8th day of python challenges 111-117

This commit is contained in:
abd.shallal
2019-08-04 15:26:35 +03:00
parent b04c1b055f
commit 627802c383
3215 changed files with 760227 additions and 491 deletions

View File

@@ -0,0 +1,540 @@
#!/usr/bin/env python
# coding: utf-8
import os
import warnings
import numpy as np
from numpy import random
from pandas.util._decorators import cache_readonly
import pandas.util._test_decorators as td
from pandas.core.dtypes.api import is_list_like
from pandas import DataFrame, Series
import pandas.util.testing as tm
from pandas.util.testing import assert_is_valid_plot_return_object, ensure_clean
"""
This is a common base class used for various plotting tests
"""
@td.skip_if_no_mpl
class TestPlotBase:
def setup_method(self, method):
import matplotlib as mpl
from pandas.plotting._matplotlib import compat
mpl.rcdefaults()
self.mpl_ge_2_2_3 = compat._mpl_ge_2_2_3()
self.mpl_ge_3_0_0 = compat._mpl_ge_3_0_0()
self.mpl_ge_3_1_0 = compat._mpl_ge_3_1_0()
self.bp_n_objects = 7
self.polycollection_factor = 2
self.default_figsize = (6.4, 4.8)
self.default_tick_position = "left"
n = 100
with tm.RNGContext(42):
gender = np.random.choice(["Male", "Female"], size=n)
classroom = np.random.choice(["A", "B", "C"], size=n)
self.hist_df = DataFrame(
{
"gender": gender,
"classroom": classroom,
"height": random.normal(66, 4, size=n),
"weight": random.normal(161, 32, size=n),
"category": random.randint(4, size=n),
}
)
self.tdf = tm.makeTimeDataFrame()
self.hexbin_df = DataFrame(
{
"A": np.random.uniform(size=20),
"B": np.random.uniform(size=20),
"C": np.arange(20) + np.random.uniform(size=20),
}
)
def teardown_method(self, method):
tm.close()
@cache_readonly
def plt(self):
import matplotlib.pyplot as plt
return plt
@cache_readonly
def colorconverter(self):
import matplotlib.colors as colors
return colors.colorConverter
def _check_legend_labels(self, axes, labels=None, visible=True):
"""
Check each axes has expected legend labels
Parameters
----------
axes : matplotlib Axes object, or its list-like
labels : list-like
expected legend labels
visible : bool
expected legend visibility. labels are checked only when visible is
True
"""
if visible and (labels is None):
raise ValueError("labels must be specified when visible is True")
axes = self._flatten_visible(axes)
for ax in axes:
if visible:
assert ax.get_legend() is not None
self._check_text_labels(ax.get_legend().get_texts(), labels)
else:
assert ax.get_legend() is None
def _check_data(self, xp, rs):
"""
Check each axes has identical lines
Parameters
----------
xp : matplotlib Axes object
rs : matplotlib Axes object
"""
xp_lines = xp.get_lines()
rs_lines = rs.get_lines()
def check_line(xpl, rsl):
xpdata = xpl.get_xydata()
rsdata = rsl.get_xydata()
tm.assert_almost_equal(xpdata, rsdata)
assert len(xp_lines) == len(rs_lines)
[check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)]
tm.close()
def _check_visible(self, collections, visible=True):
"""
Check each artist is visible or not
Parameters
----------
collections : matplotlib Artist or its list-like
target Artist or its list or collection
visible : bool
expected visibility
"""
from matplotlib.collections import Collection
if not isinstance(collections, Collection) and not is_list_like(collections):
collections = [collections]
for patch in collections:
assert patch.get_visible() == visible
def _get_colors_mapped(self, series, colors):
unique = series.unique()
# unique and colors length can be differed
# depending on slice value
mapped = dict(zip(unique, colors))
return [mapped[v] for v in series.values]
def _check_colors(
self, collections, linecolors=None, facecolors=None, mapping=None
):
"""
Check each artist has expected line colors and face colors
Parameters
----------
collections : list-like
list or collection of target artist
linecolors : list-like which has the same length as collections
list of expected line colors
facecolors : list-like which has the same length as collections
list of expected face colors
mapping : Series
Series used for color grouping key
used for andrew_curves, parallel_coordinates, radviz test
"""
from matplotlib.lines import Line2D
from matplotlib.collections import Collection, PolyCollection, LineCollection
conv = self.colorconverter
if linecolors is not None:
if mapping is not None:
linecolors = self._get_colors_mapped(mapping, linecolors)
linecolors = linecolors[: len(collections)]
assert len(collections) == len(linecolors)
for patch, color in zip(collections, linecolors):
if isinstance(patch, Line2D):
result = patch.get_color()
# Line2D may contains string color expression
result = conv.to_rgba(result)
elif isinstance(patch, (PolyCollection, LineCollection)):
result = tuple(patch.get_edgecolor()[0])
else:
result = patch.get_edgecolor()
expected = conv.to_rgba(color)
assert result == expected
if facecolors is not None:
if mapping is not None:
facecolors = self._get_colors_mapped(mapping, facecolors)
facecolors = facecolors[: len(collections)]
assert len(collections) == len(facecolors)
for patch, color in zip(collections, facecolors):
if isinstance(patch, Collection):
# returned as list of np.array
result = patch.get_facecolor()[0]
else:
result = patch.get_facecolor()
if isinstance(result, np.ndarray):
result = tuple(result)
expected = conv.to_rgba(color)
assert result == expected
def _check_text_labels(self, texts, expected):
"""
Check each text has expected labels
Parameters
----------
texts : matplotlib Text object, or its list-like
target text, or its list
expected : str or list-like which has the same length as texts
expected text label, or its list
"""
if not is_list_like(texts):
assert texts.get_text() == expected
else:
labels = [t.get_text() for t in texts]
assert len(labels) == len(expected)
for label, e in zip(labels, expected):
assert label == e
def _check_ticks_props(
self, axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None
):
"""
Check each axes has expected tick properties
Parameters
----------
axes : matplotlib Axes object, or its list-like
xlabelsize : number
expected xticks font size
xrot : number
expected xticks rotation
ylabelsize : number
expected yticks font size
yrot : number
expected yticks rotation
"""
from matplotlib.ticker import NullFormatter
axes = self._flatten_visible(axes)
for ax in axes:
if xlabelsize or xrot:
if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter):
# If minor ticks has NullFormatter, rot / fontsize are not
# retained
labels = ax.get_xticklabels()
else:
labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True)
for label in labels:
if xlabelsize is not None:
tm.assert_almost_equal(label.get_fontsize(), xlabelsize)
if xrot is not None:
tm.assert_almost_equal(label.get_rotation(), xrot)
if ylabelsize or yrot:
if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter):
labels = ax.get_yticklabels()
else:
labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True)
for label in labels:
if ylabelsize is not None:
tm.assert_almost_equal(label.get_fontsize(), ylabelsize)
if yrot is not None:
tm.assert_almost_equal(label.get_rotation(), yrot)
def _check_ax_scales(self, axes, xaxis="linear", yaxis="linear"):
"""
Check each axes has expected scales
Parameters
----------
axes : matplotlib Axes object, or its list-like
xaxis : {'linear', 'log'}
expected xaxis scale
yaxis : {'linear', 'log'}
expected yaxis scale
"""
axes = self._flatten_visible(axes)
for ax in axes:
assert ax.xaxis.get_scale() == xaxis
assert ax.yaxis.get_scale() == yaxis
def _check_axes_shape(self, axes, axes_num=None, layout=None, figsize=None):
"""
Check expected number of axes is drawn in expected layout
Parameters
----------
axes : matplotlib Axes object, or its list-like
axes_num : number
expected number of axes. Unnecessary axes should be set to
invisible.
layout : tuple
expected layout, (expected number of rows , columns)
figsize : tuple
expected figsize. default is matplotlib default
"""
from pandas.plotting._matplotlib.tools import _flatten
if figsize is None:
figsize = self.default_figsize
visible_axes = self._flatten_visible(axes)
if axes_num is not None:
assert len(visible_axes) == axes_num
for ax in visible_axes:
# check something drawn on visible axes
assert len(ax.get_children()) > 0
if layout is not None:
result = self._get_axes_layout(_flatten(axes))
assert result == layout
tm.assert_numpy_array_equal(
visible_axes[0].figure.get_size_inches(),
np.array(figsize, dtype=np.float64),
)
def _get_axes_layout(self, axes):
x_set = set()
y_set = set()
for ax in axes:
# check axes coordinates to estimate layout
points = ax.get_position().get_points()
x_set.add(points[0][0])
y_set.add(points[0][1])
return (len(y_set), len(x_set))
def _flatten_visible(self, axes):
"""
Flatten axes, and filter only visible
Parameters
----------
axes : matplotlib Axes object, or its list-like
"""
from pandas.plotting._matplotlib.tools import _flatten
axes = _flatten(axes)
axes = [ax for ax in axes if ax.get_visible()]
return axes
def _check_has_errorbars(self, axes, xerr=0, yerr=0):
"""
Check axes has expected number of errorbars
Parameters
----------
axes : matplotlib Axes object, or its list-like
xerr : number
expected number of x errorbar
yerr : number
expected number of y errorbar
"""
axes = self._flatten_visible(axes)
for ax in axes:
containers = ax.containers
xerr_count = 0
yerr_count = 0
for c in containers:
has_xerr = getattr(c, "has_xerr", False)
has_yerr = getattr(c, "has_yerr", False)
if has_xerr:
xerr_count += 1
if has_yerr:
yerr_count += 1
assert xerr == xerr_count
assert yerr == yerr_count
def _check_box_return_type(
self, returned, return_type, expected_keys=None, check_ax_title=True
):
"""
Check box returned type is correct
Parameters
----------
returned : object to be tested, returned from boxplot
return_type : str
return_type passed to boxplot
expected_keys : list-like, optional
group labels in subplot case. If not passed,
the function checks assuming boxplot uses single ax
check_ax_title : bool
Whether to check the ax.title is the same as expected_key
Intended to be checked by calling from ``boxplot``.
Normal ``plot`` doesn't attach ``ax.title``, it must be disabled.
"""
from matplotlib.axes import Axes
types = {"dict": dict, "axes": Axes, "both": tuple}
if expected_keys is None:
# should be fixed when the returning default is changed
if return_type is None:
return_type = "dict"
assert isinstance(returned, types[return_type])
if return_type == "both":
assert isinstance(returned.ax, Axes)
assert isinstance(returned.lines, dict)
else:
# should be fixed when the returning default is changed
if return_type is None:
for r in self._flatten_visible(returned):
assert isinstance(r, Axes)
return
assert isinstance(returned, Series)
assert sorted(returned.keys()) == sorted(expected_keys)
for key, value in returned.items():
assert isinstance(value, types[return_type])
# check returned dict has correct mapping
if return_type == "axes":
if check_ax_title:
assert value.get_title() == key
elif return_type == "both":
if check_ax_title:
assert value.ax.get_title() == key
assert isinstance(value.ax, Axes)
assert isinstance(value.lines, dict)
elif return_type == "dict":
line = value["medians"][0]
axes = line.axes
if check_ax_title:
assert axes.get_title() == key
else:
raise AssertionError
def _check_grid_settings(self, obj, kinds, kws={}):
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
import matplotlib as mpl
def is_grid_on():
xticks = self.plt.gca().xaxis.get_major_ticks()
yticks = self.plt.gca().yaxis.get_major_ticks()
# for mpl 2.2.2, gridOn and gridline.get_visible disagree.
# for new MPL, they are the same.
if self.mpl_ge_3_1_0:
xoff = all(not g.gridline.get_visible() for g in xticks)
yoff = all(not g.gridline.get_visible() for g in yticks)
else:
xoff = all(not g.gridOn for g in xticks)
yoff = all(not g.gridOn for g in yticks)
return not (xoff and yoff)
spndx = 1
for kind in kinds:
self.plt.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=False)
obj.plot(kind=kind, **kws)
assert not is_grid_on()
self.plt.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=True)
obj.plot(kind=kind, grid=False, **kws)
assert not is_grid_on()
if kind != "pie":
self.plt.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=True)
obj.plot(kind=kind, **kws)
assert is_grid_on()
self.plt.subplot(1, 4 * len(kinds), spndx)
spndx += 1
mpl.rc("axes", grid=False)
obj.plot(kind=kind, grid=True, **kws)
assert is_grid_on()
def _unpack_cycler(self, rcParams, field="color"):
"""
Auxiliary function for correctly unpacking cycler after MPL >= 1.5
"""
return [v[field] for v in rcParams["axes.prop_cycle"]]
def _check_plot_works(f, filterwarnings="always", **kwargs):
import matplotlib.pyplot as plt
ret = None
with warnings.catch_warnings():
warnings.simplefilter(filterwarnings)
try:
try:
fig = kwargs["figure"]
except KeyError:
fig = plt.gcf()
plt.clf()
ax = kwargs.get("ax", fig.add_subplot(211)) # noqa
ret = f(**kwargs)
assert_is_valid_plot_return_object(ret)
try:
kwargs["ax"] = fig.add_subplot(212)
ret = f(**kwargs)
except Exception:
pass
else:
assert_is_valid_plot_return_object(ret)
with ensure_clean(return_filelike=True) as path:
plt.savefig(path)
finally:
tm.close(fig)
return ret
def curpath():
pth, _ = os.path.split(os.path.abspath(__file__))
return pth

View File

@@ -0,0 +1,38 @@
import pytest
import pandas
def test_matplotlib_backend_error():
msg = (
"matplotlib is required for plotting when the default backend "
'"matplotlib" is selected.'
)
try:
import matplotlib # noqa
except ImportError:
with pytest.raises(ImportError, match=msg):
pandas.set_option("plotting.backend", "matplotlib")
def test_backend_is_not_module():
msg = (
'"not_an_existing_module" does not seem to be an installed module. '
"A pandas plotting backend must be a module that can be imported"
)
with pytest.raises(ValueError, match=msg):
pandas.set_option("plotting.backend", "not_an_existing_module")
def test_backend_is_correct(monkeypatch):
monkeypatch.setattr(
"pandas.core.config_init.importlib.import_module", lambda name: None
)
pandas.set_option("plotting.backend", "correct_backend")
assert pandas.get_option("plotting.backend") == "correct_backend"
# Restore backend for other tests (matplotlib can be not installed)
try:
pandas.set_option("plotting.backend", "matplotlib")
except ImportError:
pass

View File

@@ -0,0 +1,399 @@
# coding: utf-8
import itertools
import string
import numpy as np
from numpy import random
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame, MultiIndex, Series
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
import pandas.util.testing as tm
import pandas.plotting as plotting
""" Test cases for .boxplot method """
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
@pytest.mark.slow
def test_boxplot_legacy1(self):
df = DataFrame(
np.random.randn(6, 4),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
df["indic"] = ["foo", "bar"] * 3
df["indic2"] = ["foo", "bar", "foo"] * 2
_check_plot_works(df.boxplot, return_type="dict")
_check_plot_works(df.boxplot, column=["one", "two"], return_type="dict")
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.boxplot, column=["one", "two"], by="indic")
_check_plot_works(df.boxplot, column="one", by=["indic", "indic2"])
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.boxplot, by="indic")
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.boxplot, by=["indic", "indic2"])
_check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict")
_check_plot_works(df.boxplot, notch=1, return_type="dict")
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.boxplot, by="indic", notch=1)
@pytest.mark.slow
def test_boxplot_legacy2(self):
df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.boxplot, by="X")
# When ax is supplied and required number of axes is 1,
# passed ax should be used:
fig, ax = self.plt.subplots()
axes = df.boxplot("Col1", by="X", ax=ax)
ax_axes = ax.axes
assert ax_axes is axes
fig, ax = self.plt.subplots()
axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
ax_axes = ax.axes
assert ax_axes is axes["A"]
# Multiple columns with an ax argument should use same figure
fig, ax = self.plt.subplots()
with tm.assert_produces_warning(UserWarning):
axes = df.boxplot(
column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
)
assert axes["Col1"].get_figure() is fig
# When by is None, check that all relevant lines are present in the
# dict
fig, ax = self.plt.subplots()
d = df.boxplot(ax=ax, return_type="dict")
lines = list(itertools.chain.from_iterable(d.values()))
assert len(ax.get_lines()) == len(lines)
@pytest.mark.slow
def test_boxplot_return_type_none(self):
# GH 12216; return_type=None & by=None -> axes
result = self.hist_df.boxplot()
assert isinstance(result, self.plt.Axes)
@pytest.mark.slow
def test_boxplot_return_type_legacy(self):
# API change in https://github.com/pandas-dev/pandas/pull/7096
import matplotlib as mpl # noqa
df = DataFrame(
np.random.randn(6, 4),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
with pytest.raises(ValueError):
df.boxplot(return_type="NOTATYPE")
result = df.boxplot()
self._check_box_return_type(result, "axes")
with tm.assert_produces_warning(False):
result = df.boxplot(return_type="dict")
self._check_box_return_type(result, "dict")
with tm.assert_produces_warning(False):
result = df.boxplot(return_type="axes")
self._check_box_return_type(result, "axes")
with tm.assert_produces_warning(False):
result = df.boxplot(return_type="both")
self._check_box_return_type(result, "both")
@pytest.mark.slow
def test_boxplot_axis_limits(self):
def _check_ax_limits(col, ax):
y_min, y_max = ax.get_ylim()
assert y_min <= col.min()
assert y_max >= col.max()
df = self.hist_df.copy()
df["age"] = np.random.randint(1, 20, df.shape[0])
# One full row
height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
_check_ax_limits(df["height"], height_ax)
_check_ax_limits(df["weight"], weight_ax)
assert weight_ax._sharey == height_ax
# Two rows, one partial
p = df.boxplot(["height", "weight", "age"], by="category")
height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
dummy_ax = p[1, 1]
_check_ax_limits(df["height"], height_ax)
_check_ax_limits(df["weight"], weight_ax)
_check_ax_limits(df["age"], age_ax)
assert weight_ax._sharey == height_ax
assert age_ax._sharey == height_ax
assert dummy_ax._sharey is None
@pytest.mark.slow
def test_boxplot_empty_column(self):
df = DataFrame(np.random.randn(20, 4))
df.loc[:, 0] = np.nan
_check_plot_works(df.boxplot, return_type="axes")
@pytest.mark.slow
def test_figsize(self):
df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
result = df.boxplot(return_type="axes", figsize=(12, 8))
assert result.figure.bbox_inches.width == 12
assert result.figure.bbox_inches.height == 8
def test_fontsize(self):
df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
self._check_ticks_props(
df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16
)
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
@pytest.mark.slow
def test_boxplot_legacy1(self):
grouped = self.hist_df.groupby(by="gender")
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(grouped.boxplot, return_type="axes")
self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
@pytest.mark.slow
def test_boxplot_legacy2(self):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
grouped = df.groupby(level=1)
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(grouped.boxplot, return_type="axes")
self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
@pytest.mark.slow
def test_boxplot_legacy3(self):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
grouped = df.unstack(level=1).groupby(level=0, axis=1)
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(grouped.boxplot, return_type="axes")
self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
@pytest.mark.slow
def test_grouped_plot_fignums(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender = np.random.choice(["male", "female"], size=n)
df = DataFrame({"height": height, "weight": weight, "gender": gender})
gb = df.groupby("gender")
res = gb.plot()
assert len(self.plt.get_fignums()) == 2
assert len(res) == 2
tm.close()
res = gb.boxplot(return_type="axes")
assert len(self.plt.get_fignums()) == 1
assert len(res) == 2
tm.close()
# now works with GH 5610 as gender is excluded
res = df.groupby("gender").hist()
tm.close()
@pytest.mark.slow
def test_grouped_box_return_type(self):
df = self.hist_df
# old style: return_type=None
result = df.boxplot(by="gender")
assert isinstance(result, np.ndarray)
self._check_box_return_type(
result, None, expected_keys=["height", "weight", "category"]
)
# now for groupby
result = df.groupby("gender").boxplot(return_type="dict")
self._check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
columns2 = "X B C D A G Y N Q O".split()
df2 = DataFrame(random.randn(50, 10), columns=columns2)
categories2 = "A B C D E F G H I J".split()
df2["category"] = categories2 * 5
for t in ["dict", "axes", "both"]:
returned = df.groupby("classroom").boxplot(return_type=t)
self._check_box_return_type(returned, t, expected_keys=["A", "B", "C"])
returned = df.boxplot(by="classroom", return_type=t)
self._check_box_return_type(
returned, t, expected_keys=["height", "weight", "category"]
)
returned = df2.groupby("category").boxplot(return_type=t)
self._check_box_return_type(returned, t, expected_keys=categories2)
returned = df2.boxplot(by="category", return_type=t)
self._check_box_return_type(returned, t, expected_keys=columns2)
@pytest.mark.slow
def test_grouped_box_layout(self):
df = self.hist_df
msg = "Layout of 1x1 must be larger than required size 2"
with pytest.raises(ValueError, match=msg):
df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
msg = "The 'layout' keyword is not supported when 'by' is None"
with pytest.raises(ValueError, match=msg):
df.boxplot(
column=["height", "weight", "category"],
layout=(2, 1),
return_type="dict",
)
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
box = _check_plot_works(
df.groupby("gender").boxplot, column="height", return_type="dict"
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
with tm.assert_produces_warning(UserWarning):
box = _check_plot_works(
df.groupby("category").boxplot, column="height", return_type="dict"
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
# GH 6769
with tm.assert_produces_warning(UserWarning):
box = _check_plot_works(
df.groupby("classroom").boxplot, column="height", return_type="dict"
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
# GH 5897
axes = df.boxplot(
column=["height", "weight", "category"], by="gender", return_type="axes"
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
for ax in [axes["height"]]:
self._check_visible(ax.get_xticklabels(), visible=False)
self._check_visible([ax.xaxis.get_label()], visible=False)
for ax in [axes["weight"], axes["category"]]:
self._check_visible(ax.get_xticklabels())
self._check_visible([ax.xaxis.get_label()])
box = df.groupby("classroom").boxplot(
column=["height", "weight", "category"], return_type="dict"
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
with tm.assert_produces_warning(UserWarning):
box = _check_plot_works(
df.groupby("category").boxplot,
column="height",
layout=(3, 2),
return_type="dict",
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning):
box = _check_plot_works(
df.groupby("category").boxplot,
column="height",
layout=(3, -1),
return_type="dict",
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
box = df.boxplot(
column=["height", "weight", "category"], by="gender", layout=(4, 1)
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
box = df.boxplot(
column=["height", "weight", "category"], by="gender", layout=(-1, 1)
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
box = df.groupby("classroom").boxplot(
column=["height", "weight", "category"], layout=(1, 4), return_type="dict"
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
box = df.groupby("classroom").boxplot( # noqa
column=["height", "weight", "category"], layout=(1, -1), return_type="dict"
)
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
@pytest.mark.slow
def test_grouped_box_multiple_axes(self):
# GH 6970, GH 7069
df = self.hist_df
# check warning to ignore sharex / sharey
# this check should be done in the first function which
# passes multiple axes to plot, hist or boxplot
# location should be changed if other test is added
# which has earlier alphabetical order
with tm.assert_produces_warning(UserWarning):
fig, axes = self.plt.subplots(2, 2)
df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
fig, axes = self.plt.subplots(2, 3)
with tm.assert_produces_warning(UserWarning):
returned = df.boxplot(
column=["height", "weight", "category"],
by="gender",
return_type="axes",
ax=axes[0],
)
returned = np.array(list(returned.values))
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
# draw on second row
with tm.assert_produces_warning(UserWarning):
returned = df.groupby("classroom").boxplot(
column=["height", "weight", "category"], return_type="axes", ax=axes[1]
)
returned = np.array(list(returned.values))
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
with pytest.raises(ValueError):
fig, axes = self.plt.subplots(2, 3)
# pass different number of axes from required
with tm.assert_produces_warning(UserWarning):
axes = df.groupby("classroom").boxplot(ax=axes)
def test_fontsize(self):
df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
self._check_ticks_props(
df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
)

View File

@@ -0,0 +1,375 @@
from datetime import date, datetime
import subprocess
import sys
import numpy as np
import pytest
import pandas._config.config as cf
from pandas.compat.numpy import np_datetime64_compat
from pandas import Index, Period, Series, Timestamp, date_range
import pandas.util.testing as tm
from pandas.plotting import (
deregister_matplotlib_converters,
register_matplotlib_converters,
)
from pandas.tseries.offsets import Day, Micro, Milli, Second
try:
from pandas.plotting._matplotlib import converter
except ImportError:
# try / except, rather than skip, to avoid internal refactoring
# causing an improprer skip
pass
pytest.importorskip("matplotlib.pyplot")
def test_initial_warning():
code = (
"import pandas as pd; import matplotlib.pyplot as plt; "
"s = pd.Series(1, pd.date_range('2000', periods=12)); "
"fig, ax = plt.subplots(); "
"ax.plot(s.index, s.values)"
)
call = [sys.executable, "-c", code]
out = subprocess.check_output(call, stderr=subprocess.STDOUT).decode()
assert "Using an implicitly" in out
def test_timtetonum_accepts_unicode():
assert converter.time2num("00:01") == converter.time2num("00:01")
class TestRegistration:
def test_register_by_default(self):
# Run in subprocess to ensure a clean state
code = (
"'import matplotlib.units; "
"import pandas as pd; "
"units = dict(matplotlib.units.registry); "
"assert pd.Timestamp in units)'"
)
call = [sys.executable, "-c", code]
assert subprocess.check_call(call) == 0
def test_warns(self):
plt = pytest.importorskip("matplotlib.pyplot")
s = Series(range(12), index=date_range("2017", periods=12))
_, ax = plt.subplots()
# Set to the "warning" state, in case this isn't the first test run
converter._WARN = True
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False) as w:
ax.plot(s.index, s.values)
plt.close()
assert len(w) == 1
assert "Using an implicitly registered datetime converter" in str(w[0])
def test_registering_no_warning(self):
plt = pytest.importorskip("matplotlib.pyplot")
s = Series(range(12), index=date_range("2017", periods=12))
_, ax = plt.subplots()
# Set to the "warn" state, in case this isn't the first test run
converter._WARN = True
register_matplotlib_converters()
with tm.assert_produces_warning(None) as w:
ax.plot(s.index, s.values)
assert len(w) == 0
def test_pandas_plots_register(self):
pytest.importorskip("matplotlib.pyplot")
s = Series(range(12), index=date_range("2017", periods=12))
# Set to the "warn" state, in case this isn't the first test run
converter._WARN = True
with tm.assert_produces_warning(None) as w:
s.plot()
assert len(w) == 0
def test_matplotlib_formatters(self):
units = pytest.importorskip("matplotlib.units")
assert Timestamp in units.registry
ctx = cf.option_context("plotting.matplotlib.register_converters", False)
with ctx:
assert Timestamp not in units.registry
assert Timestamp in units.registry
def test_option_no_warning(self):
pytest.importorskip("matplotlib.pyplot")
ctx = cf.option_context("plotting.matplotlib.register_converters", False)
plt = pytest.importorskip("matplotlib.pyplot")
s = Series(range(12), index=date_range("2017", periods=12))
_, ax = plt.subplots()
converter._WARN = True
# Test without registering first, no warning
with ctx:
with tm.assert_produces_warning(None) as w:
ax.plot(s.index, s.values)
assert len(w) == 0
# Now test with registering
converter._WARN = True
register_matplotlib_converters()
with ctx:
with tm.assert_produces_warning(None) as w:
ax.plot(s.index, s.values)
assert len(w) == 0
def test_registry_resets(self):
units = pytest.importorskip("matplotlib.units")
dates = pytest.importorskip("matplotlib.dates")
# make a copy, to reset to
original = dict(units.registry)
try:
# get to a known state
units.registry.clear()
date_converter = dates.DateConverter()
units.registry[datetime] = date_converter
units.registry[date] = date_converter
register_matplotlib_converters()
assert units.registry[date] is not date_converter
deregister_matplotlib_converters()
assert units.registry[date] is date_converter
finally:
# restore original stater
units.registry.clear()
for k, v in original.items():
units.registry[k] = v
def test_old_import_warns(self):
with tm.assert_produces_warning(FutureWarning) as w:
from pandas.tseries import converter
converter.register()
assert len(w)
assert "pandas.plotting.register_matplotlib_converters" in str(w[0].message)
class TestDateTimeConverter:
def setup_method(self, method):
self.dtc = converter.DatetimeConverter()
self.tc = converter.TimeFormatter(None)
def test_convert_accepts_unicode(self):
r1 = self.dtc.convert("12:22", None, None)
r2 = self.dtc.convert("12:22", None, None)
assert r1 == r2, "DatetimeConverter.convert should accept unicode"
def test_conversion(self):
rs = self.dtc.convert(["2012-1-1"], None, None)[0]
xp = datetime(2012, 1, 1).toordinal()
assert rs == xp
rs = self.dtc.convert("2012-1-1", None, None)
assert rs == xp
rs = self.dtc.convert(date(2012, 1, 1), None, None)
assert rs == xp
rs = self.dtc.convert(datetime(2012, 1, 1).toordinal(), None, None)
assert rs == xp
rs = self.dtc.convert("2012-1-1", None, None)
assert rs == xp
rs = self.dtc.convert(Timestamp("2012-1-1"), None, None)
assert rs == xp
# also testing datetime64 dtype (GH8614)
rs = self.dtc.convert(np_datetime64_compat("2012-01-01"), None, None)
assert rs == xp
rs = self.dtc.convert(
np_datetime64_compat("2012-01-01 00:00:00+0000"), None, None
)
assert rs == xp
rs = self.dtc.convert(
np.array(
[
np_datetime64_compat("2012-01-01 00:00:00+0000"),
np_datetime64_compat("2012-01-02 00:00:00+0000"),
]
),
None,
None,
)
assert rs[0] == xp
# we have a tz-aware date (constructed to that when we turn to utc it
# is the same as our sample)
ts = Timestamp("2012-01-01").tz_localize("UTC").tz_convert("US/Eastern")
rs = self.dtc.convert(ts, None, None)
assert rs == xp
rs = self.dtc.convert(ts.to_pydatetime(), None, None)
assert rs == xp
rs = self.dtc.convert(Index([ts - Day(1), ts]), None, None)
assert rs[1] == xp
rs = self.dtc.convert(Index([ts - Day(1), ts]).to_pydatetime(), None, None)
assert rs[1] == xp
def test_conversion_float(self):
decimals = 9
rs = self.dtc.convert(Timestamp("2012-1-1 01:02:03", tz="UTC"), None, None)
xp = converter.dates.date2num(Timestamp("2012-1-1 01:02:03", tz="UTC"))
tm.assert_almost_equal(rs, xp, decimals)
rs = self.dtc.convert(
Timestamp("2012-1-1 09:02:03", tz="Asia/Hong_Kong"), None, None
)
tm.assert_almost_equal(rs, xp, decimals)
rs = self.dtc.convert(datetime(2012, 1, 1, 1, 2, 3), None, None)
tm.assert_almost_equal(rs, xp, decimals)
def test_conversion_outofbounds_datetime(self):
# 2579
values = [date(1677, 1, 1), date(1677, 1, 2)]
rs = self.dtc.convert(values, None, None)
xp = converter.dates.date2num(values)
tm.assert_numpy_array_equal(rs, xp)
rs = self.dtc.convert(values[0], None, None)
xp = converter.dates.date2num(values[0])
assert rs == xp
values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
rs = self.dtc.convert(values, None, None)
xp = converter.dates.date2num(values)
tm.assert_numpy_array_equal(rs, xp)
rs = self.dtc.convert(values[0], None, None)
xp = converter.dates.date2num(values[0])
assert rs == xp
@pytest.mark.parametrize(
"time,format_expected",
[
(0, "00:00"), # time2num(datetime.time.min)
(86399.999999, "23:59:59.999999"), # time2num(datetime.time.max)
(90000, "01:00"),
(3723, "01:02:03"),
(39723.2, "11:02:03.200"),
],
)
def test_time_formatter(self, time, format_expected):
# issue 18478
result = self.tc(time)
assert result == format_expected
def test_dateindex_conversion(self):
decimals = 9
for freq in ("B", "L", "S"):
dateindex = tm.makeDateIndex(k=10, freq=freq)
rs = self.dtc.convert(dateindex, None, None)
xp = converter.dates.date2num(dateindex._mpl_repr())
tm.assert_almost_equal(rs, xp, decimals)
def test_resolution(self):
def _assert_less(ts1, ts2):
val1 = self.dtc.convert(ts1, None, None)
val2 = self.dtc.convert(ts2, None, None)
if not val1 < val2:
raise AssertionError("{0} is not less than {1}.".format(val1, val2))
# Matplotlib's time representation using floats cannot distinguish
# intervals smaller than ~10 microsecond in the common range of years.
ts = Timestamp("2012-1-1")
_assert_less(ts, ts + Second())
_assert_less(ts, ts + Milli())
_assert_less(ts, ts + Micro(50))
def test_convert_nested(self):
inner = [Timestamp("2017-01-01"), Timestamp("2017-01-02")]
data = [inner, inner]
result = self.dtc.convert(data, None, None)
expected = [self.dtc.convert(x, None, None) for x in data]
assert (np.array(result) == expected).all()
class TestPeriodConverter:
def setup_method(self, method):
self.pc = converter.PeriodConverter()
class Axis:
pass
self.axis = Axis()
self.axis.freq = "D"
def test_convert_accepts_unicode(self):
r1 = self.pc.convert("2012-1-1", None, self.axis)
r2 = self.pc.convert("2012-1-1", None, self.axis)
assert r1 == r2
def test_conversion(self):
rs = self.pc.convert(["2012-1-1"], None, self.axis)[0]
xp = Period("2012-1-1").ordinal
assert rs == xp
rs = self.pc.convert("2012-1-1", None, self.axis)
assert rs == xp
rs = self.pc.convert([date(2012, 1, 1)], None, self.axis)[0]
assert rs == xp
rs = self.pc.convert(date(2012, 1, 1), None, self.axis)
assert rs == xp
rs = self.pc.convert([Timestamp("2012-1-1")], None, self.axis)[0]
assert rs == xp
rs = self.pc.convert(Timestamp("2012-1-1"), None, self.axis)
assert rs == xp
rs = self.pc.convert(np_datetime64_compat("2012-01-01"), None, self.axis)
assert rs == xp
rs = self.pc.convert(
np_datetime64_compat("2012-01-01 00:00:00+0000"), None, self.axis
)
assert rs == xp
rs = self.pc.convert(
np.array(
[
np_datetime64_compat("2012-01-01 00:00:00+0000"),
np_datetime64_compat("2012-01-02 00:00:00+0000"),
]
),
None,
self.axis,
)
assert rs[0] == xp
def test_integer_passthrough(self):
# GH9012
rs = self.pc.convert([0, 1], None, self.axis)
xp = [0, 1]
assert rs == xp
def test_convert_nested(self):
data = ["2012-1-1", "2012-1-2"]
r1 = self.pc.convert([data, data], None, self.axis)
r2 = [self.pc.convert(data, None, self.axis) for _ in range(2)]
assert r1 == r2

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,69 @@
# coding: utf-8
""" Test cases for GroupBy.plot """
import numpy as np
import pandas.util._test_decorators as td
from pandas import DataFrame, Series
from pandas.tests.plotting.common import TestPlotBase
import pandas.util.testing as tm
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
def test_series_groupby_plotting_nominally_works(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender = np.random.choice(["male", "female"], size=n)
weight.groupby(gender).plot()
tm.close()
height.groupby(gender).hist()
tm.close()
# Regression test for GH8733
height.groupby(gender).plot(alpha=0.5)
tm.close()
def test_plotting_with_float_index_works(self):
# GH 7025
df = DataFrame(
{"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)},
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
)
df.groupby("def")["val"].plot()
tm.close()
df.groupby("def")["val"].apply(lambda x: x.plot())
tm.close()
def test_hist_single_row(self):
# GH10214
bins = np.arange(80, 100 + 2, 1)
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]})
df["Mark"].hist(by=df["ByCol"], bins=bins)
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]})
df["Mark"].hist(by=df["ByCol"], bins=bins)
def test_plot_submethod_works(self):
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
df.groupby("z").plot.scatter("x", "y")
tm.close()
df.groupby("z")["x"].plot.line()
tm.close()
def test_plot_kwargs(self):
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
res = df.groupby("z").plot(kind="scatter", x="x", y="y")
# check that a scatter plot is effectively plotted: the axes should
# contain a PathCollection from the scatter plot (GH11805)
assert len(res["a"].collections) == 1
res = df.groupby("z").plot.scatter(x="x", y="y")
assert len(res["a"].collections) == 1

View File

@@ -0,0 +1,445 @@
# coding: utf-8
""" Test cases for .hist method """
import numpy as np
from numpy.random import randn
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame, Series
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
import pandas.util.testing as tm
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = "ts"
@pytest.mark.slow
def test_hist_legacy(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month)
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax)
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
_check_plot_works(self.ts.hist, figure=fig)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
with pytest.raises(ValueError):
self.ts.hist(by=self.ts.index, figure=fig)
@pytest.mark.slow
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
@pytest.mark.slow
def test_hist_layout(self):
df = self.hist_df
with pytest.raises(ValueError):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError):
df.height.hist(layout=[1, 1])
@pytest.mark.slow
def test_hist_layout_with_by(self):
df = self.hist_df
# _check_plot_works adds an `ax` kwarg to the method call
# so we get a warning about an axis being cleared, even
# though we don't explicing pass one, see GH #13188
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
@pytest.mark.slow
def test_hist_no_overlap(self):
from matplotlib.pyplot import subplot, gcf
x = Series(randn(2))
y = Series(randn(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes
assert len(axes) == 2
@pytest.mark.slow
def test_hist_by_no_extra_plots(self):
df = self.hist_df
axes = df.height.hist(by=df.gender) # noqa
assert len(self.plt.get_fignums()) == 1
@pytest.mark.slow
def test_plot_fails_when_ax_differs_from_figure(self):
from pylab import figure
fig1 = figure()
fig2 = figure()
ax1 = fig1.add_subplot(111)
with pytest.raises(AssertionError):
self.ts.hist(ax=ax1, figure=fig2)
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
@pytest.mark.slow
def test_hist_df_legacy(self):
from matplotlib.patches import Rectangle
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.hist_df.hist)
# make sure layout is handled
df = DataFrame(randn(100, 3))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.hist, grid=False)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
assert not axes[1, 1].get_visible()
df = DataFrame(randn(100, 1))
_check_plot_works(df.hist)
# make sure layout is handled
df = DataFrame(randn(100, 6))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.hist, layout=(4, 2))
self._check_axes_shape(axes, axes_num=6, layout=(4, 2))
# make sure sharex, sharey is handled
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.hist, sharex=True, sharey=True)
# handle figsize arg
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.hist, figsize=(8, 10))
# check bins argument
with tm.assert_produces_warning(UserWarning):
_check_plot_works(df.hist, bins=5)
# make sure xlabelsize and xrot are handled
ser = df[0]
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
ax = ser.hist(cumulative=True, bins=4, density=True)
# height of last bin (index 5) must be 1.0
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
tm.assert_almost_equal(rects[-1].get_height(), 1.0)
tm.close()
ax = ser.hist(log=True)
# scale of y must be 'log'
self._check_ax_scales(ax, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with pytest.raises(AttributeError):
ser.hist(foo="bar")
@pytest.mark.slow
def test_hist_non_numerical_raises(self):
# gh-10444
df = DataFrame(np.random.rand(10, 2))
df_o = df.astype(np.object)
msg = "hist method requires numerical columns, nothing to plot."
with pytest.raises(ValueError, match=msg):
df_o.hist()
@pytest.mark.slow
def test_hist_layout(self):
df = DataFrame(randn(100, 3))
layout_to_expected_size = (
{"layout": None, "expected_size": (2, 2)}, # default is 2x2
{"layout": (2, 2), "expected_size": (2, 2)},
{"layout": (4, 1), "expected_size": (4, 1)},
{"layout": (1, 4), "expected_size": (1, 4)},
{"layout": (3, 3), "expected_size": (3, 3)},
{"layout": (-1, 4), "expected_size": (1, 4)},
{"layout": (4, -1), "expected_size": (4, 1)},
{"layout": (-1, 2), "expected_size": (2, 2)},
{"layout": (2, -1), "expected_size": (2, 2)},
)
for layout_test in layout_to_expected_size:
axes = df.hist(layout=layout_test["layout"])
expected = layout_test["expected_size"]
self._check_axes_shape(axes, axes_num=3, layout=expected)
# layout too small for all 4 plots
with pytest.raises(ValueError):
df.hist(layout=(1, 1))
# invalid format for layout
with pytest.raises(ValueError):
df.hist(layout=(1,))
with pytest.raises(ValueError):
df.hist(layout=(-1, -1))
@pytest.mark.slow
# GH 9351
def test_tight_layout(self):
df = DataFrame(randn(100, 3))
_check_plot_works(df.hist)
self.plt.tight_layout()
tm.close()
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
@pytest.mark.slow
def test_grouped_hist_legacy(self):
from matplotlib.patches import Rectangle
from pandas.plotting._matplotlib.hist import _grouped_hist
df = DataFrame(randn(500, 2), columns=["A", "B"])
df["C"] = np.random.randint(0, 4, 500)
df["D"] = ["X"] * 500
axes = _grouped_hist(df.A, by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
axes = df.hist(by=df.C)
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
tm.close()
# group by a key with single value
axes = df.hist(by="D", rot=30)
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
self._check_ticks_props(axes, xrot=30)
tm.close()
# make sure kwargs to hist are handled
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = _grouped_hist(
df.A,
by=df.C,
cumulative=True,
bins=4,
xlabelsize=xf,
xrot=xrot,
ylabelsize=yf,
yrot=yrot,
density=True,
)
# height of last bin (index 5) must be 1.0
for ax in axes.ravel():
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
height = rects[-1].get_height()
tm.assert_almost_equal(height, 1.0)
self._check_ticks_props(
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
)
tm.close()
axes = _grouped_hist(df.A, by=df.C, log=True)
# scale of y must be 'log'
self._check_ax_scales(axes, yaxis="log")
tm.close()
# propagate attr exception from matplotlib.Axes.hist
with pytest.raises(AttributeError):
_grouped_hist(df.A, by=df.C, foo="bar")
with tm.assert_produces_warning(FutureWarning):
df.hist(by="C", figsize="default")
@pytest.mark.slow
def test_grouped_hist_legacy2(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender_int = np.random.choice([0, 1], size=n)
df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int})
gb = df_int.groupby("gender")
axes = gb.hist()
assert len(axes) == 2
assert len(self.plt.get_fignums()) == 2
tm.close()
@pytest.mark.slow
def test_grouped_hist_layout(self):
df = self.hist_df
msg = "Layout of 1x1 must be larger than required size 2"
with pytest.raises(ValueError, match=msg):
df.hist(column="weight", by=df.gender, layout=(1, 1))
msg = "Layout of 1x3 must be larger than required size 4"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(1, 3))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(column="height", by=df.category, layout=(-1, -1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, 1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, -1)
)
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(-1, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
axes = df.hist(column="height", by=df.category, layout=(4, 2), figsize=(12, 8))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 8))
tm.close()
# GH 6769
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
df.hist, column="height", by="classroom", layout=(2, 2)
)
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
# without column
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.hist, by="classroom")
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.hist(by="gender", layout=(3, 5))
self._check_axes_shape(axes, axes_num=2, layout=(3, 5))
axes = df.hist(column=["height", "weight", "category"])
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
@pytest.mark.slow
def test_grouped_hist_multiple_axes(self):
# GH 6970, GH 7069
df = self.hist_df
fig, axes = self.plt.subplots(2, 3)
returned = df.hist(column=["height", "weight", "category"], ax=axes[0])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
returned = df.hist(by="classroom", ax=axes[1])
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
with pytest.raises(ValueError):
fig, axes = self.plt.subplots(2, 3)
# pass different number of axes from required
axes = df.hist(column="height", ax=axes)
@pytest.mark.slow
def test_axis_share_x(self):
df = self.hist_df
# GH4089
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True)
# share x
assert ax1._shared_x_axes.joined(ax1, ax2)
assert ax2._shared_x_axes.joined(ax1, ax2)
# don't share y
assert not ax1._shared_y_axes.joined(ax1, ax2)
assert not ax2._shared_y_axes.joined(ax1, ax2)
@pytest.mark.slow
def test_axis_share_y(self):
df = self.hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True)
# share y
assert ax1._shared_y_axes.joined(ax1, ax2)
assert ax2._shared_y_axes.joined(ax1, ax2)
# don't share x
assert not ax1._shared_x_axes.joined(ax1, ax2)
assert not ax2._shared_x_axes.joined(ax1, ax2)
@pytest.mark.slow
def test_axis_share_xy(self):
df = self.hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True)
# share both x and y
assert ax1._shared_x_axes.joined(ax1, ax2)
assert ax2._shared_x_axes.joined(ax1, ax2)
assert ax1._shared_y_axes.joined(ax1, ax2)
assert ax2._shared_y_axes.joined(ax1, ax2)

View File

@@ -0,0 +1,419 @@
# coding: utf-8
""" Test cases for misc plot functions """
import numpy as np
from numpy import random
from numpy.random import randn
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame, Series
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
import pandas.util.testing as tm
import pandas.plotting as plotting
@td.skip_if_mpl
def test_import_error_message():
# GH-19810
df = DataFrame({"A": [1, 2]})
with pytest.raises(ImportError, match="No module named 'matplotlib'"):
df.plot()
def test_get_accessor_args():
func = plotting._core.PlotAccessor._get_call_args
msg = "Called plot accessor for type list, expected Series or DataFrame"
with pytest.raises(TypeError, match=msg):
func(backend_name="", data=[], args=[], kwargs={})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
x, y, kind, kwargs = func(
backend_name="", data=Series(), args=["line", None], kwargs={}
)
assert x is None
assert y is None
assert kind == "line"
assert kwargs == {"ax": None}
x, y, kind, kwargs = func(
backend_name="",
data=DataFrame(),
args=["x"],
kwargs={"y": "y", "kind": "bar", "grid": False},
)
assert x == "x"
assert y == "y"
assert kind == "bar"
assert kwargs == {"grid": False}
x, y, kind, kwargs = func(
backend_name="pandas.plotting._matplotlib", data=Series(), args=[], kwargs={}
)
assert x is None
assert y is None
assert kind == "line"
assert len(kwargs) == 22
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = "ts"
@pytest.mark.slow
def test_autocorrelation_plot(self):
from pandas.plotting import autocorrelation_plot
_check_plot_works(autocorrelation_plot, series=self.ts)
_check_plot_works(autocorrelation_plot, series=self.ts.values)
ax = autocorrelation_plot(self.ts, label="Test")
self._check_legend_labels(ax, labels=["Test"])
@pytest.mark.slow
def test_lag_plot(self):
from pandas.plotting import lag_plot
_check_plot_works(lag_plot, series=self.ts)
_check_plot_works(lag_plot, series=self.ts, lag=5)
@pytest.mark.slow
def test_bootstrap_plot(self):
from pandas.plotting import bootstrap_plot
_check_plot_works(bootstrap_plot, series=self.ts, size=10)
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
@td.skip_if_no_scipy
def test_scatter_matrix_axis(self):
scatter_matrix = plotting.scatter_matrix
with tm.RNGContext(42):
df = DataFrame(randn(100, 3))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
scatter_matrix, filterwarnings="always", frame=df, range_padding=0.1
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
expected = ["-2", "0", "2"]
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
df[0] = (df[0] - 2) / 3
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(
scatter_matrix, filterwarnings="always", frame=df, range_padding=0.1
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
expected = ["-1.0", "-0.5", "0.0"]
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
@pytest.mark.slow
def test_andrews_curves(self, iris):
from pandas.plotting import andrews_curves
from matplotlib import cm
df = iris
_check_plot_works(andrews_curves, frame=df, class_column="Name")
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=rgba
)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
)
cnames = ["dodgerblue", "aquamarine", "seagreen"]
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=cnames
)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
)
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
)
length = 10
df = DataFrame(
{
"A": random.rand(length),
"B": random.rand(length),
"C": random.rand(length),
"Name": ["A"] * length,
}
)
_check_plot_works(andrews_curves, frame=df, class_column="Name")
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=rgba
)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
)
cnames = ["dodgerblue", "aquamarine", "seagreen"]
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=cnames
)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
)
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
)
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = andrews_curves(df, "Name", color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, linecolors=colors)
with tm.assert_produces_warning(FutureWarning):
andrews_curves(data=df, class_column="Name")
@pytest.mark.slow
def test_parallel_coordinates(self, iris):
from pandas.plotting import parallel_coordinates
from matplotlib import cm
df = iris
ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name")
nlines = len(ax.get_lines())
nxticks = len(ax.xaxis.get_ticklabels())
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", color=rgba
)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
)
cnames = ["dodgerblue", "aquamarine", "seagreen"]
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", color=cnames
)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
)
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
)
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", axvlines=False
)
assert len(ax.get_lines()) == (nlines - nxticks)
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = parallel_coordinates(df, "Name", color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, linecolors=colors)
with tm.assert_produces_warning(FutureWarning):
parallel_coordinates(data=df, class_column="Name")
with tm.assert_produces_warning(FutureWarning):
parallel_coordinates(df, "Name", colors=colors)
# not sure if this is indicative of a problem
@pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
def test_parallel_coordinates_with_sorted_labels(self):
""" For #15908 """
from pandas.plotting import parallel_coordinates
df = DataFrame(
{
"feat": [i for i in range(30)],
"class": [2 for _ in range(10)]
+ [3 for _ in range(10)]
+ [1 for _ in range(10)],
}
)
ax = parallel_coordinates(df, "class", sort_labels=True)
polylines, labels = ax.get_legend_handles_labels()
color_label_tuples = zip(
[polyline.get_color() for polyline in polylines], labels
)
ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1])
prev_next_tupels = zip(
[i for i in ordered_color_label_tuples[0:-1]],
[i for i in ordered_color_label_tuples[1:]],
)
for prev, nxt in prev_next_tupels:
# labels and colors are ordered strictly increasing
assert prev[1] < nxt[1] and prev[0] < nxt[0]
@pytest.mark.slow
def test_radviz(self, iris):
from pandas.plotting import radviz
from matplotlib import cm
df = iris
_check_plot_works(radviz, frame=df, class_column="Name")
rgba = ("#556270", "#4ECDC4", "#C7F464")
ax = _check_plot_works(radviz, frame=df, class_column="Name", color=rgba)
# skip Circle drawn as ticks
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
self._check_colors(patches[:10], facecolors=rgba, mapping=df["Name"][:10])
cnames = ["dodgerblue", "aquamarine", "seagreen"]
_check_plot_works(radviz, frame=df, class_column="Name", color=cnames)
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
self._check_colors(patches, facecolors=cnames, mapping=df["Name"][:10])
_check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
self._check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10])
colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]]
df = DataFrame(
{"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]}
)
ax = radviz(df, "Name", color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, facecolors=colors)
@pytest.mark.slow
def test_subplot_titles(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case len(title) == len(df)
plot = df.plot(subplots=True, title=title)
assert [p.get_title() for p in plot] == title
# Case len(title) > len(df)
msg = (
"The length of `title` must equal the number of columns if"
" using `title` of type `list` and `subplots=True`"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title + ["kittens > puppies"])
# Case len(title) < len(df)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title[:2])
# Case subplots=False and title is of type list
msg = (
"Using `title` of type `list` is not supported unless"
" `subplots=True` is passed"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=False, title=title)
# Case df with 3 numeric columns but layout of (2,2)
plot = df.drop("SepalWidth", axis=1).plot(
subplots=True, layout=(2, 2), title=title[:-1]
)
title_list = [ax.get_title() for sublist in plot for ax in sublist]
assert title_list == title[:3] + [""]
def test_get_standard_colors_random_seed(self):
# GH17525
df = DataFrame(np.zeros((10, 10)))
# Make sure that the random seed isn't reset by _get_standard_colors
plotting.parallel_coordinates(df, 0)
rand1 = random.random()
plotting.parallel_coordinates(df, 0)
rand2 = random.random()
assert rand1 != rand2
# Make sure it produces the same colors every time it's called
from pandas.plotting._matplotlib.style import _get_standard_colors
color1 = _get_standard_colors(1, color_type="random")
color2 = _get_standard_colors(1, color_type="random")
assert color1 == color2
def test_get_standard_colors_default_num_colors(self):
from pandas.plotting._matplotlib.style import _get_standard_colors
# Make sure the default color_types returns the specified amount
color1 = _get_standard_colors(1, color_type="default")
color2 = _get_standard_colors(9, color_type="default")
color3 = _get_standard_colors(20, color_type="default")
assert len(color1) == 1
assert len(color2) == 9
assert len(color3) == 20
def test_plot_single_color(self):
# Example from #20585. All 3 bars should have the same color
df = DataFrame(
{
"account-start": ["2017-02-03", "2017-03-03", "2017-01-01"],
"client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"],
"balance": [-1432.32, 10.43, 30000.00],
"db-id": [1234, 2424, 251],
"proxy-id": [525, 1525, 2542],
"rank": [52, 525, 32],
}
)
ax = df.client.value_counts().plot.bar()
colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]]
assert all(color == colors[0] for color in colors)
def test_get_standard_colors_no_appending(self):
# GH20726
# Make sure not to add more colors so that matplotlib can cycle
# correctly.
from matplotlib import cm
from pandas.plotting._matplotlib.style import _get_standard_colors
color_before = cm.gnuplot(range(5))
color_after = _get_standard_colors(1, color=color_before)
assert len(color_after) == len(color_before)
df = DataFrame(np.random.randn(48, 4), columns=list("ABCD"))
color_list = cm.gnuplot(np.linspace(0, 1, 16))
p = df.A.plot.bar(figsize=(16, 7), color=color_list)
assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor()

View File

@@ -0,0 +1,890 @@
# coding: utf-8
""" Test cases for Series.plot """
from datetime import datetime
from itertools import chain
import numpy as np
from numpy.random import randn
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import DataFrame, Series, date_range
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
import pandas.util.testing as tm
import pandas.plotting as plotting
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = "ts"
self.series = tm.makeStringSeries()
self.series.name = "series"
self.iseries = tm.makePeriodSeries()
self.iseries.name = "iseries"
@pytest.mark.slow
def test_plot(self):
_check_plot_works(self.ts.plot, label="foo")
_check_plot_works(self.ts.plot, use_index=False)
axes = _check_plot_works(self.ts.plot, rot=0)
self._check_ticks_props(axes, xrot=0)
ax = _check_plot_works(self.ts.plot, style=".", logy=True)
self._check_ax_scales(ax, yaxis="log")
ax = _check_plot_works(self.ts.plot, style=".", logx=True)
self._check_ax_scales(ax, xaxis="log")
ax = _check_plot_works(self.ts.plot, style=".", loglog=True)
self._check_ax_scales(ax, xaxis="log", yaxis="log")
_check_plot_works(self.ts[:10].plot.bar)
_check_plot_works(self.ts.plot.area, stacked=False)
_check_plot_works(self.iseries.plot)
for kind in ["line", "bar", "barh", "kde", "hist", "box"]:
_check_plot_works(self.series[:5].plot, kind=kind)
_check_plot_works(self.series[:10].plot.barh)
ax = _check_plot_works(Series(randn(10)).plot.bar, color="black")
self._check_colors([ax.patches[0]], facecolors=["black"])
# GH 6951
ax = _check_plot_works(self.ts.plot, subplots=True)
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(-1, 1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(1, -1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
@pytest.mark.slow
def test_plot_figsize_and_title(self):
# figsize and title
_, ax = self.plt.subplots()
ax = self.series.plot(title="Test", figsize=(16, 8), ax=ax)
self._check_text_labels(ax.title, "Test")
self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8))
def test_dont_modify_rcParams(self):
# GH 8242
key = "axes.prop_cycle"
colors = self.plt.rcParams[key]
_, ax = self.plt.subplots()
Series([1, 2, 3]).plot(ax=ax)
assert colors == self.plt.rcParams[key]
def test_ts_line_lim(self):
fig, ax = self.plt.subplots()
ax = self.ts.plot(ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data(orig=False)[0][0]
assert xmax >= lines[0].get_data(orig=False)[0][-1]
tm.close()
ax = self.ts.plot(secondary_y=True, ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data(orig=False)[0][0]
assert xmax >= lines[0].get_data(orig=False)[0][-1]
def test_ts_area_lim(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
tm.close()
# GH 7471
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
tm.close()
tz_ts = self.ts.copy()
tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET")
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
tm.close()
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
def test_label(self):
s = Series([1, 2])
_, ax = self.plt.subplots()
ax = s.plot(label="LABEL", legend=True, ax=ax)
self._check_legend_labels(ax, labels=["LABEL"])
self.plt.close()
_, ax = self.plt.subplots()
ax = s.plot(legend=True, ax=ax)
self._check_legend_labels(ax, labels=["None"])
self.plt.close()
# get name from index
s.name = "NAME"
_, ax = self.plt.subplots()
ax = s.plot(legend=True, ax=ax)
self._check_legend_labels(ax, labels=["NAME"])
self.plt.close()
# override the default
_, ax = self.plt.subplots()
ax = s.plot(legend=True, label="LABEL", ax=ax)
self._check_legend_labels(ax, labels=["LABEL"])
self.plt.close()
# Add lebel info, but don't draw
_, ax = self.plt.subplots()
ax = s.plot(legend=False, label="LABEL", ax=ax)
assert ax.get_legend() is None # Hasn't been drawn
ax.legend() # draw it
self._check_legend_labels(ax, labels=["LABEL"])
def test_line_area_nan_series(self):
values = [1, 2, np.nan, 3]
s = Series(values)
ts = Series(values, index=tm.makeDateIndex(k=4))
for d in [s, ts]:
ax = _check_plot_works(d.plot)
masked = ax.lines[0].get_ydata()
# remove nan for comparison purpose
exp = np.array([1, 2, 3], dtype=np.float64)
tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp)
tm.assert_numpy_array_equal(
masked.mask, np.array([False, False, True, False])
)
expected = np.array([1, 2, 0, 3], dtype=np.float64)
ax = _check_plot_works(d.plot, stacked=True)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
ax = _check_plot_works(d.plot.area)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
ax = _check_plot_works(d.plot.area, stacked=False)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
def test_line_use_index_false(self):
s = Series([1, 2, 3], index=["a", "b", "c"])
s.index.name = "The Index"
_, ax = self.plt.subplots()
ax = s.plot(use_index=False, ax=ax)
label = ax.get_xlabel()
assert label == ""
_, ax = self.plt.subplots()
ax2 = s.plot.bar(use_index=False, ax=ax)
label2 = ax2.get_xlabel()
assert label2 == ""
@pytest.mark.slow
def test_bar_log(self):
expected = np.array([1e-1, 1e0, 1e1, 1e2, 1e3, 1e4])
_, ax = self.plt.subplots()
ax = Series([200, 500]).plot.bar(log=True, ax=ax)
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
tm.close()
_, ax = self.plt.subplots()
ax = Series([200, 500]).plot.barh(log=True, ax=ax)
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
tm.close()
# GH 9905
expected = np.array([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1])
_, ax = self.plt.subplots()
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="bar", ax=ax)
ymin = 0.0007943282347242822
ymax = 0.12589254117941673
res = ax.get_ylim()
tm.assert_almost_equal(res[0], ymin)
tm.assert_almost_equal(res[1], ymax)
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
tm.close()
_, ax = self.plt.subplots()
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="barh", ax=ax)
res = ax.get_xlim()
tm.assert_almost_equal(res[0], ymin)
tm.assert_almost_equal(res[1], ymax)
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
@pytest.mark.slow
def test_bar_ignore_index(self):
df = Series([1, 2, 3, 4], index=["a", "b", "c", "d"])
_, ax = self.plt.subplots()
ax = df.plot.bar(use_index=False, ax=ax)
self._check_text_labels(ax.get_xticklabels(), ["0", "1", "2", "3"])
def test_bar_user_colors(self):
s = Series([1, 2, 3, 4])
ax = s.plot.bar(color=["red", "blue", "blue", "red"])
result = [p.get_facecolor() for p in ax.patches]
expected = [
(1.0, 0.0, 0.0, 1.0),
(0.0, 0.0, 1.0, 1.0),
(0.0, 0.0, 1.0, 1.0),
(1.0, 0.0, 0.0, 1.0),
]
assert result == expected
def test_rotation(self):
df = DataFrame(randn(5, 5))
# Default rot 0
_, ax = self.plt.subplots()
axes = df.plot(ax=ax)
self._check_ticks_props(axes, xrot=0)
_, ax = self.plt.subplots()
axes = df.plot(rot=30, ax=ax)
self._check_ticks_props(axes, xrot=30)
def test_irregular_datetime(self):
rng = date_range("1/1/2000", "3/1/2000")
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]]
ser = Series(randn(len(rng)), rng)
_, ax = self.plt.subplots()
ax = ser.plot(ax=ax)
xp = datetime(1999, 1, 1).toordinal()
ax.set_xlim("1/1/1999", "1/1/2001")
assert xp == ax.get_xlim()[0]
def test_unsorted_index_xlim(self):
ser = Series(
[0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0],
index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0],
)
_, ax = self.plt.subplots()
ax = ser.plot(ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0])
assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0])
@pytest.mark.slow
def test_pie_series(self):
# if sum of values is less than 1.0, pie handle them as rate and draw
# semicircle.
series = Series(
np.random.randint(1, 5), index=["a", "b", "c", "d", "e"], name="YLABEL"
)
ax = _check_plot_works(series.plot.pie)
self._check_text_labels(ax.texts, series.index)
assert ax.get_ylabel() == "YLABEL"
# without wedge labels
ax = _check_plot_works(series.plot.pie, labels=None)
self._check_text_labels(ax.texts, [""] * 5)
# with less colors than elements
color_args = ["r", "g", "b"]
ax = _check_plot_works(series.plot.pie, colors=color_args)
color_expected = ["r", "g", "b", "r", "g"]
self._check_colors(ax.patches, facecolors=color_expected)
# with labels and colors
labels = ["A", "B", "C", "D", "E"]
color_args = ["r", "g", "b", "c", "m"]
ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args)
self._check_text_labels(ax.texts, labels)
self._check_colors(ax.patches, facecolors=color_args)
# with autopct and fontsize
ax = _check_plot_works(
series.plot.pie, colors=color_args, autopct="%.2f", fontsize=7
)
pcts = ["{0:.2f}".format(s * 100) for s in series.values / float(series.sum())]
expected_texts = list(chain.from_iterable(zip(series.index, pcts)))
self._check_text_labels(ax.texts, expected_texts)
for t in ax.texts:
assert t.get_fontsize() == 7
# includes negative value
with pytest.raises(ValueError):
series = Series([1, 2, 0, 4, -1], index=["a", "b", "c", "d", "e"])
series.plot.pie()
# includes nan
series = Series([1, 2, np.nan, 4], index=["a", "b", "c", "d"], name="YLABEL")
ax = _check_plot_works(series.plot.pie)
self._check_text_labels(ax.texts, ["a", "b", "", "d"])
def test_pie_nan(self):
s = Series([1, np.nan, 1, 1])
_, ax = self.plt.subplots()
ax = s.plot.pie(legend=True, ax=ax)
expected = ["0", "", "2", "3"]
result = [x.get_text() for x in ax.texts]
assert result == expected
@pytest.mark.slow
def test_hist_df_kwargs(self):
df = DataFrame(np.random.randn(10, 2))
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 10
@pytest.mark.slow
def test_hist_df_with_nonnumerics(self):
# GH 9853
with tm.RNGContext(1):
df = DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
df["E"] = ["x", "y"] * 5
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 20
_, ax = self.plt.subplots()
ax = df.plot.hist(ax=ax) # bins=10
assert len(ax.patches) == 40
@pytest.mark.slow
def test_hist_legacy(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month)
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax)
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
_check_plot_works(self.ts.hist, figure=fig)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
with pytest.raises(ValueError):
self.ts.hist(by=self.ts.index, figure=fig)
@pytest.mark.slow
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
@pytest.mark.slow
def test_hist_layout(self):
df = self.hist_df
with pytest.raises(ValueError):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError):
df.height.hist(layout=[1, 1])
@pytest.mark.slow
def test_hist_layout_with_by(self):
df = self.hist_df
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
@pytest.mark.slow
def test_hist_no_overlap(self):
from matplotlib.pyplot import subplot, gcf
x = Series(randn(2))
y = Series(randn(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes
assert len(axes) == 2
@pytest.mark.slow
def test_hist_secondary_legend(self):
# GH 9610
df = DataFrame(np.random.randn(30, 4), columns=list("abcd"))
# primary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=["a", "b (right)"])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are draw on left ax
# left axis must be invisible, right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"])
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> primary
_, ax = self.plt.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
# right axes is returned
df["b"].plot.hist(ax=ax, legend=True)
# both legends are draw on left ax
# left and right axis must be visible
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b"])
assert ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@pytest.mark.slow
def test_df_series_secondary_legend(self):
# GH 9779
df = DataFrame(np.random.randn(30, 3), columns=list("abc"))
s = Series(np.random.randn(30), name="x")
# primary -> secondary (without passing ax)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
s.plot(legend=True, secondary_y=True, ax=ax)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# primary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary (without passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, ax=ax)
s.plot(legend=True, secondary_y=True, ax=ax)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
self._check_legend_labels(ax.left_ax, labels=expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
self._check_legend_labels(ax.left_ax, expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, mark_right=False, ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ["a", "b", "c", "x (right)"]
self._check_legend_labels(ax.left_ax, expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@pytest.mark.slow
@pytest.mark.parametrize(
"input_logy, expected_scale", [(True, "log"), ("sym", "symlog")]
)
def test_secondary_logy(self, input_logy, expected_scale):
# GH 25545
s1 = Series(np.random.randn(30))
s2 = Series(np.random.randn(30))
# GH 24980
ax1 = s1.plot(logy=input_logy)
ax2 = s2.plot(secondary_y=True, logy=input_logy)
assert ax1.get_yscale() == expected_scale
assert ax2.get_yscale() == expected_scale
@pytest.mark.slow
def test_plot_fails_with_dupe_color_and_style(self):
x = Series(randn(2))
with pytest.raises(ValueError):
_, ax = self.plt.subplots()
x.plot(style="k--", color="k", ax=ax)
@pytest.mark.slow
@td.skip_if_no_scipy
def test_hist_kde(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
_check_plot_works(self.ts.plot.kde)
_check_plot_works(self.ts.plot.density)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
@pytest.mark.slow
@td.skip_if_no_scipy
def test_kde_kwargs(self):
sample_points = np.linspace(-100, 100, 20)
_check_plot_works(self.ts.plot.kde, bw_method="scott", ind=20)
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=20)
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=np.int(20))
_check_plot_works(self.ts.plot.kde, bw_method=0.5, ind=sample_points)
_check_plot_works(self.ts.plot.density, bw_method=0.5, ind=sample_points)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, bw_method=0.5, ind=sample_points, ax=ax)
self._check_ax_scales(ax, yaxis="log")
self._check_text_labels(ax.yaxis.get_label(), "Density")
@pytest.mark.slow
@td.skip_if_no_scipy
def test_kde_missing_vals(self):
s = Series(np.random.uniform(size=50))
s[0] = np.nan
axes = _check_plot_works(s.plot.kde)
# gh-14821: check if the values have any missing values
assert any(~np.isnan(axes.lines[0].get_xdata()))
@pytest.mark.slow
def test_hist_kwargs(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(orientation="horizontal", ax=ax)
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(align="left", stacked=True, ax=ax)
tm.close()
@pytest.mark.slow
@td.skip_if_no_scipy
def test_hist_kde_color(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
self._check_ax_scales(ax, yaxis="log")
assert len(ax.patches) == 10
self._check_colors(ax.patches, facecolors=["b"] * 10)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, color="r", ax=ax)
self._check_ax_scales(ax, yaxis="log")
lines = ax.get_lines()
assert len(lines) == 1
self._check_colors(lines, ["r"])
@pytest.mark.slow
def test_boxplot_series(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.box(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [self.ts.name])
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [""] * len(ylabels))
@pytest.mark.slow
def test_kind_both_ways(self):
s = Series(range(3))
kinds = (
plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds
)
_, ax = self.plt.subplots()
for kind in kinds:
s.plot(kind=kind, ax=ax)
getattr(s.plot, kind)()
@pytest.mark.slow
def test_invalid_plot_data(self):
s = Series(list("abcd"))
_, ax = self.plt.subplots()
for kind in plotting.PlotAccessor._common_kinds:
msg = "no numeric data to plot"
with pytest.raises(TypeError, match=msg):
s.plot(kind=kind, ax=ax)
@pytest.mark.slow
def test_valid_object_plot(self):
s = Series(range(10), dtype=object)
for kind in plotting.PlotAccessor._common_kinds:
_check_plot_works(s.plot, kind=kind)
def test_partially_invalid_plot_data(self):
s = Series(["a", "b", 1.0, 2])
_, ax = self.plt.subplots()
for kind in plotting.PlotAccessor._common_kinds:
msg = "no numeric data to plot"
with pytest.raises(TypeError, match=msg):
s.plot(kind=kind, ax=ax)
def test_invalid_kind(self):
s = Series([1, 2])
with pytest.raises(ValueError):
s.plot(kind="aasdf")
@pytest.mark.slow
def test_dup_datetime_index_plot(self):
dr1 = date_range("1/1/2009", periods=4)
dr2 = date_range("1/2/2009", periods=4)
index = dr1.append(dr2)
values = randn(index.size)
s = Series(values, index=index)
_check_plot_works(s.plot)
@pytest.mark.slow
def test_errorbar_plot(self):
s = Series(np.arange(10), name="x")
s_err = np.random.randn(10)
d_err = DataFrame(randn(10, 2), index=s.index, columns=["x", "y"])
# test line and bar plots
kinds = ["line", "bar"]
for kind in kinds:
ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=s_err, kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=d_err, kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind)
self._check_has_errorbars(ax, xerr=1, yerr=1)
ax = _check_plot_works(s.plot, xerr=s_err)
self._check_has_errorbars(ax, xerr=1, yerr=0)
# test time series plotting
ix = date_range("1/1/2000", "1/1/2001", freq="M")
ts = Series(np.arange(12), index=ix, name="x")
ts_err = Series(np.random.randn(12), index=ix)
td_err = DataFrame(randn(12, 2), index=ix, columns=["x", "y"])
ax = _check_plot_works(ts.plot, yerr=ts_err)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(ts.plot, yerr=td_err)
self._check_has_errorbars(ax, xerr=0, yerr=1)
# check incorrect lengths and types
with pytest.raises(ValueError):
s.plot(yerr=np.arange(11))
s_err = ["zzz"] * 10
with pytest.raises(TypeError):
s.plot(yerr=s_err)
def test_table(self):
_check_plot_works(self.series.plot, table=True)
_check_plot_works(self.series.plot, table=self.series)
@pytest.mark.slow
def test_series_grid_settings(self):
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
self._check_grid_settings(
Series([1, 2, 3]),
plotting.PlotAccessor._series_kinds + plotting.PlotAccessor._common_kinds,
)
@pytest.mark.slow
def test_standard_colors(self):
from pandas.plotting._matplotlib.style import _get_standard_colors
for c in ["r", "red", "green", "#FF0000"]:
result = _get_standard_colors(1, color=c)
assert result == [c]
result = _get_standard_colors(1, color=[c])
assert result == [c]
result = _get_standard_colors(3, color=c)
assert result == [c] * 3
result = _get_standard_colors(3, color=[c])
assert result == [c] * 3
@pytest.mark.slow
def test_standard_colors_all(self):
import matplotlib.colors as colors
from pandas.plotting._matplotlib.style import _get_standard_colors
# multiple colors like mediumaquamarine
for c in colors.cnames:
result = _get_standard_colors(num_colors=1, color=c)
assert result == [c]
result = _get_standard_colors(num_colors=1, color=[c])
assert result == [c]
result = _get_standard_colors(num_colors=3, color=c)
assert result == [c] * 3
result = _get_standard_colors(num_colors=3, color=[c])
assert result == [c] * 3
# single letter colors like k
for c in colors.ColorConverter.colors:
result = _get_standard_colors(num_colors=1, color=c)
assert result == [c]
result = _get_standard_colors(num_colors=1, color=[c])
assert result == [c]
result = _get_standard_colors(num_colors=3, color=c)
assert result == [c] * 3
result = _get_standard_colors(num_colors=3, color=[c])
assert result == [c] * 3
def test_series_plot_color_kwargs(self):
# GH1890
_, ax = self.plt.subplots()
ax = Series(np.arange(12) + 1).plot(color="green", ax=ax)
self._check_colors(ax.get_lines(), linecolors=["green"])
def test_time_series_plot_color_kwargs(self):
# #1890
_, ax = self.plt.subplots()
ax = Series(np.arange(12) + 1, index=date_range("1/1/2000", periods=12)).plot(
color="green", ax=ax
)
self._check_colors(ax.get_lines(), linecolors=["green"])
def test_time_series_plot_color_with_empty_kwargs(self):
import matplotlib as mpl
def_colors = self._unpack_cycler(mpl.rcParams)
index = date_range("1/1/2000", periods=12)
s = Series(np.arange(1, 13), index=index)
ncolors = 3
_, ax = self.plt.subplots()
for i in range(ncolors):
ax = s.plot(ax=ax)
self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors])
def test_xticklabels(self):
# GH11529
s = Series(np.arange(10), index=["P{i:02d}".format(i=i) for i in range(10)])
_, ax = self.plt.subplots()
ax = s.plot(xticks=[0, 3, 5, 9], ax=ax)
exp = ["P{i:02d}".format(i=i) for i in [0, 3, 5, 9]]
self._check_text_labels(ax.get_xticklabels(), exp)
def test_custom_business_day_freq(self):
# GH7222
from pandas.tseries.offsets import CustomBusinessDay
s = Series(
range(100, 121),
index=pd.bdate_range(
start="2014-05-01",
end="2014-06-01",
freq=CustomBusinessDay(holidays=["2014-05-26"]),
),
)
_check_plot_works(s.plot)
@pytest.mark.xfail
def test_plot_accessor_updates_on_inplace(self):
s = Series([1, 2, 3, 4])
_, ax = self.plt.subplots()
ax = s.plot(ax=ax)
before = ax.xaxis.get_ticklocs()
s.drop([0, 1], inplace=True)
_, ax = self.plt.subplots()
after = ax.xaxis.get_ticklocs()
tm.assert_numpy_array_equal(before, after)