark.parametrize("sort", [None, False])
def test_intersection_zero_length(self, period_1, period_2, sort):
# GH 24471 test for non overlap the intersection should be zero length
index_1 = timedelta_range("1 day", periods=period_1, freq="h")
index_2 = timedelta_range("1 day", periods=period_2, freq="h")
expected = timedelta_range("1 day", periods=0, freq="h")
result = index_1.intersection(index_2, sort=sort)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("sort", [None, False])
def test_zero_length_input_index(self, sort):
# GH 24966 test for 0-len intersections are copied
index_1 = timedelta_range("1 day", periods=0, freq="h")
index_2 = timedelta_range("1 day", periods=3, freq="h")
result = index_1.intersection(index_2, sort=sort)
assert index_1 is not result
assert index_2 is not result
tm.assert_copy(result, index_1)
@pytest.mark.parametrize(
"rng, expected",
# if target has the same name, it is preserved
[
(
timedelta_range("1 day", periods=5, freq="h", name="idx"),
timedelta_range("1 day", periods=4, freq="h", name="idx"),
),
# if target name is different, it will be reset
(
timedelta_range("1 day", periods=5, freq="h", name="other"),
timedelta_range("1 day", periods=4, freq="h", name=None),
),
# if no overlap exists return empty index
(
timedelta_range("1 day", periods=10, freq="h", name="idx")[5:],
TimedeltaIndex([], name="idx"),
),
],
)
@pytest.mark.parametrize("sort", [None, False])
def test_intersection(self, rng, expected, sort):
# GH 4690 (with tz)
base = timedelta_range("1 day", periods=4, freq="h", name="idx")
result = base.intersection(rng, sort=sort)
if sort is None:
expected = expected.sort_values()
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
@pytest.mark.parametrize(
"rng, expected",
# part intersection works
[
(
TimedeltaIndex(["5 hour", "2 hour", "4 hour", "9 hour"], name="idx"),
TimedeltaIndex(["2 hour", "4 hour"], name="idx"),
),
# reordered part intersection
(
TimedeltaIndex(["2 hour", "5 hour", "5 hour", "1 hour"], name="other"),
TimedeltaIndex(["1 hour", "2 hour"], name=None),
),
# reveresed index
(
TimedeltaIndex(["1 hour", "2 hour", "4 hour", "3 hour"], name="idx")[
::-1
],
TimedeltaIndex(["1 hour", "2 hour", "4 hour", "3 hour"], name="idx"),
),
],
)
@pytest.mark.parametrize("sort", [None, False])
def test_intersection_non_monotonic(self, rng, expected, sort):
# 24471 non-monotonic
base = TimedeltaIndex(["1 hour", "2 hour", "4 hour", "3 hour"], name="idx")
result = base.intersection(rng, sort=sort)
if sort is None:
expected = expected.sort_values()
tm.assert_index_equal(result, expected)
assert result.name == expected.name
# if reveresed order, frequency is still the same
if all(base == rng[::-1]) and sort is None:
assert isinstance(result.freq, Hour)
else:
assert result.freq is None

View File

@@ -0,0 +1,356 @@
from datetime import timedelta
import re
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Int64Index,
Series,
Timedelta,
TimedeltaIndex,
date_range,
timedelta_range,
)
import pandas.util.testing as tm
from pandas.util.testing import (
assert_almost_equal,
assert_index_equal,
assert_series_equal,
)
from ..datetimelike import DatetimeLike
randn = np.random.randn
class TestTimedeltaIndex(DatetimeLike):
_holder = TimedeltaIndex
def setup_method(self, method):
self.indices = dict(index=tm.makeTimedeltaIndex(10))
self.setup_indices()
def create_index(self):
return pd.to_timedelta(range(5), unit="d") + pd.offsets.Hour(1)
def test_numeric_compat(self):
# Dummy method to override super's version; this test is now done
# in test_arithmetic.py
pass
def test_shift(self):
pass # this is handled in test_arithmetic.py
def test_pickle_compat_construction(self):
pass
def test_fillna_timedelta(self):
# GH 11343
idx = pd.TimedeltaIndex(["1 day", pd.NaT, "3 day"])
exp = pd.TimedeltaIndex(["1 day", "2 day", "3 day"])
tm.assert_index_equal(idx.fillna(pd.Timedelta("2 day")), exp)
exp = pd.TimedeltaIndex(["1 day", "3 hour", "3 day"])
idx.fillna(pd.Timedelta("3 hour"))
exp = pd.Index(
[pd.Timedelta("1 day"), "x", pd.Timedelta("3 day")], dtype=object
)
tm.assert_index_equal(idx.fillna("x"), exp)
@pytest.mark.parametrize("sort", [None, False])
def test_difference_freq(self, sort):
# GH14323: Difference of TimedeltaIndex should not preserve frequency
index = timedelta_range("0 days", "5 days", freq="D")
other = timedelta_range("1 days", "4 days", freq="D")
expected = TimedeltaIndex(["0 days", "5 days"], freq=None)
idx_diff = index.difference(other, sort)
tm.assert_index_equal(idx_diff, expected)
tm.assert_attr_equal("freq", idx_diff, expected)
other = timedelta_range("2 days", "5 days", freq="D")
idx_diff = index.difference(other, sort)
expected = TimedeltaIndex(["0 days", "1 days"], freq=None)
tm.assert_index_equal(idx_diff, expected)
tm.assert_attr_equal("freq", idx_diff, expected)
@pytest.mark.parametrize("sort", [None, False])
def test_difference_sort(self, sort):
index = pd.TimedeltaIndex(
["5 days", "3 days", "2 days", "4 days", "1 days", "0 days"]
)
other = timedelta_range("1 days", "4 days", freq="D")
idx_diff = index.difference(other, sort)
expected = TimedeltaIndex(["5 days", "0 days"], freq=None)
if sort is None:
expected = expected.sort_values()
tm.assert_index_equal(idx_diff, expected)
tm.assert_attr_equal("freq", idx_diff, expected)
other = timedelta_range("2 days", "5 days", freq="D")
idx_diff = index.difference(other, sort)
expected = TimedeltaIndex(["1 days", "0 days"], freq=None)
if sort is None:
expected = expected.sort_values()
tm.assert_index_equal(idx_diff, expected)
tm.assert_attr_equal("freq", idx_diff, expected)
def test_isin(self):
index = tm.makeTimedeltaIndex(4)
result = index.isin(index)
assert result.all()
result = index.isin(list(index))
assert result.all()
assert_almost_equal(
index.isin([index[2], 5]), np.array([False, False, True, False])
)
def test_factorize(self):
idx1 = TimedeltaIndex(["1 day", "1 day", "2 day", "2 day", "3 day", "3 day"])
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
exp_idx = TimedeltaIndex(["1 day", "2 day", "3 day"])
arr, idx = idx1.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
# freq must be preserved
idx3 = timedelta_range("1 day", periods=4, freq="s")
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
def test_join_self(self, join_type):
index = timedelta_range("1 day", periods=10)
joined = index.join(index, how=join_type)
tm.assert_index_equal(index, joined)
def test_does_not_convert_mixed_integer(self):
df = tm.makeCustomDataframe(
10,
10,
data_gen_f=lambda *args, **kwargs: randn(),
r_idx_type="i",
c_idx_type="td",
)
str(df)
cols = df.columns.join(df.index, how="outer")
joined = cols.join(df.columns)
assert cols.dtype == np.dtype("O")
assert cols.dtype == joined.dtype
tm.assert_index_equal(cols, joined)
def test_sort_values(self):
idx = TimedeltaIndex(["4d", "1d", "2d"])
ordered = idx.sort_values()
assert ordered.is_monotonic
ordered = idx.sort_values(ascending=False)
assert ordered[::-1].is_monotonic
ordered, dexer = idx.sort_values(return_indexer=True)
assert ordered.is_monotonic
tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0]), check_dtype=False)
ordered, dexer = idx.sort_values(return_indexer=True, ascending=False)
assert ordered[::-1].is_monotonic
tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1]), check_dtype=False)
def test_get_duplicates(self):
idx = TimedeltaIndex(["1 day", "2 day", "2 day", "3 day", "3day", "4day"])
with tm.assert_produces_warning(FutureWarning):
# Deprecated - see GH20239
result = idx.get_duplicates()
ex = TimedeltaIndex(["2 day", "3day"])
tm.assert_index_equal(result, ex)
def test_argmin_argmax(self):
idx = TimedeltaIndex(["1 day 00:00:05", "1 day 00:00:01", "1 day 00:00:02"])
assert idx.argmin() == 1
assert idx.argmax() == 0
def test_misc_coverage(self):
rng = timedelta_range("1 day", periods=5)
result = rng.groupby(rng.days)
assert isinstance(list(result.values())[0][0], Timedelta)
idx = TimedeltaIndex(["3d", "1d", "2d"])
assert not idx.equals(list(idx))
non_td = Index(list("abc"))
assert not idx.equals(list(non_td))
def test_map(self):
# test_map_dictlike generally tests
rng = timedelta_range("1 day", periods=10)
f = lambda x: x.days
result = rng.map(f)
exp = Int64Index([f(x) for x in rng])
tm.assert_index_equal(result, exp)
def test_pass_TimedeltaIndex_to_index(self):
rng = timedelta_range("1 days", "10 days")
idx = Index(rng, dtype=object)
expected = Index(rng.to_pytimedelta(), dtype=object)
tm.assert_numpy_array_equal(idx.values, expected.values)
def test_pickle(self):
rng = timedelta_range("1 days", periods=10)
rng_p = tm.round_trip_pickle(rng)
tm.assert_index_equal(rng, rng_p)
def test_hash_error(self):
index = timedelta_range("1 days", periods=10)
with pytest.raises(
TypeError, match=("unhashable type: {0.__name__!r}".format(type(index)))
):
hash(index)
def test_append_join_nondatetimeindex(self):
rng = timedelta_range("1 days", periods=10)
idx = Index(["a", "b", "c", "d"])
result = rng.append(idx)
assert isinstance(result[0], Timedelta)
# it works
rng.join(idx, how="outer")
def test_append_numpy_bug_1681(self):
td = timedelta_range("1 days", "10 days", freq="2D")
a = DataFrame()
c = DataFrame({"A": "foo", "B": td}, index=td)
str(c)
result = a.append(c)
assert (result["B"] == td).all()
def test_fields(self):
rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
tm.assert_index_equal(rng.days, Index([1, 1], dtype="int64"))
tm.assert_index_equal(
rng.seconds,
Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype="int64"),
)
tm.assert_index_equal(
rng.microseconds, Index([100 * 1000 + 123, 100 * 1000 + 123], dtype="int64")
)
tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype="int64"))
msg = "'TimedeltaIndex' object has no attribute '{}'"
with pytest.raises(AttributeError, match=msg.format("hours")):
rng.hours
with pytest.raises(AttributeError, match=msg.format("minutes")):
rng.minutes
with pytest.raises(AttributeError, match=msg.format("milliseconds")):
rng.milliseconds
# with nat
s = Series(rng)
s[1] = np.nan
tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
tm.assert_series_equal(
s.dt.seconds, Series([10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])
)
# preserve name (GH15589)
rng.name = "name"
assert rng.days.name == "name"
def test_freq_conversion(self):
# doc example
# series
td = Series(date_range("20130101", periods=4)) - Series(
date_range("20121201", periods=4)
)
td[2] += timedelta(minutes=5, seconds=3)
td[3] = np.nan
result = td / np.timedelta64(1, "D")
expected = Series([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan])
assert_series_equal(result, expected)
result = td.astype("timedelta64[D]")
expected = Series([31, 31, 31, np.nan])
assert_series_equal(result, expected)
result = td / np.timedelta64(1, "s")
expected = Series([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan])
assert_series_equal(result, expected)
result = td.astype("timedelta64[s]")
assert_series_equal(result, expected)
# tdi
td = TimedeltaIndex(td)
result = td / np.timedelta64(1, "D")
expected = Index([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan])
assert_index_equal(result, expected)
result = td.astype("timedelta64[D]")
expected = Index([31, 31, 31, np.nan])
assert_index_equal(result, expected)
result = td / np.timedelta64(1, "s")
expected = Index([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan])
assert_index_equal(result, expected)
result = td.astype("timedelta64[s]")
assert_index_equal(result, expected)
@pytest.mark.parametrize("unit", ["Y", "y", "M"])
def test_unit_m_y_deprecated(self, unit):
with tm.assert_produces_warning(FutureWarning) as w:
TimedeltaIndex([1, 3, 7], unit)
msg = r".* units are deprecated .*"
assert re.match(msg, str(w[0].message))
class TestTimeSeries:
def test_series_box_timedelta(self):
rng = timedelta_range("1 day 1 s", periods=5, freq="h")
s = Series(rng)
assert isinstance(s[1], Timedelta)
assert isinstance(s.iat[2], Timedelta)

View File

@@ -0,0 +1,80 @@
import numpy as np
import pytest
import pandas as pd
from pandas import timedelta_range, to_timedelta
import pandas.util.testing as tm
from pandas.tseries.offsets import Day, Second
class TestTimedeltas:
def test_timedelta_range(self):
expected = to_timedelta(np.arange(5), unit="D")
result = timedelta_range("0 days", periods=5, freq="D")
tm.assert_index_equal(result, expected)
expected = to_timedelta(np.arange(11), unit="D")
result = timedelta_range("0 days", "10 days", freq="D")
tm.assert_index_equal(result, expected)
expected = to_timedelta(np.arange(5), unit="D") + Second(2) + Day()
result = timedelta_range("1 days, 00:00:02", "5 days, 00:00:02", freq="D")
tm.assert_index_equal(result, expected)
expected = to_timedelta([1, 3, 5, 7, 9], unit="D") + Second(2)
result = timedelta_range("1 days, 00:00:02", periods=5, freq="2D")
tm.assert_index_equal(result, expected)
expected = to_timedelta(np.arange(50), unit="T") * 30
result = timedelta_range("0 days", freq="30T", periods=50)
tm.assert_index_equal(result, expected)
# GH 11776
arr = np.arange(10).reshape(2, 5)
df = pd.DataFrame(np.arange(10).reshape(2, 5))
for arg in (arr, df):
with pytest.raises(TypeError, match="1-d array"):
to_timedelta(arg)
for errors in ["ignore", "raise", "coerce"]:
with pytest.raises(TypeError, match="1-d array"):
to_timedelta(arg, errors=errors)
# issue10583
df = pd.DataFrame(np.random.normal(size=(10, 4)))
df.index = pd.timedelta_range(start="0s", periods=10, freq="s")
expected = df.loc[pd.Timedelta("0s") :, :]
result = df.loc["0s":, :]
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize(
"periods, freq", [(3, "2D"), (5, "D"), (6, "19H12T"), (7, "16H"), (9, "12H")]
)
def test_linspace_behavior(self, periods, freq):
# GH 20976
result = timedelta_range(start="0 days", end="4 days", periods=periods)
expected = timedelta_range(start="0 days", end="4 days", freq=freq)
tm.assert_index_equal(result, expected)
def test_errors(self):
# not enough params
msg = (
"Of the four parameters: start, end, periods, and freq, "
"exactly three must be specified"
)
with pytest.raises(ValueError, match=msg):
timedelta_range(start="0 days")
with pytest.raises(ValueError, match=msg):
timedelta_range(end="5 days")
with pytest.raises(ValueError, match=msg):
timedelta_range(periods=2)
with pytest.raises(ValueError, match=msg):
timedelta_range()
# too many params
with pytest.raises(ValueError, match=msg):
timedelta_range(start="0 days", end="5 days", periods=10, freq="H")

View File

@@ -0,0 +1,221 @@
from datetime import time, timedelta
import numpy as np
import pytest
from pandas._libs.tslib import iNaT
import pandas as pd
from pandas import Series, TimedeltaIndex, isna, to_timedelta
import pandas.util.testing as tm
from pandas.util.testing import assert_series_equal
class TestTimedeltas:
def test_to_timedelta(self):
def conv(v):
return v.astype("m8[ns]")
d1 = np.timedelta64(1, "D")
with tm.assert_produces_warning(FutureWarning):
assert to_timedelta("1 days 06:05:01.00003", box=False) == conv(
d1
+ np.timedelta64(6 * 3600 + 5 * 60 + 1, "s")
+ np.timedelta64(30, "us")
)
with tm.assert_produces_warning(FutureWarning):
assert to_timedelta("15.5us", box=False) == conv(
np.timedelta64(15500, "ns")
)
# empty string
result = to_timedelta("", box=False)
assert result.astype("int64") == iNaT
result = to_timedelta(["", ""])
assert isna(result).all()
# pass thru
result = to_timedelta(np.array([np.timedelta64(1, "s")]))
expected = pd.Index(np.array([np.timedelta64(1, "s")]))
tm.assert_index_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
# ints
result = np.timedelta64(0, "ns")
expected = to_timedelta(0, box=False)
assert result == expected
# Series
expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)])
result = to_timedelta(Series(["1d", "1days 00:00:01"]))
tm.assert_series_equal(result, expected)
# with units
result = TimedeltaIndex(
[np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")]
)
expected = to_timedelta([0, 10], unit="s")
tm.assert_index_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
# single element conversion
v = timedelta(seconds=1)
result = to_timedelta(v, box=False)
expected = np.timedelta64(timedelta(seconds=1))
assert result == expected
with tm.assert_produces_warning(FutureWarning):
v = np.timedelta64(timedelta(seconds=1))
result = to_timedelta(v, box=False)
expected = np.timedelta64(timedelta(seconds=1))
assert result == expected
# arrays of various dtypes
arr = np.array([1] * 5, dtype="int64")
result = to_timedelta(arr, unit="s")
expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="int64")
result = to_timedelta(arr, unit="m")
expected = TimedeltaIndex([np.timedelta64(1, "m")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="int64")
result = to_timedelta(arr, unit="h")
expected = TimedeltaIndex([np.timedelta64(1, "h")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="timedelta64[s]")
result = to_timedelta(arr)
expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype="timedelta64[D]")
result = to_timedelta(arr)
expected = TimedeltaIndex([np.timedelta64(1, "D")] * 5)
tm.assert_index_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
# Test with lists as input when box=false
expected = np.array(np.arange(3) * 1000000000, dtype="timedelta64[ns]")
result = to_timedelta(range(3), unit="s", box=False)
tm.assert_numpy_array_equal(expected, result)
with tm.assert_produces_warning(FutureWarning):
result = to_timedelta(np.arange(3), unit="s", box=False)
tm.assert_numpy_array_equal(expected, result)
with tm.assert_produces_warning(FutureWarning):
result = to_timedelta([0, 1, 2], unit="s", box=False)
tm.assert_numpy_array_equal(expected, result)
with tm.assert_produces_warning(FutureWarning):
# Tests with fractional seconds as input:
expected = np.array(
[0, 500000000, 800000000, 1200000000], dtype="timedelta64[ns]"
)
result = to_timedelta([0.0, 0.5, 0.8, 1.2], unit="s", box=False)
tm.assert_numpy_array_equal(expected, result)
def test_to_timedelta_invalid(self):
# bad value for errors parameter
msg = "errors must be one of"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo"], errors="never")
# these will error
msg = "invalid unit abbreviation: foo"
with pytest.raises(ValueError, match=msg):
to_timedelta([1, 2], unit="foo")
with pytest.raises(ValueError, match=msg):
to_timedelta(1, unit="foo")
# time not supported ATM
msg = (
"Value must be Timedelta, string, integer, float, timedelta or"
" convertible"
)
with pytest.raises(ValueError, match=msg):
to_timedelta(time(second=1))
assert to_timedelta(time(second=1), errors="coerce") is pd.NaT
msg = "unit abbreviation w/o a number"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo", "bar"])
tm.assert_index_equal(
TimedeltaIndex([pd.NaT, pd.NaT]),
to_timedelta(["foo", "bar"], errors="coerce"),
)
tm.assert_index_equal(
TimedeltaIndex(["1 day", pd.NaT, "1 min"]),
to_timedelta(["1 day", "bar", "1 min"], errors="coerce"),
)
# gh-13613: these should not error because errors='ignore'
invalid_data = "apple"
assert invalid_data == to_timedelta(invalid_data, errors="ignore")
invalid_data = ["apple", "1 days"]
tm.assert_numpy_array_equal(
np.array(invalid_data, dtype=object),
to_timedelta(invalid_data, errors="ignore"),
)
invalid_data = pd.Index(["apple", "1 days"])
tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore"))
invalid_data = Series(["apple", "1 days"])
tm.assert_series_equal(
invalid_data, to_timedelta(invalid_data, errors="ignore")
)
def test_to_timedelta_via_apply(self):
# GH 5458
expected = Series([np.timedelta64(1, "s")])
result = Series(["00:00:01"]).apply(to_timedelta)
tm.assert_series_equal(result, expected)
result = Series([to_timedelta("00:00:01")])
tm.assert_series_equal(result, expected)
def test_to_timedelta_on_missing_values(self):
# GH5438
timedelta_NaT = np.timedelta64("NaT")
actual = pd.to_timedelta(Series(["00:00:01", np.nan]))
expected = Series(
[np.timedelta64(1000000000, "ns"), timedelta_NaT], dtype="<m8[ns]"
)
assert_series_equal(actual, expected)
actual = pd.to_timedelta(Series(["00:00:01", pd.NaT]))
assert_series_equal(actual, expected)
actual = pd.to_timedelta(np.nan)
assert actual.value == timedelta_NaT.astype("int64")
actual = pd.to_timedelta(pd.NaT)
assert actual.value == timedelta_NaT.astype("int64")
def test_to_timedelta_float(self):
# https://github.com/pandas-dev/pandas/issues/25077
arr = np.arange(0, 1, 1e-6)[-10:]
result = pd.to_timedelta(arr, unit="s")
expected_asi8 = np.arange(999990000, int(1e9), 1000, dtype="int64")
tm.assert_numpy_array_equal(result.asi8, expected_asi8)
def test_to_timedelta_box_deprecated(self):
result = np.timedelta64(0, "ns")
# Deprecated - see GH24416
with tm.assert_produces_warning(FutureWarning):
to_timedelta(0, box=False)
expected = to_timedelta(0).to_timedelta64()
assert result == expected