8th day of python challenges 111-117
This commit is contained in:
540
venv/lib/python3.6/site-packages/pandas/tests/plotting/common.py
Normal file
540
venv/lib/python3.6/site-packages/pandas/tests/plotting/common.py
Normal file
@@ -0,0 +1,540 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
import os
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
|
||||
from pandas.util._decorators import cache_readonly
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas.core.dtypes.api import is_list_like
|
||||
|
||||
from pandas import DataFrame, Series
|
||||
import pandas.util.testing as tm
|
||||
from pandas.util.testing import assert_is_valid_plot_return_object, ensure_clean
|
||||
|
||||
|
||||
"""
|
||||
This is a common base class used for various plotting tests
|
||||
"""
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestPlotBase:
|
||||
def setup_method(self, method):
|
||||
|
||||
import matplotlib as mpl
|
||||
from pandas.plotting._matplotlib import compat
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.mpl_ge_2_2_3 = compat._mpl_ge_2_2_3()
|
||||
self.mpl_ge_3_0_0 = compat._mpl_ge_3_0_0()
|
||||
self.mpl_ge_3_1_0 = compat._mpl_ge_3_1_0()
|
||||
|
||||
self.bp_n_objects = 7
|
||||
self.polycollection_factor = 2
|
||||
self.default_figsize = (6.4, 4.8)
|
||||
self.default_tick_position = "left"
|
||||
|
||||
n = 100
|
||||
with tm.RNGContext(42):
|
||||
gender = np.random.choice(["Male", "Female"], size=n)
|
||||
classroom = np.random.choice(["A", "B", "C"], size=n)
|
||||
|
||||
self.hist_df = DataFrame(
|
||||
{
|
||||
"gender": gender,
|
||||
"classroom": classroom,
|
||||
"height": random.normal(66, 4, size=n),
|
||||
"weight": random.normal(161, 32, size=n),
|
||||
"category": random.randint(4, size=n),
|
||||
}
|
||||
)
|
||||
|
||||
self.tdf = tm.makeTimeDataFrame()
|
||||
self.hexbin_df = DataFrame(
|
||||
{
|
||||
"A": np.random.uniform(size=20),
|
||||
"B": np.random.uniform(size=20),
|
||||
"C": np.arange(20) + np.random.uniform(size=20),
|
||||
}
|
||||
)
|
||||
|
||||
def teardown_method(self, method):
|
||||
tm.close()
|
||||
|
||||
@cache_readonly
|
||||
def plt(self):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
return plt
|
||||
|
||||
@cache_readonly
|
||||
def colorconverter(self):
|
||||
import matplotlib.colors as colors
|
||||
|
||||
return colors.colorConverter
|
||||
|
||||
def _check_legend_labels(self, axes, labels=None, visible=True):
|
||||
"""
|
||||
Check each axes has expected legend labels
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
labels : list-like
|
||||
expected legend labels
|
||||
visible : bool
|
||||
expected legend visibility. labels are checked only when visible is
|
||||
True
|
||||
"""
|
||||
|
||||
if visible and (labels is None):
|
||||
raise ValueError("labels must be specified when visible is True")
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
if visible:
|
||||
assert ax.get_legend() is not None
|
||||
self._check_text_labels(ax.get_legend().get_texts(), labels)
|
||||
else:
|
||||
assert ax.get_legend() is None
|
||||
|
||||
def _check_data(self, xp, rs):
|
||||
"""
|
||||
Check each axes has identical lines
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xp : matplotlib Axes object
|
||||
rs : matplotlib Axes object
|
||||
"""
|
||||
xp_lines = xp.get_lines()
|
||||
rs_lines = rs.get_lines()
|
||||
|
||||
def check_line(xpl, rsl):
|
||||
xpdata = xpl.get_xydata()
|
||||
rsdata = rsl.get_xydata()
|
||||
tm.assert_almost_equal(xpdata, rsdata)
|
||||
|
||||
assert len(xp_lines) == len(rs_lines)
|
||||
[check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)]
|
||||
tm.close()
|
||||
|
||||
def _check_visible(self, collections, visible=True):
|
||||
"""
|
||||
Check each artist is visible or not
|
||||
|
||||
Parameters
|
||||
----------
|
||||
collections : matplotlib Artist or its list-like
|
||||
target Artist or its list or collection
|
||||
visible : bool
|
||||
expected visibility
|
||||
"""
|
||||
from matplotlib.collections import Collection
|
||||
|
||||
if not isinstance(collections, Collection) and not is_list_like(collections):
|
||||
collections = [collections]
|
||||
|
||||
for patch in collections:
|
||||
assert patch.get_visible() == visible
|
||||
|
||||
def _get_colors_mapped(self, series, colors):
|
||||
unique = series.unique()
|
||||
# unique and colors length can be differed
|
||||
# depending on slice value
|
||||
mapped = dict(zip(unique, colors))
|
||||
return [mapped[v] for v in series.values]
|
||||
|
||||
def _check_colors(
|
||||
self, collections, linecolors=None, facecolors=None, mapping=None
|
||||
):
|
||||
"""
|
||||
Check each artist has expected line colors and face colors
|
||||
|
||||
Parameters
|
||||
----------
|
||||
collections : list-like
|
||||
list or collection of target artist
|
||||
linecolors : list-like which has the same length as collections
|
||||
list of expected line colors
|
||||
facecolors : list-like which has the same length as collections
|
||||
list of expected face colors
|
||||
mapping : Series
|
||||
Series used for color grouping key
|
||||
used for andrew_curves, parallel_coordinates, radviz test
|
||||
"""
|
||||
|
||||
from matplotlib.lines import Line2D
|
||||
from matplotlib.collections import Collection, PolyCollection, LineCollection
|
||||
|
||||
conv = self.colorconverter
|
||||
if linecolors is not None:
|
||||
|
||||
if mapping is not None:
|
||||
linecolors = self._get_colors_mapped(mapping, linecolors)
|
||||
linecolors = linecolors[: len(collections)]
|
||||
|
||||
assert len(collections) == len(linecolors)
|
||||
for patch, color in zip(collections, linecolors):
|
||||
if isinstance(patch, Line2D):
|
||||
result = patch.get_color()
|
||||
# Line2D may contains string color expression
|
||||
result = conv.to_rgba(result)
|
||||
elif isinstance(patch, (PolyCollection, LineCollection)):
|
||||
result = tuple(patch.get_edgecolor()[0])
|
||||
else:
|
||||
result = patch.get_edgecolor()
|
||||
|
||||
expected = conv.to_rgba(color)
|
||||
assert result == expected
|
||||
|
||||
if facecolors is not None:
|
||||
|
||||
if mapping is not None:
|
||||
facecolors = self._get_colors_mapped(mapping, facecolors)
|
||||
facecolors = facecolors[: len(collections)]
|
||||
|
||||
assert len(collections) == len(facecolors)
|
||||
for patch, color in zip(collections, facecolors):
|
||||
if isinstance(patch, Collection):
|
||||
# returned as list of np.array
|
||||
result = patch.get_facecolor()[0]
|
||||
else:
|
||||
result = patch.get_facecolor()
|
||||
|
||||
if isinstance(result, np.ndarray):
|
||||
result = tuple(result)
|
||||
|
||||
expected = conv.to_rgba(color)
|
||||
assert result == expected
|
||||
|
||||
def _check_text_labels(self, texts, expected):
|
||||
"""
|
||||
Check each text has expected labels
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts : matplotlib Text object, or its list-like
|
||||
target text, or its list
|
||||
expected : str or list-like which has the same length as texts
|
||||
expected text label, or its list
|
||||
"""
|
||||
if not is_list_like(texts):
|
||||
assert texts.get_text() == expected
|
||||
else:
|
||||
labels = [t.get_text() for t in texts]
|
||||
assert len(labels) == len(expected)
|
||||
for label, e in zip(labels, expected):
|
||||
assert label == e
|
||||
|
||||
def _check_ticks_props(
|
||||
self, axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None
|
||||
):
|
||||
"""
|
||||
Check each axes has expected tick properties
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
xlabelsize : number
|
||||
expected xticks font size
|
||||
xrot : number
|
||||
expected xticks rotation
|
||||
ylabelsize : number
|
||||
expected yticks font size
|
||||
yrot : number
|
||||
expected yticks rotation
|
||||
"""
|
||||
from matplotlib.ticker import NullFormatter
|
||||
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
if xlabelsize or xrot:
|
||||
if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter):
|
||||
# If minor ticks has NullFormatter, rot / fontsize are not
|
||||
# retained
|
||||
labels = ax.get_xticklabels()
|
||||
else:
|
||||
labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True)
|
||||
|
||||
for label in labels:
|
||||
if xlabelsize is not None:
|
||||
tm.assert_almost_equal(label.get_fontsize(), xlabelsize)
|
||||
if xrot is not None:
|
||||
tm.assert_almost_equal(label.get_rotation(), xrot)
|
||||
|
||||
if ylabelsize or yrot:
|
||||
if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter):
|
||||
labels = ax.get_yticklabels()
|
||||
else:
|
||||
labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True)
|
||||
|
||||
for label in labels:
|
||||
if ylabelsize is not None:
|
||||
tm.assert_almost_equal(label.get_fontsize(), ylabelsize)
|
||||
if yrot is not None:
|
||||
tm.assert_almost_equal(label.get_rotation(), yrot)
|
||||
|
||||
def _check_ax_scales(self, axes, xaxis="linear", yaxis="linear"):
|
||||
"""
|
||||
Check each axes has expected scales
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
xaxis : {'linear', 'log'}
|
||||
expected xaxis scale
|
||||
yaxis : {'linear', 'log'}
|
||||
expected yaxis scale
|
||||
"""
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
assert ax.xaxis.get_scale() == xaxis
|
||||
assert ax.yaxis.get_scale() == yaxis
|
||||
|
||||
def _check_axes_shape(self, axes, axes_num=None, layout=None, figsize=None):
|
||||
"""
|
||||
Check expected number of axes is drawn in expected layout
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
axes_num : number
|
||||
expected number of axes. Unnecessary axes should be set to
|
||||
invisible.
|
||||
layout : tuple
|
||||
expected layout, (expected number of rows , columns)
|
||||
figsize : tuple
|
||||
expected figsize. default is matplotlib default
|
||||
"""
|
||||
from pandas.plotting._matplotlib.tools import _flatten
|
||||
|
||||
if figsize is None:
|
||||
figsize = self.default_figsize
|
||||
visible_axes = self._flatten_visible(axes)
|
||||
|
||||
if axes_num is not None:
|
||||
assert len(visible_axes) == axes_num
|
||||
for ax in visible_axes:
|
||||
# check something drawn on visible axes
|
||||
assert len(ax.get_children()) > 0
|
||||
|
||||
if layout is not None:
|
||||
result = self._get_axes_layout(_flatten(axes))
|
||||
assert result == layout
|
||||
|
||||
tm.assert_numpy_array_equal(
|
||||
visible_axes[0].figure.get_size_inches(),
|
||||
np.array(figsize, dtype=np.float64),
|
||||
)
|
||||
|
||||
def _get_axes_layout(self, axes):
|
||||
x_set = set()
|
||||
y_set = set()
|
||||
for ax in axes:
|
||||
# check axes coordinates to estimate layout
|
||||
points = ax.get_position().get_points()
|
||||
x_set.add(points[0][0])
|
||||
y_set.add(points[0][1])
|
||||
return (len(y_set), len(x_set))
|
||||
|
||||
def _flatten_visible(self, axes):
|
||||
"""
|
||||
Flatten axes, and filter only visible
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
|
||||
"""
|
||||
from pandas.plotting._matplotlib.tools import _flatten
|
||||
|
||||
axes = _flatten(axes)
|
||||
axes = [ax for ax in axes if ax.get_visible()]
|
||||
return axes
|
||||
|
||||
def _check_has_errorbars(self, axes, xerr=0, yerr=0):
|
||||
"""
|
||||
Check axes has expected number of errorbars
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
xerr : number
|
||||
expected number of x errorbar
|
||||
yerr : number
|
||||
expected number of y errorbar
|
||||
"""
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
containers = ax.containers
|
||||
xerr_count = 0
|
||||
yerr_count = 0
|
||||
for c in containers:
|
||||
has_xerr = getattr(c, "has_xerr", False)
|
||||
has_yerr = getattr(c, "has_yerr", False)
|
||||
if has_xerr:
|
||||
xerr_count += 1
|
||||
if has_yerr:
|
||||
yerr_count += 1
|
||||
assert xerr == xerr_count
|
||||
assert yerr == yerr_count
|
||||
|
||||
def _check_box_return_type(
|
||||
self, returned, return_type, expected_keys=None, check_ax_title=True
|
||||
):
|
||||
"""
|
||||
Check box returned type is correct
|
||||
|
||||
Parameters
|
||||
----------
|
||||
returned : object to be tested, returned from boxplot
|
||||
return_type : str
|
||||
return_type passed to boxplot
|
||||
expected_keys : list-like, optional
|
||||
group labels in subplot case. If not passed,
|
||||
the function checks assuming boxplot uses single ax
|
||||
check_ax_title : bool
|
||||
Whether to check the ax.title is the same as expected_key
|
||||
Intended to be checked by calling from ``boxplot``.
|
||||
Normal ``plot`` doesn't attach ``ax.title``, it must be disabled.
|
||||
"""
|
||||
from matplotlib.axes import Axes
|
||||
|
||||
types = {"dict": dict, "axes": Axes, "both": tuple}
|
||||
if expected_keys is None:
|
||||
# should be fixed when the returning default is changed
|
||||
if return_type is None:
|
||||
return_type = "dict"
|
||||
|
||||
assert isinstance(returned, types[return_type])
|
||||
if return_type == "both":
|
||||
assert isinstance(returned.ax, Axes)
|
||||
assert isinstance(returned.lines, dict)
|
||||
else:
|
||||
# should be fixed when the returning default is changed
|
||||
if return_type is None:
|
||||
for r in self._flatten_visible(returned):
|
||||
assert isinstance(r, Axes)
|
||||
return
|
||||
|
||||
assert isinstance(returned, Series)
|
||||
|
||||
assert sorted(returned.keys()) == sorted(expected_keys)
|
||||
for key, value in returned.items():
|
||||
assert isinstance(value, types[return_type])
|
||||
# check returned dict has correct mapping
|
||||
if return_type == "axes":
|
||||
if check_ax_title:
|
||||
assert value.get_title() == key
|
||||
elif return_type == "both":
|
||||
if check_ax_title:
|
||||
assert value.ax.get_title() == key
|
||||
assert isinstance(value.ax, Axes)
|
||||
assert isinstance(value.lines, dict)
|
||||
elif return_type == "dict":
|
||||
line = value["medians"][0]
|
||||
axes = line.axes
|
||||
if check_ax_title:
|
||||
assert axes.get_title() == key
|
||||
else:
|
||||
raise AssertionError
|
||||
|
||||
def _check_grid_settings(self, obj, kinds, kws={}):
|
||||
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
|
||||
|
||||
import matplotlib as mpl
|
||||
|
||||
def is_grid_on():
|
||||
xticks = self.plt.gca().xaxis.get_major_ticks()
|
||||
yticks = self.plt.gca().yaxis.get_major_ticks()
|
||||
# for mpl 2.2.2, gridOn and gridline.get_visible disagree.
|
||||
# for new MPL, they are the same.
|
||||
|
||||
if self.mpl_ge_3_1_0:
|
||||
xoff = all(not g.gridline.get_visible() for g in xticks)
|
||||
yoff = all(not g.gridline.get_visible() for g in yticks)
|
||||
else:
|
||||
xoff = all(not g.gridOn for g in xticks)
|
||||
yoff = all(not g.gridOn for g in yticks)
|
||||
|
||||
return not (xoff and yoff)
|
||||
|
||||
spndx = 1
|
||||
for kind in kinds:
|
||||
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=False)
|
||||
obj.plot(kind=kind, **kws)
|
||||
assert not is_grid_on()
|
||||
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=True)
|
||||
obj.plot(kind=kind, grid=False, **kws)
|
||||
assert not is_grid_on()
|
||||
|
||||
if kind != "pie":
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=True)
|
||||
obj.plot(kind=kind, **kws)
|
||||
assert is_grid_on()
|
||||
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=False)
|
||||
obj.plot(kind=kind, grid=True, **kws)
|
||||
assert is_grid_on()
|
||||
|
||||
def _unpack_cycler(self, rcParams, field="color"):
|
||||
"""
|
||||
Auxiliary function for correctly unpacking cycler after MPL >= 1.5
|
||||
"""
|
||||
return [v[field] for v in rcParams["axes.prop_cycle"]]
|
||||
|
||||
|
||||
def _check_plot_works(f, filterwarnings="always", **kwargs):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
ret = None
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter(filterwarnings)
|
||||
try:
|
||||
try:
|
||||
fig = kwargs["figure"]
|
||||
except KeyError:
|
||||
fig = plt.gcf()
|
||||
|
||||
plt.clf()
|
||||
|
||||
ax = kwargs.get("ax", fig.add_subplot(211)) # noqa
|
||||
ret = f(**kwargs)
|
||||
|
||||
assert_is_valid_plot_return_object(ret)
|
||||
|
||||
try:
|
||||
kwargs["ax"] = fig.add_subplot(212)
|
||||
ret = f(**kwargs)
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
assert_is_valid_plot_return_object(ret)
|
||||
|
||||
with ensure_clean(return_filelike=True) as path:
|
||||
plt.savefig(path)
|
||||
finally:
|
||||
tm.close(fig)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def curpath():
|
||||
pth, _ = os.path.split(os.path.abspath(__file__))
|
||||
return pth
|
||||
@@ -0,0 +1,38 @@
|
||||
import pytest
|
||||
|
||||
import pandas
|
||||
|
||||
|
||||
def test_matplotlib_backend_error():
|
||||
msg = (
|
||||
"matplotlib is required for plotting when the default backend "
|
||||
'"matplotlib" is selected.'
|
||||
)
|
||||
try:
|
||||
import matplotlib # noqa
|
||||
except ImportError:
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
pandas.set_option("plotting.backend", "matplotlib")
|
||||
|
||||
|
||||
def test_backend_is_not_module():
|
||||
msg = (
|
||||
'"not_an_existing_module" does not seem to be an installed module. '
|
||||
"A pandas plotting backend must be a module that can be imported"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pandas.set_option("plotting.backend", "not_an_existing_module")
|
||||
|
||||
|
||||
def test_backend_is_correct(monkeypatch):
|
||||
monkeypatch.setattr(
|
||||
"pandas.core.config_init.importlib.import_module", lambda name: None
|
||||
)
|
||||
pandas.set_option("plotting.backend", "correct_backend")
|
||||
assert pandas.get_option("plotting.backend") == "correct_backend"
|
||||
|
||||
# Restore backend for other tests (matplotlib can be not installed)
|
||||
try:
|
||||
pandas.set_option("plotting.backend", "matplotlib")
|
||||
except ImportError:
|
||||
pass
|
||||
@@ -0,0 +1,399 @@
|
||||
# coding: utf-8
|
||||
|
||||
import itertools
|
||||
import string
|
||||
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import DataFrame, MultiIndex, Series
|
||||
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
|
||||
import pandas.util.testing as tm
|
||||
|
||||
import pandas.plotting as plotting
|
||||
|
||||
""" Test cases for .boxplot method """
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlots(TestPlotBase):
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_legacy1(self):
|
||||
df = DataFrame(
|
||||
np.random.randn(6, 4),
|
||||
index=list(string.ascii_letters[:6]),
|
||||
columns=["one", "two", "three", "four"],
|
||||
)
|
||||
df["indic"] = ["foo", "bar"] * 3
|
||||
df["indic2"] = ["foo", "bar", "foo"] * 2
|
||||
|
||||
_check_plot_works(df.boxplot, return_type="dict")
|
||||
_check_plot_works(df.boxplot, column=["one", "two"], return_type="dict")
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, column=["one", "two"], by="indic")
|
||||
_check_plot_works(df.boxplot, column="one", by=["indic", "indic2"])
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by="indic")
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by=["indic", "indic2"])
|
||||
_check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict")
|
||||
_check_plot_works(df.boxplot, notch=1, return_type="dict")
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by="indic", notch=1)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_legacy2(self):
|
||||
df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
|
||||
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
||||
df["Y"] = Series(["A"] * 10)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by="X")
|
||||
|
||||
# When ax is supplied and required number of axes is 1,
|
||||
# passed ax should be used:
|
||||
fig, ax = self.plt.subplots()
|
||||
axes = df.boxplot("Col1", by="X", ax=ax)
|
||||
ax_axes = ax.axes
|
||||
assert ax_axes is axes
|
||||
|
||||
fig, ax = self.plt.subplots()
|
||||
axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
|
||||
ax_axes = ax.axes
|
||||
assert ax_axes is axes["A"]
|
||||
|
||||
# Multiple columns with an ax argument should use same figure
|
||||
fig, ax = self.plt.subplots()
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = df.boxplot(
|
||||
column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
|
||||
)
|
||||
assert axes["Col1"].get_figure() is fig
|
||||
|
||||
# When by is None, check that all relevant lines are present in the
|
||||
# dict
|
||||
fig, ax = self.plt.subplots()
|
||||
d = df.boxplot(ax=ax, return_type="dict")
|
||||
lines = list(itertools.chain.from_iterable(d.values()))
|
||||
assert len(ax.get_lines()) == len(lines)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_return_type_none(self):
|
||||
# GH 12216; return_type=None & by=None -> axes
|
||||
result = self.hist_df.boxplot()
|
||||
assert isinstance(result, self.plt.Axes)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_return_type_legacy(self):
|
||||
# API change in https://github.com/pandas-dev/pandas/pull/7096
|
||||
import matplotlib as mpl # noqa
|
||||
|
||||
df = DataFrame(
|
||||
np.random.randn(6, 4),
|
||||
index=list(string.ascii_letters[:6]),
|
||||
columns=["one", "two", "three", "four"],
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
df.boxplot(return_type="NOTATYPE")
|
||||
|
||||
result = df.boxplot()
|
||||
self._check_box_return_type(result, "axes")
|
||||
|
||||
with tm.assert_produces_warning(False):
|
||||
result = df.boxplot(return_type="dict")
|
||||
self._check_box_return_type(result, "dict")
|
||||
|
||||
with tm.assert_produces_warning(False):
|
||||
result = df.boxplot(return_type="axes")
|
||||
self._check_box_return_type(result, "axes")
|
||||
|
||||
with tm.assert_produces_warning(False):
|
||||
result = df.boxplot(return_type="both")
|
||||
self._check_box_return_type(result, "both")
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_axis_limits(self):
|
||||
def _check_ax_limits(col, ax):
|
||||
y_min, y_max = ax.get_ylim()
|
||||
assert y_min <= col.min()
|
||||
assert y_max >= col.max()
|
||||
|
||||
df = self.hist_df.copy()
|
||||
df["age"] = np.random.randint(1, 20, df.shape[0])
|
||||
# One full row
|
||||
height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
|
||||
_check_ax_limits(df["height"], height_ax)
|
||||
_check_ax_limits(df["weight"], weight_ax)
|
||||
assert weight_ax._sharey == height_ax
|
||||
|
||||
# Two rows, one partial
|
||||
p = df.boxplot(["height", "weight", "age"], by="category")
|
||||
height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
|
||||
dummy_ax = p[1, 1]
|
||||
|
||||
_check_ax_limits(df["height"], height_ax)
|
||||
_check_ax_limits(df["weight"], weight_ax)
|
||||
_check_ax_limits(df["age"], age_ax)
|
||||
assert weight_ax._sharey == height_ax
|
||||
assert age_ax._sharey == height_ax
|
||||
assert dummy_ax._sharey is None
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_empty_column(self):
|
||||
df = DataFrame(np.random.randn(20, 4))
|
||||
df.loc[:, 0] = np.nan
|
||||
_check_plot_works(df.boxplot, return_type="axes")
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_figsize(self):
|
||||
df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
|
||||
result = df.boxplot(return_type="axes", figsize=(12, 8))
|
||||
assert result.figure.bbox_inches.width == 12
|
||||
assert result.figure.bbox_inches.height == 8
|
||||
|
||||
def test_fontsize(self):
|
||||
df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
|
||||
self._check_ticks_props(
|
||||
df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16
|
||||
)
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFrameGroupByPlots(TestPlotBase):
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_legacy1(self):
|
||||
grouped = self.hist_df.groupby(by="gender")
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
||||
self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
|
||||
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_legacy2(self):
|
||||
tuples = zip(string.ascii_letters[:10], range(10))
|
||||
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
|
||||
grouped = df.groupby(level=1)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
||||
self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
|
||||
|
||||
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_legacy3(self):
|
||||
tuples = zip(string.ascii_letters[:10], range(10))
|
||||
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
|
||||
grouped = df.unstack(level=1).groupby(level=0, axis=1)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
||||
self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
|
||||
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_grouped_plot_fignums(self):
|
||||
n = 10
|
||||
weight = Series(np.random.normal(166, 20, size=n))
|
||||
height = Series(np.random.normal(60, 10, size=n))
|
||||
with tm.RNGContext(42):
|
||||
gender = np.random.choice(["male", "female"], size=n)
|
||||
df = DataFrame({"height": height, "weight": weight, "gender": gender})
|
||||
gb = df.groupby("gender")
|
||||
|
||||
res = gb.plot()
|
||||
assert len(self.plt.get_fignums()) == 2
|
||||
assert len(res) == 2
|
||||
tm.close()
|
||||
|
||||
res = gb.boxplot(return_type="axes")
|
||||
assert len(self.plt.get_fignums()) == 1
|
||||
assert len(res) == 2
|
||||
tm.close()
|
||||
|
||||
# now works with GH 5610 as gender is excluded
|
||||
res = df.groupby("gender").hist()
|
||||
tm.close()
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_grouped_box_return_type(self):
|
||||
df = self.hist_df
|
||||
|
||||
# old style: return_type=None
|
||||
result = df.boxplot(by="gender")
|
||||
assert isinstance(result, np.ndarray)
|
||||
self._check_box_return_type(
|
||||
result, None, expected_keys=["height", "weight", "category"]
|
||||
)
|
||||
|
||||
# now for groupby
|
||||
result = df.groupby("gender").boxplot(return_type="dict")
|
||||
self._check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
|
||||
|
||||
columns2 = "X B C D A G Y N Q O".split()
|
||||
df2 = DataFrame(random.randn(50, 10), columns=columns2)
|
||||
categories2 = "A B C D E F G H I J".split()
|
||||
df2["category"] = categories2 * 5
|
||||
|
||||
for t in ["dict", "axes", "both"]:
|
||||
returned = df.groupby("classroom").boxplot(return_type=t)
|
||||
self._check_box_return_type(returned, t, expected_keys=["A", "B", "C"])
|
||||
|
||||
returned = df.boxplot(by="classroom", return_type=t)
|
||||
self._check_box_return_type(
|
||||
returned, t, expected_keys=["height", "weight", "category"]
|
||||
)
|
||||
|
||||
returned = df2.groupby("category").boxplot(return_type=t)
|
||||
self._check_box_return_type(returned, t, expected_keys=categories2)
|
||||
|
||||
returned = df2.boxplot(by="category", return_type=t)
|
||||
self._check_box_return_type(returned, t, expected_keys=columns2)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_grouped_box_layout(self):
|
||||
df = self.hist_df
|
||||
|
||||
msg = "Layout of 1x1 must be larger than required size 2"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
|
||||
|
||||
msg = "The 'layout' keyword is not supported when 'by' is None"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(
|
||||
column=["height", "weight", "category"],
|
||||
layout=(2, 1),
|
||||
return_type="dict",
|
||||
)
|
||||
|
||||
msg = "At least one dimension of layout must be positive"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
|
||||
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("gender").boxplot, column="height", return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("category").boxplot, column="height", return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
# GH 6769
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("classroom").boxplot, column="height", return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
# GH 5897
|
||||
axes = df.boxplot(
|
||||
column=["height", "weight", "category"], by="gender", return_type="axes"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
||||
for ax in [axes["height"]]:
|
||||
self._check_visible(ax.get_xticklabels(), visible=False)
|
||||
self._check_visible([ax.xaxis.get_label()], visible=False)
|
||||
for ax in [axes["weight"], axes["category"]]:
|
||||
self._check_visible(ax.get_xticklabels())
|
||||
self._check_visible([ax.xaxis.get_label()])
|
||||
|
||||
box = df.groupby("classroom").boxplot(
|
||||
column=["height", "weight", "category"], return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("category").boxplot,
|
||||
column="height",
|
||||
layout=(3, 2),
|
||||
return_type="dict",
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("category").boxplot,
|
||||
column="height",
|
||||
layout=(3, -1),
|
||||
return_type="dict",
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
|
||||
|
||||
box = df.boxplot(
|
||||
column=["height", "weight", "category"], by="gender", layout=(4, 1)
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
|
||||
|
||||
box = df.boxplot(
|
||||
column=["height", "weight", "category"], by="gender", layout=(-1, 1)
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
|
||||
|
||||
box = df.groupby("classroom").boxplot(
|
||||
column=["height", "weight", "category"], layout=(1, 4), return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
|
||||
|
||||
box = df.groupby("classroom").boxplot( # noqa
|
||||
column=["height", "weight", "category"], layout=(1, -1), return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_grouped_box_multiple_axes(self):
|
||||
# GH 6970, GH 7069
|
||||
df = self.hist_df
|
||||
|
||||
# check warning to ignore sharex / sharey
|
||||
# this check should be done in the first function which
|
||||
# passes multiple axes to plot, hist or boxplot
|
||||
# location should be changed if other test is added
|
||||
# which has earlier alphabetical order
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
fig, axes = self.plt.subplots(2, 2)
|
||||
df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
returned = df.boxplot(
|
||||
column=["height", "weight", "category"],
|
||||
by="gender",
|
||||
return_type="axes",
|
||||
ax=axes[0],
|
||||
)
|
||||
returned = np.array(list(returned.values))
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[0])
|
||||
assert returned[0].figure is fig
|
||||
|
||||
# draw on second row
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
returned = df.groupby("classroom").boxplot(
|
||||
column=["height", "weight", "category"], return_type="axes", ax=axes[1]
|
||||
)
|
||||
returned = np.array(list(returned.values))
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[1])
|
||||
assert returned[0].figure is fig
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
# pass different number of axes from required
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = df.groupby("classroom").boxplot(ax=axes)
|
||||
|
||||
def test_fontsize(self):
|
||||
df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
|
||||
self._check_ticks_props(
|
||||
df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
|
||||
)
|
||||
@@ -0,0 +1,375 @@
|
||||
from datetime import date, datetime
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas._config.config as cf
|
||||
|
||||
from pandas.compat.numpy import np_datetime64_compat
|
||||
|
||||
from pandas import Index, Period, Series, Timestamp, date_range
|
||||
import pandas.util.testing as tm
|
||||
|
||||
from pandas.plotting import (
|
||||
deregister_matplotlib_converters,
|
||||
register_matplotlib_converters,
|
||||
)
|
||||
from pandas.tseries.offsets import Day, Micro, Milli, Second
|
||||
|
||||
try:
|
||||
from pandas.plotting._matplotlib import converter
|
||||
except ImportError:
|
||||
# try / except, rather than skip, to avoid internal refactoring
|
||||
# causing an improprer skip
|
||||
pass
|
||||
|
||||
pytest.importorskip("matplotlib.pyplot")
|
||||
|
||||
|
||||
def test_initial_warning():
|
||||
code = (
|
||||
"import pandas as pd; import matplotlib.pyplot as plt; "
|
||||
"s = pd.Series(1, pd.date_range('2000', periods=12)); "
|
||||
"fig, ax = plt.subplots(); "
|
||||
"ax.plot(s.index, s.values)"
|
||||
)
|
||||
call = [sys.executable, "-c", code]
|
||||
out = subprocess.check_output(call, stderr=subprocess.STDOUT).decode()
|
||||
assert "Using an implicitly" in out
|
||||
|
||||
|
||||
def test_timtetonum_accepts_unicode():
|
||||
assert converter.time2num("00:01") == converter.time2num("00:01")
|
||||
|
||||
|
||||
class TestRegistration:
|
||||
def test_register_by_default(self):
|
||||
# Run in subprocess to ensure a clean state
|
||||
code = (
|
||||
"'import matplotlib.units; "
|
||||
"import pandas as pd; "
|
||||
"units = dict(matplotlib.units.registry); "
|
||||
"assert pd.Timestamp in units)'"
|
||||
)
|
||||
call = [sys.executable, "-c", code]
|
||||
assert subprocess.check_call(call) == 0
|
||||
|
||||
def test_warns(self):
|
||||
plt = pytest.importorskip("matplotlib.pyplot")
|
||||
s = Series(range(12), index=date_range("2017", periods=12))
|
||||
_, ax = plt.subplots()
|
||||
|
||||
# Set to the "warning" state, in case this isn't the first test run
|
||||
converter._WARN = True
|
||||
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False) as w:
|
||||
ax.plot(s.index, s.values)
|
||||
plt.close()
|
||||
|
||||
assert len(w) == 1
|
||||
assert "Using an implicitly registered datetime converter" in str(w[0])
|
||||
|
||||
def test_registering_no_warning(self):
|
||||
plt = pytest.importorskip("matplotlib.pyplot")
|
||||
s = Series(range(12), index=date_range("2017", periods=12))
|
||||
_, ax = plt.subplots()
|
||||
|
||||
# Set to the "warn" state, in case this isn't the first test run
|
||||
converter._WARN = True
|
||||
register_matplotlib_converters()
|
||||
with tm.assert_produces_warning(None) as w:
|
||||
ax.plot(s.index, s.values)
|
||||
|
||||
assert len(w) == 0
|
||||
|
||||
def test_pandas_plots_register(self):
|
||||
pytest.importorskip("matplotlib.pyplot")
|
||||
s = Series(range(12), index=date_range("2017", periods=12))
|
||||
# Set to the "warn" state, in case this isn't the first test run
|
||||
converter._WARN = True
|
||||
with tm.assert_produces_warning(None) as w:
|
||||
s.plot()
|
||||
|
||||
assert len(w) == 0
|
||||
|
||||
def test_matplotlib_formatters(self):
|
||||
units = pytest.importorskip("matplotlib.units")
|
||||
assert Timestamp in units.registry
|
||||
|
||||
ctx = cf.option_context("plotting.matplotlib.register_converters", False)
|
||||
with ctx:
|
||||
assert Timestamp not in units.registry
|
||||
|
||||
assert Timestamp in units.registry
|
||||
|
||||
def test_option_no_warning(self):
|
||||
pytest.importorskip("matplotlib.pyplot")
|
||||
ctx = cf.option_context("plotting.matplotlib.register_converters", False)
|
||||
plt = pytest.importorskip("matplotlib.pyplot")
|
||||
s = Series(range(12), index=date_range("2017", periods=12))
|
||||
_, ax = plt.subplots()
|
||||
|
||||
converter._WARN = True
|
||||
# Test without registering first, no warning
|
||||
with ctx:
|
||||
with tm.assert_produces_warning(None) as w:
|
||||
ax.plot(s.index, s.values)
|
||||
|
||||
assert len(w) == 0
|
||||
|
||||
# Now test with registering
|
||||
converter._WARN = True
|
||||
register_matplotlib_converters()
|
||||
with ctx:
|
||||
with tm.assert_produces_warning(None) as w:
|
||||
ax.plot(s.index, s.values)
|
||||
|
||||
assert len(w) == 0
|
||||
|
||||
def test_registry_resets(self):
|
||||
units = pytest.importorskip("matplotlib.units")
|
||||
dates = pytest.importorskip("matplotlib.dates")
|
||||
|
||||
# make a copy, to reset to
|
||||
original = dict(units.registry)
|
||||
|
||||
try:
|
||||
# get to a known state
|
||||
units.registry.clear()
|
||||
date_converter = dates.DateConverter()
|
||||
units.registry[datetime] = date_converter
|
||||
units.registry[date] = date_converter
|
||||
|
||||
register_matplotlib_converters()
|
||||
assert units.registry[date] is not date_converter
|
||||
deregister_matplotlib_converters()
|
||||
assert units.registry[date] is date_converter
|
||||
|
||||
finally:
|
||||
# restore original stater
|
||||
units.registry.clear()
|
||||
for k, v in original.items():
|
||||
units.registry[k] = v
|
||||
|
||||
def test_old_import_warns(self):
|
||||
with tm.assert_produces_warning(FutureWarning) as w:
|
||||
from pandas.tseries import converter
|
||||
|
||||
converter.register()
|
||||
|
||||
assert len(w)
|
||||
assert "pandas.plotting.register_matplotlib_converters" in str(w[0].message)
|
||||
|
||||
|
||||
class TestDateTimeConverter:
|
||||
def setup_method(self, method):
|
||||
self.dtc = converter.DatetimeConverter()
|
||||
self.tc = converter.TimeFormatter(None)
|
||||
|
||||
def test_convert_accepts_unicode(self):
|
||||
r1 = self.dtc.convert("12:22", None, None)
|
||||
r2 = self.dtc.convert("12:22", None, None)
|
||||
assert r1 == r2, "DatetimeConverter.convert should accept unicode"
|
||||
|
||||
def test_conversion(self):
|
||||
rs = self.dtc.convert(["2012-1-1"], None, None)[0]
|
||||
xp = datetime(2012, 1, 1).toordinal()
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert("2012-1-1", None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(date(2012, 1, 1), None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(datetime(2012, 1, 1).toordinal(), None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert("2012-1-1", None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(Timestamp("2012-1-1"), None, None)
|
||||
assert rs == xp
|
||||
|
||||
# also testing datetime64 dtype (GH8614)
|
||||
rs = self.dtc.convert(np_datetime64_compat("2012-01-01"), None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(
|
||||
np_datetime64_compat("2012-01-01 00:00:00+0000"), None, None
|
||||
)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(
|
||||
np.array(
|
||||
[
|
||||
np_datetime64_compat("2012-01-01 00:00:00+0000"),
|
||||
np_datetime64_compat("2012-01-02 00:00:00+0000"),
|
||||
]
|
||||
),
|
||||
None,
|
||||
None,
|
||||
)
|
||||
assert rs[0] == xp
|
||||
|
||||
# we have a tz-aware date (constructed to that when we turn to utc it
|
||||
# is the same as our sample)
|
||||
ts = Timestamp("2012-01-01").tz_localize("UTC").tz_convert("US/Eastern")
|
||||
rs = self.dtc.convert(ts, None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(ts.to_pydatetime(), None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(Index([ts - Day(1), ts]), None, None)
|
||||
assert rs[1] == xp
|
||||
|
||||
rs = self.dtc.convert(Index([ts - Day(1), ts]).to_pydatetime(), None, None)
|
||||
assert rs[1] == xp
|
||||
|
||||
def test_conversion_float(self):
|
||||
decimals = 9
|
||||
|
||||
rs = self.dtc.convert(Timestamp("2012-1-1 01:02:03", tz="UTC"), None, None)
|
||||
xp = converter.dates.date2num(Timestamp("2012-1-1 01:02:03", tz="UTC"))
|
||||
tm.assert_almost_equal(rs, xp, decimals)
|
||||
|
||||
rs = self.dtc.convert(
|
||||
Timestamp("2012-1-1 09:02:03", tz="Asia/Hong_Kong"), None, None
|
||||
)
|
||||
tm.assert_almost_equal(rs, xp, decimals)
|
||||
|
||||
rs = self.dtc.convert(datetime(2012, 1, 1, 1, 2, 3), None, None)
|
||||
tm.assert_almost_equal(rs, xp, decimals)
|
||||
|
||||
def test_conversion_outofbounds_datetime(self):
|
||||
# 2579
|
||||
values = [date(1677, 1, 1), date(1677, 1, 2)]
|
||||
rs = self.dtc.convert(values, None, None)
|
||||
xp = converter.dates.date2num(values)
|
||||
tm.assert_numpy_array_equal(rs, xp)
|
||||
rs = self.dtc.convert(values[0], None, None)
|
||||
xp = converter.dates.date2num(values[0])
|
||||
assert rs == xp
|
||||
|
||||
values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
|
||||
rs = self.dtc.convert(values, None, None)
|
||||
xp = converter.dates.date2num(values)
|
||||
tm.assert_numpy_array_equal(rs, xp)
|
||||
rs = self.dtc.convert(values[0], None, None)
|
||||
xp = converter.dates.date2num(values[0])
|
||||
assert rs == xp
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"time,format_expected",
|
||||
[
|
||||
(0, "00:00"), # time2num(datetime.time.min)
|
||||
(86399.999999, "23:59:59.999999"), # time2num(datetime.time.max)
|
||||
(90000, "01:00"),
|
||||
(3723, "01:02:03"),
|
||||
(39723.2, "11:02:03.200"),
|
||||
],
|
||||
)
|
||||
def test_time_formatter(self, time, format_expected):
|
||||
# issue 18478
|
||||
result = self.tc(time)
|
||||
assert result == format_expected
|
||||
|
||||
def test_dateindex_conversion(self):
|
||||
decimals = 9
|
||||
|
||||
for freq in ("B", "L", "S"):
|
||||
dateindex = tm.makeDateIndex(k=10, freq=freq)
|
||||
rs = self.dtc.convert(dateindex, None, None)
|
||||
xp = converter.dates.date2num(dateindex._mpl_repr())
|
||||
tm.assert_almost_equal(rs, xp, decimals)
|
||||
|
||||
def test_resolution(self):
|
||||
def _assert_less(ts1, ts2):
|
||||
val1 = self.dtc.convert(ts1, None, None)
|
||||
val2 = self.dtc.convert(ts2, None, None)
|
||||
if not val1 < val2:
|
||||
raise AssertionError("{0} is not less than {1}.".format(val1, val2))
|
||||
|
||||
# Matplotlib's time representation using floats cannot distinguish
|
||||
# intervals smaller than ~10 microsecond in the common range of years.
|
||||
ts = Timestamp("2012-1-1")
|
||||
_assert_less(ts, ts + Second())
|
||||
_assert_less(ts, ts + Milli())
|
||||
_assert_less(ts, ts + Micro(50))
|
||||
|
||||
def test_convert_nested(self):
|
||||
inner = [Timestamp("2017-01-01"), Timestamp("2017-01-02")]
|
||||
data = [inner, inner]
|
||||
result = self.dtc.convert(data, None, None)
|
||||
expected = [self.dtc.convert(x, None, None) for x in data]
|
||||
assert (np.array(result) == expected).all()
|
||||
|
||||
|
||||
class TestPeriodConverter:
|
||||
def setup_method(self, method):
|
||||
self.pc = converter.PeriodConverter()
|
||||
|
||||
class Axis:
|
||||
pass
|
||||
|
||||
self.axis = Axis()
|
||||
self.axis.freq = "D"
|
||||
|
||||
def test_convert_accepts_unicode(self):
|
||||
r1 = self.pc.convert("2012-1-1", None, self.axis)
|
||||
r2 = self.pc.convert("2012-1-1", None, self.axis)
|
||||
assert r1 == r2
|
||||
|
||||
def test_conversion(self):
|
||||
rs = self.pc.convert(["2012-1-1"], None, self.axis)[0]
|
||||
xp = Period("2012-1-1").ordinal
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert("2012-1-1", None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert([date(2012, 1, 1)], None, self.axis)[0]
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(date(2012, 1, 1), None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert([Timestamp("2012-1-1")], None, self.axis)[0]
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(Timestamp("2012-1-1"), None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(np_datetime64_compat("2012-01-01"), None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(
|
||||
np_datetime64_compat("2012-01-01 00:00:00+0000"), None, self.axis
|
||||
)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(
|
||||
np.array(
|
||||
[
|
||||
np_datetime64_compat("2012-01-01 00:00:00+0000"),
|
||||
np_datetime64_compat("2012-01-02 00:00:00+0000"),
|
||||
]
|
||||
),
|
||||
None,
|
||||
self.axis,
|
||||
)
|
||||
assert rs[0] == xp
|
||||
|
||||
def test_integer_passthrough(self):
|
||||
# GH9012
|
||||
rs = self.pc.convert([0, 1], None, self.axis)
|
||||
xp = [0, 1]
|
||||
assert rs == xp
|
||||
|
||||
def test_convert_nested(self):
|
||||
data = ["2012-1-1", "2012-1-2"]
|
||||
r1 = self.pc.convert([data, data], None, self.axis)
|
||||
r2 = [self.pc.convert(data, None, self.axis) for _ in range(2)]
|
||||
assert r1 == r2
|
||||
File diff suppressed because it is too large
Load Diff
3167
venv/lib/python3.6/site-packages/pandas/tests/plotting/test_frame.py
Normal file
3167
venv/lib/python3.6/site-packages/pandas/tests/plotting/test_frame.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,69 @@
|
||||
# coding: utf-8
|
||||
|
||||
""" Test cases for GroupBy.plot """
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.tests.plotting.common import TestPlotBase
|
||||
import pandas.util.testing as tm
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFrameGroupByPlots(TestPlotBase):
|
||||
def test_series_groupby_plotting_nominally_works(self):
|
||||
n = 10
|
||||
weight = Series(np.random.normal(166, 20, size=n))
|
||||
height = Series(np.random.normal(60, 10, size=n))
|
||||
with tm.RNGContext(42):
|
||||
gender = np.random.choice(["male", "female"], size=n)
|
||||
|
||||
weight.groupby(gender).plot()
|
||||
tm.close()
|
||||
height.groupby(gender).hist()
|
||||
tm.close()
|
||||
# Regression test for GH8733
|
||||
height.groupby(gender).plot(alpha=0.5)
|
||||
tm.close()
|
||||
|
||||
def test_plotting_with_float_index_works(self):
|
||||
# GH 7025
|
||||
df = DataFrame(
|
||||
{"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)},
|
||||
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
|
||||
)
|
||||
|
||||
df.groupby("def")["val"].plot()
|
||||
tm.close()
|
||||
df.groupby("def")["val"].apply(lambda x: x.plot())
|
||||
tm.close()
|
||||
|
||||
def test_hist_single_row(self):
|
||||
# GH10214
|
||||
bins = np.arange(80, 100 + 2, 1)
|
||||
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]})
|
||||
df["Mark"].hist(by=df["ByCol"], bins=bins)
|
||||
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]})
|
||||
df["Mark"].hist(by=df["ByCol"], bins=bins)
|
||||
|
||||
def test_plot_submethod_works(self):
|
||||
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
|
||||
df.groupby("z").plot.scatter("x", "y")
|
||||
tm.close()
|
||||
df.groupby("z")["x"].plot.line()
|
||||
tm.close()
|
||||
|
||||
def test_plot_kwargs(self):
|
||||
|
||||
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
|
||||
|
||||
res = df.groupby("z").plot(kind="scatter", x="x", y="y")
|
||||
# check that a scatter plot is effectively plotted: the axes should
|
||||
# contain a PathCollection from the scatter plot (GH11805)
|
||||
assert len(res["a"].collections) == 1
|
||||
|
||||
res = df.groupby("z").plot.scatter(x="x", y="y")
|
||||
assert len(res["a"].collections) == 1
|
||||
@@ -0,0 +1,445 @@
|
||||
# coding: utf-8
|
||||
|
||||
""" Test cases for .hist method """
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import randn
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
|
||||
import pandas.util.testing as tm
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestSeriesPlots(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.ts = tm.makeTimeSeries()
|
||||
self.ts.name = "ts"
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_legacy(self):
|
||||
_check_plot_works(self.ts.hist)
|
||||
_check_plot_works(self.ts.hist, grid=False)
|
||||
_check_plot_works(self.ts.hist, figsize=(8, 10))
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.ts.hist, by=self.ts.index.month)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
|
||||
|
||||
fig, ax = self.plt.subplots(1, 1)
|
||||
_check_plot_works(self.ts.hist, ax=ax)
|
||||
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
|
||||
_check_plot_works(self.ts.hist, figure=fig)
|
||||
tm.close()
|
||||
|
||||
fig, (ax1, ax2) = self.plt.subplots(1, 2)
|
||||
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
|
||||
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
self.ts.hist(by=self.ts.index, figure=fig)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_bins_legacy(self):
|
||||
df = DataFrame(np.random.randn(10, 2))
|
||||
ax = df.hist(bins=2)[0][0]
|
||||
assert len(ax.patches) == 2
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_layout(self):
|
||||
df = self.hist_df
|
||||
with pytest.raises(ValueError):
|
||||
df.height.hist(layout=(1, 1))
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
df.height.hist(layout=[1, 1])
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_layout_with_by(self):
|
||||
df = self.hist_df
|
||||
|
||||
# _check_plot_works adds an `ax` kwarg to the method call
|
||||
# so we get a warning about an axis being cleared, even
|
||||
# though we don't explicing pass one, see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_no_overlap(self):
|
||||
from matplotlib.pyplot import subplot, gcf
|
||||
|
||||
x = Series(randn(2))
|
||||
y = Series(randn(2))
|
||||
subplot(121)
|
||||
x.hist()
|
||||
subplot(122)
|
||||
y.hist()
|
||||
fig = gcf()
|
||||
axes = fig.axes
|
||||
assert len(axes) == 2
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_by_no_extra_plots(self):
|
||||
df = self.hist_df
|
||||
axes = df.height.hist(by=df.gender) # noqa
|
||||
assert len(self.plt.get_fignums()) == 1
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_plot_fails_when_ax_differs_from_figure(self):
|
||||
from pylab import figure
|
||||
|
||||
fig1 = figure()
|
||||
fig2 = figure()
|
||||
ax1 = fig1.add_subplot(111)
|
||||
with pytest.raises(AssertionError):
|
||||
self.ts.hist(ax=ax1, figure=fig2)
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlots(TestPlotBase):
|
||||
@pytest.mark.slow
|
||||
def test_hist_df_legacy(self):
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.hist_df.hist)
|
||||
|
||||
# make sure layout is handled
|
||||
df = DataFrame(randn(100, 3))
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.hist, grid=False)
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
assert not axes[1, 1].get_visible()
|
||||
|
||||
df = DataFrame(randn(100, 1))
|
||||
_check_plot_works(df.hist)
|
||||
|
||||
# make sure layout is handled
|
||||
df = DataFrame(randn(100, 6))
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.hist, layout=(4, 2))
|
||||
self._check_axes_shape(axes, axes_num=6, layout=(4, 2))
|
||||
|
||||
# make sure sharex, sharey is handled
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.hist, sharex=True, sharey=True)
|
||||
|
||||
# handle figsize arg
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.hist, figsize=(8, 10))
|
||||
|
||||
# check bins argument
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.hist, bins=5)
|
||||
|
||||
# make sure xlabelsize and xrot are handled
|
||||
ser = df[0]
|
||||
xf, yf = 20, 18
|
||||
xrot, yrot = 30, 40
|
||||
axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
|
||||
self._check_ticks_props(
|
||||
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
|
||||
)
|
||||
|
||||
xf, yf = 20, 18
|
||||
xrot, yrot = 30, 40
|
||||
axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
|
||||
self._check_ticks_props(
|
||||
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
|
||||
)
|
||||
|
||||
tm.close()
|
||||
|
||||
ax = ser.hist(cumulative=True, bins=4, density=True)
|
||||
# height of last bin (index 5) must be 1.0
|
||||
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
|
||||
tm.assert_almost_equal(rects[-1].get_height(), 1.0)
|
||||
|
||||
tm.close()
|
||||
ax = ser.hist(log=True)
|
||||
# scale of y must be 'log'
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
|
||||
tm.close()
|
||||
|
||||
# propagate attr exception from matplotlib.Axes.hist
|
||||
with pytest.raises(AttributeError):
|
||||
ser.hist(foo="bar")
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_non_numerical_raises(self):
|
||||
# gh-10444
|
||||
df = DataFrame(np.random.rand(10, 2))
|
||||
df_o = df.astype(np.object)
|
||||
|
||||
msg = "hist method requires numerical columns, nothing to plot."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df_o.hist()
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_layout(self):
|
||||
df = DataFrame(randn(100, 3))
|
||||
|
||||
layout_to_expected_size = (
|
||||
{"layout": None, "expected_size": (2, 2)}, # default is 2x2
|
||||
{"layout": (2, 2), "expected_size": (2, 2)},
|
||||
{"layout": (4, 1), "expected_size": (4, 1)},
|
||||
{"layout": (1, 4), "expected_size": (1, 4)},
|
||||
{"layout": (3, 3), "expected_size": (3, 3)},
|
||||
{"layout": (-1, 4), "expected_size": (1, 4)},
|
||||
{"layout": (4, -1), "expected_size": (4, 1)},
|
||||
{"layout": (-1, 2), "expected_size": (2, 2)},
|
||||
{"layout": (2, -1), "expected_size": (2, 2)},
|
||||
)
|
||||
|
||||
for layout_test in layout_to_expected_size:
|
||||
axes = df.hist(layout=layout_test["layout"])
|
||||
expected = layout_test["expected_size"]
|
||||
self._check_axes_shape(axes, axes_num=3, layout=expected)
|
||||
|
||||
# layout too small for all 4 plots
|
||||
with pytest.raises(ValueError):
|
||||
df.hist(layout=(1, 1))
|
||||
|
||||
# invalid format for layout
|
||||
with pytest.raises(ValueError):
|
||||
df.hist(layout=(1,))
|
||||
with pytest.raises(ValueError):
|
||||
df.hist(layout=(-1, -1))
|
||||
|
||||
@pytest.mark.slow
|
||||
# GH 9351
|
||||
def test_tight_layout(self):
|
||||
df = DataFrame(randn(100, 3))
|
||||
_check_plot_works(df.hist)
|
||||
self.plt.tight_layout()
|
||||
|
||||
tm.close()
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFrameGroupByPlots(TestPlotBase):
|
||||
@pytest.mark.slow
|
||||
def test_grouped_hist_legacy(self):
|
||||
from matplotlib.patches import Rectangle
|
||||
from pandas.plotting._matplotlib.hist import _grouped_hist
|
||||
|
||||
df = DataFrame(randn(500, 2), columns=["A", "B"])
|
||||
df["C"] = np.random.randint(0, 4, 500)
|
||||
df["D"] = ["X"] * 500
|
||||
|
||||
axes = _grouped_hist(df.A, by=df.C)
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
tm.close()
|
||||
axes = df.hist(by=df.C)
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
tm.close()
|
||||
# group by a key with single value
|
||||
axes = df.hist(by="D", rot=30)
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
self._check_ticks_props(axes, xrot=30)
|
||||
|
||||
tm.close()
|
||||
# make sure kwargs to hist are handled
|
||||
xf, yf = 20, 18
|
||||
xrot, yrot = 30, 40
|
||||
|
||||
axes = _grouped_hist(
|
||||
df.A,
|
||||
by=df.C,
|
||||
cumulative=True,
|
||||
bins=4,
|
||||
xlabelsize=xf,
|
||||
xrot=xrot,
|
||||
ylabelsize=yf,
|
||||
yrot=yrot,
|
||||
density=True,
|
||||
)
|
||||
# height of last bin (index 5) must be 1.0
|
||||
for ax in axes.ravel():
|
||||
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
|
||||
height = rects[-1].get_height()
|
||||
tm.assert_almost_equal(height, 1.0)
|
||||
self._check_ticks_props(
|
||||
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
|
||||
)
|
||||
|
||||
tm.close()
|
||||
axes = _grouped_hist(df.A, by=df.C, log=True)
|
||||
# scale of y must be 'log'
|
||||
self._check_ax_scales(axes, yaxis="log")
|
||||
|
||||
tm.close()
|
||||
# propagate attr exception from matplotlib.Axes.hist
|
||||
with pytest.raises(AttributeError):
|
||||
_grouped_hist(df.A, by=df.C, foo="bar")
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
df.hist(by="C", figsize="default")
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_grouped_hist_legacy2(self):
|
||||
n = 10
|
||||
weight = Series(np.random.normal(166, 20, size=n))
|
||||
height = Series(np.random.normal(60, 10, size=n))
|
||||
with tm.RNGContext(42):
|
||||
gender_int = np.random.choice([0, 1], size=n)
|
||||
df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int})
|
||||
gb = df_int.groupby("gender")
|
||||
axes = gb.hist()
|
||||
assert len(axes) == 2
|
||||
assert len(self.plt.get_fignums()) == 2
|
||||
tm.close()
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_grouped_hist_layout(self):
|
||||
df = self.hist_df
|
||||
msg = "Layout of 1x1 must be larger than required size 2"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(column="weight", by=df.gender, layout=(1, 1))
|
||||
|
||||
msg = "Layout of 1x3 must be larger than required size 4"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(column="height", by=df.category, layout=(1, 3))
|
||||
|
||||
msg = "At least one dimension of layout must be positive"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(column="height", by=df.category, layout=(-1, -1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
df.hist, column="height", by=df.gender, layout=(2, 1)
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
df.hist, column="height", by=df.gender, layout=(2, -1)
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
|
||||
|
||||
axes = df.hist(column="height", by=df.category, layout=(4, 1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
|
||||
|
||||
axes = df.hist(column="height", by=df.category, layout=(-1, 1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
|
||||
|
||||
axes = df.hist(column="height", by=df.category, layout=(4, 2), figsize=(12, 8))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 8))
|
||||
tm.close()
|
||||
|
||||
# GH 6769
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
df.hist, column="height", by="classroom", layout=(2, 2)
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
# without column
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.hist, by="classroom")
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
axes = df.hist(by="gender", layout=(3, 5))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(3, 5))
|
||||
|
||||
axes = df.hist(column=["height", "weight", "category"])
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_grouped_hist_multiple_axes(self):
|
||||
# GH 6970, GH 7069
|
||||
df = self.hist_df
|
||||
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
returned = df.hist(column=["height", "weight", "category"], ax=axes[0])
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[0])
|
||||
assert returned[0].figure is fig
|
||||
returned = df.hist(by="classroom", ax=axes[1])
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[1])
|
||||
assert returned[0].figure is fig
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
# pass different number of axes from required
|
||||
axes = df.hist(column="height", ax=axes)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_axis_share_x(self):
|
||||
df = self.hist_df
|
||||
# GH4089
|
||||
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True)
|
||||
|
||||
# share x
|
||||
assert ax1._shared_x_axes.joined(ax1, ax2)
|
||||
assert ax2._shared_x_axes.joined(ax1, ax2)
|
||||
|
||||
# don't share y
|
||||
assert not ax1._shared_y_axes.joined(ax1, ax2)
|
||||
assert not ax2._shared_y_axes.joined(ax1, ax2)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_axis_share_y(self):
|
||||
df = self.hist_df
|
||||
ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True)
|
||||
|
||||
# share y
|
||||
assert ax1._shared_y_axes.joined(ax1, ax2)
|
||||
assert ax2._shared_y_axes.joined(ax1, ax2)
|
||||
|
||||
# don't share x
|
||||
assert not ax1._shared_x_axes.joined(ax1, ax2)
|
||||
assert not ax2._shared_x_axes.joined(ax1, ax2)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_axis_share_xy(self):
|
||||
df = self.hist_df
|
||||
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True)
|
||||
|
||||
# share both x and y
|
||||
assert ax1._shared_x_axes.joined(ax1, ax2)
|
||||
assert ax2._shared_x_axes.joined(ax1, ax2)
|
||||
|
||||
assert ax1._shared_y_axes.joined(ax1, ax2)
|
||||
assert ax2._shared_y_axes.joined(ax1, ax2)
|
||||
@@ -0,0 +1,419 @@
|
||||
# coding: utf-8
|
||||
|
||||
""" Test cases for misc plot functions """
|
||||
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
from numpy.random import randn
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import DataFrame, Series
|
||||
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
|
||||
import pandas.util.testing as tm
|
||||
|
||||
import pandas.plotting as plotting
|
||||
|
||||
|
||||
@td.skip_if_mpl
|
||||
def test_import_error_message():
|
||||
# GH-19810
|
||||
df = DataFrame({"A": [1, 2]})
|
||||
|
||||
with pytest.raises(ImportError, match="No module named 'matplotlib'"):
|
||||
df.plot()
|
||||
|
||||
|
||||
def test_get_accessor_args():
|
||||
func = plotting._core.PlotAccessor._get_call_args
|
||||
|
||||
msg = "Called plot accessor for type list, expected Series or DataFrame"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
func(backend_name="", data=[], args=[], kwargs={})
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
|
||||
x, y, kind, kwargs = func(
|
||||
backend_name="", data=Series(), args=["line", None], kwargs={}
|
||||
)
|
||||
assert x is None
|
||||
assert y is None
|
||||
assert kind == "line"
|
||||
assert kwargs == {"ax": None}
|
||||
|
||||
x, y, kind, kwargs = func(
|
||||
backend_name="",
|
||||
data=DataFrame(),
|
||||
args=["x"],
|
||||
kwargs={"y": "y", "kind": "bar", "grid": False},
|
||||
)
|
||||
assert x == "x"
|
||||
assert y == "y"
|
||||
assert kind == "bar"
|
||||
assert kwargs == {"grid": False}
|
||||
|
||||
x, y, kind, kwargs = func(
|
||||
backend_name="pandas.plotting._matplotlib", data=Series(), args=[], kwargs={}
|
||||
)
|
||||
assert x is None
|
||||
assert y is None
|
||||
assert kind == "line"
|
||||
assert len(kwargs) == 22
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestSeriesPlots(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.ts = tm.makeTimeSeries()
|
||||
self.ts.name = "ts"
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_autocorrelation_plot(self):
|
||||
from pandas.plotting import autocorrelation_plot
|
||||
|
||||
_check_plot_works(autocorrelation_plot, series=self.ts)
|
||||
_check_plot_works(autocorrelation_plot, series=self.ts.values)
|
||||
|
||||
ax = autocorrelation_plot(self.ts, label="Test")
|
||||
self._check_legend_labels(ax, labels=["Test"])
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_lag_plot(self):
|
||||
from pandas.plotting import lag_plot
|
||||
|
||||
_check_plot_works(lag_plot, series=self.ts)
|
||||
_check_plot_works(lag_plot, series=self.ts, lag=5)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_bootstrap_plot(self):
|
||||
from pandas.plotting import bootstrap_plot
|
||||
|
||||
_check_plot_works(bootstrap_plot, series=self.ts, size=10)
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlots(TestPlotBase):
|
||||
@td.skip_if_no_scipy
|
||||
def test_scatter_matrix_axis(self):
|
||||
scatter_matrix = plotting.scatter_matrix
|
||||
|
||||
with tm.RNGContext(42):
|
||||
df = DataFrame(randn(100, 3))
|
||||
|
||||
# we are plotting multiples on a sub-plot
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
scatter_matrix, filterwarnings="always", frame=df, range_padding=0.1
|
||||
)
|
||||
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
|
||||
|
||||
# GH 5662
|
||||
expected = ["-2", "0", "2"]
|
||||
self._check_text_labels(axes0_labels, expected)
|
||||
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
|
||||
|
||||
df[0] = (df[0] - 2) / 3
|
||||
|
||||
# we are plotting multiples on a sub-plot
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
scatter_matrix, filterwarnings="always", frame=df, range_padding=0.1
|
||||
)
|
||||
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
|
||||
expected = ["-1.0", "-0.5", "0.0"]
|
||||
self._check_text_labels(axes0_labels, expected)
|
||||
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_andrews_curves(self, iris):
|
||||
from pandas.plotting import andrews_curves
|
||||
from matplotlib import cm
|
||||
|
||||
df = iris
|
||||
|
||||
_check_plot_works(andrews_curves, frame=df, class_column="Name")
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=rgba
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=cnames
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
|
||||
)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
length = 10
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": random.rand(length),
|
||||
"B": random.rand(length),
|
||||
"C": random.rand(length),
|
||||
"Name": ["A"] * length,
|
||||
}
|
||||
)
|
||||
|
||||
_check_plot_works(andrews_curves, frame=df, class_column="Name")
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=rgba
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=cnames
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
|
||||
)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
colors = ["b", "g", "r"]
|
||||
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
|
||||
ax = andrews_curves(df, "Name", color=colors)
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, linecolors=colors)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
andrews_curves(data=df, class_column="Name")
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_parallel_coordinates(self, iris):
|
||||
from pandas.plotting import parallel_coordinates
|
||||
from matplotlib import cm
|
||||
|
||||
df = iris
|
||||
|
||||
ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name")
|
||||
nlines = len(ax.get_lines())
|
||||
nxticks = len(ax.xaxis.get_ticklabels())
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", color=rgba
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", color=cnames
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet
|
||||
)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", axvlines=False
|
||||
)
|
||||
assert len(ax.get_lines()) == (nlines - nxticks)
|
||||
|
||||
colors = ["b", "g", "r"]
|
||||
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
|
||||
ax = parallel_coordinates(df, "Name", color=colors)
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, linecolors=colors)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
parallel_coordinates(data=df, class_column="Name")
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
parallel_coordinates(df, "Name", colors=colors)
|
||||
|
||||
# not sure if this is indicative of a problem
|
||||
@pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
|
||||
def test_parallel_coordinates_with_sorted_labels(self):
|
||||
""" For #15908 """
|
||||
from pandas.plotting import parallel_coordinates
|
||||
|
||||
df = DataFrame(
|
||||
{
|
||||
"feat": [i for i in range(30)],
|
||||
"class": [2 for _ in range(10)]
|
||||
+ [3 for _ in range(10)]
|
||||
+ [1 for _ in range(10)],
|
||||
}
|
||||
)
|
||||
ax = parallel_coordinates(df, "class", sort_labels=True)
|
||||
polylines, labels = ax.get_legend_handles_labels()
|
||||
color_label_tuples = zip(
|
||||
[polyline.get_color() for polyline in polylines], labels
|
||||
)
|
||||
ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1])
|
||||
prev_next_tupels = zip(
|
||||
[i for i in ordered_color_label_tuples[0:-1]],
|
||||
[i for i in ordered_color_label_tuples[1:]],
|
||||
)
|
||||
for prev, nxt in prev_next_tupels:
|
||||
# labels and colors are ordered strictly increasing
|
||||
assert prev[1] < nxt[1] and prev[0] < nxt[0]
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_radviz(self, iris):
|
||||
from pandas.plotting import radviz
|
||||
from matplotlib import cm
|
||||
|
||||
df = iris
|
||||
_check_plot_works(radviz, frame=df, class_column="Name")
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(radviz, frame=df, class_column="Name", color=rgba)
|
||||
# skip Circle drawn as ticks
|
||||
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
|
||||
self._check_colors(patches[:10], facecolors=rgba, mapping=df["Name"][:10])
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
_check_plot_works(radviz, frame=df, class_column="Name", color=cnames)
|
||||
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
|
||||
self._check_colors(patches, facecolors=cnames, mapping=df["Name"][:10])
|
||||
|
||||
_check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
|
||||
self._check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10])
|
||||
|
||||
colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]]
|
||||
df = DataFrame(
|
||||
{"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]}
|
||||
)
|
||||
ax = radviz(df, "Name", color=colors)
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, facecolors=colors)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_subplot_titles(self, iris):
|
||||
df = iris.drop("Name", axis=1).head()
|
||||
# Use the column names as the subplot titles
|
||||
title = list(df.columns)
|
||||
|
||||
# Case len(title) == len(df)
|
||||
plot = df.plot(subplots=True, title=title)
|
||||
assert [p.get_title() for p in plot] == title
|
||||
|
||||
# Case len(title) > len(df)
|
||||
msg = (
|
||||
"The length of `title` must equal the number of columns if"
|
||||
" using `title` of type `list` and `subplots=True`"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=True, title=title + ["kittens > puppies"])
|
||||
|
||||
# Case len(title) < len(df)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=True, title=title[:2])
|
||||
|
||||
# Case subplots=False and title is of type list
|
||||
msg = (
|
||||
"Using `title` of type `list` is not supported unless"
|
||||
" `subplots=True` is passed"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=False, title=title)
|
||||
|
||||
# Case df with 3 numeric columns but layout of (2,2)
|
||||
plot = df.drop("SepalWidth", axis=1).plot(
|
||||
subplots=True, layout=(2, 2), title=title[:-1]
|
||||
)
|
||||
title_list = [ax.get_title() for sublist in plot for ax in sublist]
|
||||
assert title_list == title[:3] + [""]
|
||||
|
||||
def test_get_standard_colors_random_seed(self):
|
||||
# GH17525
|
||||
df = DataFrame(np.zeros((10, 10)))
|
||||
|
||||
# Make sure that the random seed isn't reset by _get_standard_colors
|
||||
plotting.parallel_coordinates(df, 0)
|
||||
rand1 = random.random()
|
||||
plotting.parallel_coordinates(df, 0)
|
||||
rand2 = random.random()
|
||||
assert rand1 != rand2
|
||||
|
||||
# Make sure it produces the same colors every time it's called
|
||||
from pandas.plotting._matplotlib.style import _get_standard_colors
|
||||
|
||||
color1 = _get_standard_colors(1, color_type="random")
|
||||
color2 = _get_standard_colors(1, color_type="random")
|
||||
assert color1 == color2
|
||||
|
||||
def test_get_standard_colors_default_num_colors(self):
|
||||
from pandas.plotting._matplotlib.style import _get_standard_colors
|
||||
|
||||
# Make sure the default color_types returns the specified amount
|
||||
color1 = _get_standard_colors(1, color_type="default")
|
||||
color2 = _get_standard_colors(9, color_type="default")
|
||||
color3 = _get_standard_colors(20, color_type="default")
|
||||
assert len(color1) == 1
|
||||
assert len(color2) == 9
|
||||
assert len(color3) == 20
|
||||
|
||||
def test_plot_single_color(self):
|
||||
# Example from #20585. All 3 bars should have the same color
|
||||
df = DataFrame(
|
||||
{
|
||||
"account-start": ["2017-02-03", "2017-03-03", "2017-01-01"],
|
||||
"client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"],
|
||||
"balance": [-1432.32, 10.43, 30000.00],
|
||||
"db-id": [1234, 2424, 251],
|
||||
"proxy-id": [525, 1525, 2542],
|
||||
"rank": [52, 525, 32],
|
||||
}
|
||||
)
|
||||
ax = df.client.value_counts().plot.bar()
|
||||
colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]]
|
||||
assert all(color == colors[0] for color in colors)
|
||||
|
||||
def test_get_standard_colors_no_appending(self):
|
||||
# GH20726
|
||||
|
||||
# Make sure not to add more colors so that matplotlib can cycle
|
||||
# correctly.
|
||||
from matplotlib import cm
|
||||
from pandas.plotting._matplotlib.style import _get_standard_colors
|
||||
|
||||
color_before = cm.gnuplot(range(5))
|
||||
color_after = _get_standard_colors(1, color=color_before)
|
||||
assert len(color_after) == len(color_before)
|
||||
|
||||
df = DataFrame(np.random.randn(48, 4), columns=list("ABCD"))
|
||||
|
||||
color_list = cm.gnuplot(np.linspace(0, 1, 16))
|
||||
p = df.A.plot.bar(figsize=(16, 7), color=color_list)
|
||||
assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor()
|
||||
@@ -0,0 +1,890 @@
|
||||
# coding: utf-8
|
||||
|
||||
""" Test cases for Series.plot """
|
||||
|
||||
|
||||
from datetime import datetime
|
||||
from itertools import chain
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import randn
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, Series, date_range
|
||||
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
|
||||
import pandas.util.testing as tm
|
||||
|
||||
import pandas.plotting as plotting
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestSeriesPlots(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.ts = tm.makeTimeSeries()
|
||||
self.ts.name = "ts"
|
||||
|
||||
self.series = tm.makeStringSeries()
|
||||
self.series.name = "series"
|
||||
|
||||
self.iseries = tm.makePeriodSeries()
|
||||
self.iseries.name = "iseries"
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_plot(self):
|
||||
_check_plot_works(self.ts.plot, label="foo")
|
||||
_check_plot_works(self.ts.plot, use_index=False)
|
||||
axes = _check_plot_works(self.ts.plot, rot=0)
|
||||
self._check_ticks_props(axes, xrot=0)
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, style=".", logy=True)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, style=".", logx=True)
|
||||
self._check_ax_scales(ax, xaxis="log")
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, style=".", loglog=True)
|
||||
self._check_ax_scales(ax, xaxis="log", yaxis="log")
|
||||
|
||||
_check_plot_works(self.ts[:10].plot.bar)
|
||||
_check_plot_works(self.ts.plot.area, stacked=False)
|
||||
_check_plot_works(self.iseries.plot)
|
||||
|
||||
for kind in ["line", "bar", "barh", "kde", "hist", "box"]:
|
||||
_check_plot_works(self.series[:5].plot, kind=kind)
|
||||
|
||||
_check_plot_works(self.series[:10].plot.barh)
|
||||
ax = _check_plot_works(Series(randn(10)).plot.bar, color="black")
|
||||
self._check_colors([ax.patches[0]], facecolors=["black"])
|
||||
|
||||
# GH 6951
|
||||
ax = _check_plot_works(self.ts.plot, subplots=True)
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(-1, 1))
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||||
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(1, -1))
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_plot_figsize_and_title(self):
|
||||
# figsize and title
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.series.plot(title="Test", figsize=(16, 8), ax=ax)
|
||||
self._check_text_labels(ax.title, "Test")
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8))
|
||||
|
||||
def test_dont_modify_rcParams(self):
|
||||
# GH 8242
|
||||
key = "axes.prop_cycle"
|
||||
colors = self.plt.rcParams[key]
|
||||
_, ax = self.plt.subplots()
|
||||
Series([1, 2, 3]).plot(ax=ax)
|
||||
assert colors == self.plt.rcParams[key]
|
||||
|
||||
def test_ts_line_lim(self):
|
||||
fig, ax = self.plt.subplots()
|
||||
ax = self.ts.plot(ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
lines = ax.get_lines()
|
||||
assert xmin <= lines[0].get_data(orig=False)[0][0]
|
||||
assert xmax >= lines[0].get_data(orig=False)[0][-1]
|
||||
tm.close()
|
||||
|
||||
ax = self.ts.plot(secondary_y=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
lines = ax.get_lines()
|
||||
assert xmin <= lines[0].get_data(orig=False)[0][0]
|
||||
assert xmax >= lines[0].get_data(orig=False)[0][-1]
|
||||
|
||||
def test_ts_area_lim(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.area(stacked=False, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
tm.close()
|
||||
|
||||
# GH 7471
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.area(stacked=False, x_compat=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
tm.close()
|
||||
|
||||
tz_ts = self.ts.copy()
|
||||
tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET")
|
||||
_, ax = self.plt.subplots()
|
||||
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
|
||||
def test_label(self):
|
||||
s = Series([1, 2])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(label="LABEL", legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["LABEL"])
|
||||
self.plt.close()
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["None"])
|
||||
self.plt.close()
|
||||
# get name from index
|
||||
s.name = "NAME"
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["NAME"])
|
||||
self.plt.close()
|
||||
# override the default
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=True, label="LABEL", ax=ax)
|
||||
self._check_legend_labels(ax, labels=["LABEL"])
|
||||
self.plt.close()
|
||||
# Add lebel info, but don't draw
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=False, label="LABEL", ax=ax)
|
||||
assert ax.get_legend() is None # Hasn't been drawn
|
||||
ax.legend() # draw it
|
||||
self._check_legend_labels(ax, labels=["LABEL"])
|
||||
|
||||
def test_line_area_nan_series(self):
|
||||
values = [1, 2, np.nan, 3]
|
||||
s = Series(values)
|
||||
ts = Series(values, index=tm.makeDateIndex(k=4))
|
||||
|
||||
for d in [s, ts]:
|
||||
ax = _check_plot_works(d.plot)
|
||||
masked = ax.lines[0].get_ydata()
|
||||
# remove nan for comparison purpose
|
||||
exp = np.array([1, 2, 3], dtype=np.float64)
|
||||
tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp)
|
||||
tm.assert_numpy_array_equal(
|
||||
masked.mask, np.array([False, False, True, False])
|
||||
)
|
||||
|
||||
expected = np.array([1, 2, 0, 3], dtype=np.float64)
|
||||
ax = _check_plot_works(d.plot, stacked=True)
|
||||
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||||
ax = _check_plot_works(d.plot.area)
|
||||
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||||
ax = _check_plot_works(d.plot.area, stacked=False)
|
||||
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||||
|
||||
def test_line_use_index_false(self):
|
||||
s = Series([1, 2, 3], index=["a", "b", "c"])
|
||||
s.index.name = "The Index"
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(use_index=False, ax=ax)
|
||||
label = ax.get_xlabel()
|
||||
assert label == ""
|
||||
_, ax = self.plt.subplots()
|
||||
ax2 = s.plot.bar(use_index=False, ax=ax)
|
||||
label2 = ax2.get_xlabel()
|
||||
assert label2 == ""
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_bar_log(self):
|
||||
expected = np.array([1e-1, 1e0, 1e1, 1e2, 1e3, 1e4])
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([200, 500]).plot.bar(log=True, ax=ax)
|
||||
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([200, 500]).plot.barh(log=True, ax=ax)
|
||||
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
|
||||
tm.close()
|
||||
|
||||
# GH 9905
|
||||
expected = np.array([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1])
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="bar", ax=ax)
|
||||
ymin = 0.0007943282347242822
|
||||
ymax = 0.12589254117941673
|
||||
res = ax.get_ylim()
|
||||
tm.assert_almost_equal(res[0], ymin)
|
||||
tm.assert_almost_equal(res[1], ymax)
|
||||
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="barh", ax=ax)
|
||||
res = ax.get_xlim()
|
||||
tm.assert_almost_equal(res[0], ymin)
|
||||
tm.assert_almost_equal(res[1], ymax)
|
||||
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_bar_ignore_index(self):
|
||||
df = Series([1, 2, 3, 4], index=["a", "b", "c", "d"])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.bar(use_index=False, ax=ax)
|
||||
self._check_text_labels(ax.get_xticklabels(), ["0", "1", "2", "3"])
|
||||
|
||||
def test_bar_user_colors(self):
|
||||
s = Series([1, 2, 3, 4])
|
||||
ax = s.plot.bar(color=["red", "blue", "blue", "red"])
|
||||
result = [p.get_facecolor() for p in ax.patches]
|
||||
expected = [
|
||||
(1.0, 0.0, 0.0, 1.0),
|
||||
(0.0, 0.0, 1.0, 1.0),
|
||||
(0.0, 0.0, 1.0, 1.0),
|
||||
(1.0, 0.0, 0.0, 1.0),
|
||||
]
|
||||
assert result == expected
|
||||
|
||||
def test_rotation(self):
|
||||
df = DataFrame(randn(5, 5))
|
||||
# Default rot 0
|
||||
_, ax = self.plt.subplots()
|
||||
axes = df.plot(ax=ax)
|
||||
self._check_ticks_props(axes, xrot=0)
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
axes = df.plot(rot=30, ax=ax)
|
||||
self._check_ticks_props(axes, xrot=30)
|
||||
|
||||
def test_irregular_datetime(self):
|
||||
rng = date_range("1/1/2000", "3/1/2000")
|
||||
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]]
|
||||
ser = Series(randn(len(rng)), rng)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = ser.plot(ax=ax)
|
||||
xp = datetime(1999, 1, 1).toordinal()
|
||||
ax.set_xlim("1/1/1999", "1/1/2001")
|
||||
assert xp == ax.get_xlim()[0]
|
||||
|
||||
def test_unsorted_index_xlim(self):
|
||||
ser = Series(
|
||||
[0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0],
|
||||
index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0],
|
||||
)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = ser.plot(ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
lines = ax.get_lines()
|
||||
assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0])
|
||||
assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0])
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_pie_series(self):
|
||||
# if sum of values is less than 1.0, pie handle them as rate and draw
|
||||
# semicircle.
|
||||
series = Series(
|
||||
np.random.randint(1, 5), index=["a", "b", "c", "d", "e"], name="YLABEL"
|
||||
)
|
||||
ax = _check_plot_works(series.plot.pie)
|
||||
self._check_text_labels(ax.texts, series.index)
|
||||
assert ax.get_ylabel() == "YLABEL"
|
||||
|
||||
# without wedge labels
|
||||
ax = _check_plot_works(series.plot.pie, labels=None)
|
||||
self._check_text_labels(ax.texts, [""] * 5)
|
||||
|
||||
# with less colors than elements
|
||||
color_args = ["r", "g", "b"]
|
||||
ax = _check_plot_works(series.plot.pie, colors=color_args)
|
||||
|
||||
color_expected = ["r", "g", "b", "r", "g"]
|
||||
self._check_colors(ax.patches, facecolors=color_expected)
|
||||
|
||||
# with labels and colors
|
||||
labels = ["A", "B", "C", "D", "E"]
|
||||
color_args = ["r", "g", "b", "c", "m"]
|
||||
ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args)
|
||||
self._check_text_labels(ax.texts, labels)
|
||||
self._check_colors(ax.patches, facecolors=color_args)
|
||||
|
||||
# with autopct and fontsize
|
||||
ax = _check_plot_works(
|
||||
series.plot.pie, colors=color_args, autopct="%.2f", fontsize=7
|
||||
)
|
||||
pcts = ["{0:.2f}".format(s * 100) for s in series.values / float(series.sum())]
|
||||
expected_texts = list(chain.from_iterable(zip(series.index, pcts)))
|
||||
self._check_text_labels(ax.texts, expected_texts)
|
||||
for t in ax.texts:
|
||||
assert t.get_fontsize() == 7
|
||||
|
||||
# includes negative value
|
||||
with pytest.raises(ValueError):
|
||||
series = Series([1, 2, 0, 4, -1], index=["a", "b", "c", "d", "e"])
|
||||
series.plot.pie()
|
||||
|
||||
# includes nan
|
||||
series = Series([1, 2, np.nan, 4], index=["a", "b", "c", "d"], name="YLABEL")
|
||||
ax = _check_plot_works(series.plot.pie)
|
||||
self._check_text_labels(ax.texts, ["a", "b", "", "d"])
|
||||
|
||||
def test_pie_nan(self):
|
||||
s = Series([1, np.nan, 1, 1])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot.pie(legend=True, ax=ax)
|
||||
expected = ["0", "", "2", "3"]
|
||||
result = [x.get_text() for x in ax.texts]
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_df_kwargs(self):
|
||||
df = DataFrame(np.random.randn(10, 2))
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.hist(bins=5, ax=ax)
|
||||
assert len(ax.patches) == 10
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_df_with_nonnumerics(self):
|
||||
# GH 9853
|
||||
with tm.RNGContext(1):
|
||||
df = DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
|
||||
df["E"] = ["x", "y"] * 5
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.hist(bins=5, ax=ax)
|
||||
assert len(ax.patches) == 20
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.hist(ax=ax) # bins=10
|
||||
assert len(ax.patches) == 40
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_legacy(self):
|
||||
_check_plot_works(self.ts.hist)
|
||||
_check_plot_works(self.ts.hist, grid=False)
|
||||
_check_plot_works(self.ts.hist, figsize=(8, 10))
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.ts.hist, by=self.ts.index.month)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
|
||||
|
||||
fig, ax = self.plt.subplots(1, 1)
|
||||
_check_plot_works(self.ts.hist, ax=ax)
|
||||
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
|
||||
_check_plot_works(self.ts.hist, figure=fig)
|
||||
tm.close()
|
||||
|
||||
fig, (ax1, ax2) = self.plt.subplots(1, 2)
|
||||
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
|
||||
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
self.ts.hist(by=self.ts.index, figure=fig)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_bins_legacy(self):
|
||||
df = DataFrame(np.random.randn(10, 2))
|
||||
ax = df.hist(bins=2)[0][0]
|
||||
assert len(ax.patches) == 2
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_layout(self):
|
||||
df = self.hist_df
|
||||
with pytest.raises(ValueError):
|
||||
df.height.hist(layout=(1, 1))
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
df.height.hist(layout=[1, 1])
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_layout_with_by(self):
|
||||
df = self.hist_df
|
||||
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_no_overlap(self):
|
||||
from matplotlib.pyplot import subplot, gcf
|
||||
|
||||
x = Series(randn(2))
|
||||
y = Series(randn(2))
|
||||
subplot(121)
|
||||
x.hist()
|
||||
subplot(122)
|
||||
y.hist()
|
||||
fig = gcf()
|
||||
axes = fig.axes
|
||||
assert len(axes) == 2
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_secondary_legend(self):
|
||||
# GH 9610
|
||||
df = DataFrame(np.random.randn(30, 4), columns=list("abcd"))
|
||||
|
||||
# primary -> secondary
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df["a"].plot.hist(legend=True, ax=ax)
|
||||
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are dran on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax, labels=["a", "b (right)"])
|
||||
assert ax.get_yaxis().get_visible()
|
||||
assert ax.right_ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
|
||||
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are draw on left ax
|
||||
# left axis must be invisible, right axis must be visible
|
||||
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"])
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> primary
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
|
||||
# right axes is returned
|
||||
df["b"].plot.hist(ax=ax, legend=True)
|
||||
# both legends are draw on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b"])
|
||||
assert ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_df_series_secondary_legend(self):
|
||||
# GH 9779
|
||||
df = DataFrame(np.random.randn(30, 3), columns=list("abc"))
|
||||
s = Series(np.random.randn(30), name="x")
|
||||
|
||||
# primary -> secondary (without passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(ax=ax)
|
||||
s.plot(legend=True, secondary_y=True, ax=ax)
|
||||
# both legends are dran on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
|
||||
assert ax.get_yaxis().get_visible()
|
||||
assert ax.right_ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# primary -> secondary (with passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(ax=ax)
|
||||
s.plot(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are dran on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
|
||||
assert ax.get_yaxis().get_visible()
|
||||
assert ax.right_ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary (without passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(secondary_y=True, ax=ax)
|
||||
s.plot(legend=True, secondary_y=True, ax=ax)
|
||||
# both legends are dran on left ax
|
||||
# left axis must be invisible and right axis must be visible
|
||||
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
|
||||
self._check_legend_labels(ax.left_ax, labels=expected)
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary (with passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(secondary_y=True, ax=ax)
|
||||
s.plot(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are dran on left ax
|
||||
# left axis must be invisible and right axis must be visible
|
||||
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
|
||||
self._check_legend_labels(ax.left_ax, expected)
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary (with passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(secondary_y=True, mark_right=False, ax=ax)
|
||||
s.plot(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are dran on left ax
|
||||
# left axis must be invisible and right axis must be visible
|
||||
expected = ["a", "b", "c", "x (right)"]
|
||||
self._check_legend_labels(ax.left_ax, expected)
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize(
|
||||
"input_logy, expected_scale", [(True, "log"), ("sym", "symlog")]
|
||||
)
|
||||
def test_secondary_logy(self, input_logy, expected_scale):
|
||||
# GH 25545
|
||||
s1 = Series(np.random.randn(30))
|
||||
s2 = Series(np.random.randn(30))
|
||||
|
||||
# GH 24980
|
||||
ax1 = s1.plot(logy=input_logy)
|
||||
ax2 = s2.plot(secondary_y=True, logy=input_logy)
|
||||
|
||||
assert ax1.get_yscale() == expected_scale
|
||||
assert ax2.get_yscale() == expected_scale
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_plot_fails_with_dupe_color_and_style(self):
|
||||
x = Series(randn(2))
|
||||
with pytest.raises(ValueError):
|
||||
_, ax = self.plt.subplots()
|
||||
x.plot(style="k--", color="k", ax=ax)
|
||||
|
||||
@pytest.mark.slow
|
||||
@td.skip_if_no_scipy
|
||||
def test_hist_kde(self):
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(logy=True, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
xlabels = ax.get_xticklabels()
|
||||
# ticks are values, thus ticklabels are blank
|
||||
self._check_text_labels(xlabels, [""] * len(xlabels))
|
||||
ylabels = ax.get_yticklabels()
|
||||
self._check_text_labels(ylabels, [""] * len(ylabels))
|
||||
|
||||
_check_plot_works(self.ts.plot.kde)
|
||||
_check_plot_works(self.ts.plot.density)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.kde(logy=True, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
xlabels = ax.get_xticklabels()
|
||||
self._check_text_labels(xlabels, [""] * len(xlabels))
|
||||
ylabels = ax.get_yticklabels()
|
||||
self._check_text_labels(ylabels, [""] * len(ylabels))
|
||||
|
||||
@pytest.mark.slow
|
||||
@td.skip_if_no_scipy
|
||||
def test_kde_kwargs(self):
|
||||
sample_points = np.linspace(-100, 100, 20)
|
||||
_check_plot_works(self.ts.plot.kde, bw_method="scott", ind=20)
|
||||
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=20)
|
||||
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=np.int(20))
|
||||
_check_plot_works(self.ts.plot.kde, bw_method=0.5, ind=sample_points)
|
||||
_check_plot_works(self.ts.plot.density, bw_method=0.5, ind=sample_points)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.kde(logy=True, bw_method=0.5, ind=sample_points, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
self._check_text_labels(ax.yaxis.get_label(), "Density")
|
||||
|
||||
@pytest.mark.slow
|
||||
@td.skip_if_no_scipy
|
||||
def test_kde_missing_vals(self):
|
||||
s = Series(np.random.uniform(size=50))
|
||||
s[0] = np.nan
|
||||
axes = _check_plot_works(s.plot.kde)
|
||||
|
||||
# gh-14821: check if the values have any missing values
|
||||
assert any(~np.isnan(axes.lines[0].get_xdata()))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_hist_kwargs(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(bins=5, ax=ax)
|
||||
assert len(ax.patches) == 5
|
||||
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(orientation="horizontal", ax=ax)
|
||||
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(align="left", stacked=True, ax=ax)
|
||||
tm.close()
|
||||
|
||||
@pytest.mark.slow
|
||||
@td.skip_if_no_scipy
|
||||
def test_hist_kde_color(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
assert len(ax.patches) == 10
|
||||
self._check_colors(ax.patches, facecolors=["b"] * 10)
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.kde(logy=True, color="r", ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
lines = ax.get_lines()
|
||||
assert len(lines) == 1
|
||||
self._check_colors(lines, ["r"])
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_boxplot_series(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.box(logy=True, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
xlabels = ax.get_xticklabels()
|
||||
self._check_text_labels(xlabels, [self.ts.name])
|
||||
ylabels = ax.get_yticklabels()
|
||||
self._check_text_labels(ylabels, [""] * len(ylabels))
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_kind_both_ways(self):
|
||||
s = Series(range(3))
|
||||
kinds = (
|
||||
plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds
|
||||
)
|
||||
_, ax = self.plt.subplots()
|
||||
for kind in kinds:
|
||||
|
||||
s.plot(kind=kind, ax=ax)
|
||||
getattr(s.plot, kind)()
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_invalid_plot_data(self):
|
||||
s = Series(list("abcd"))
|
||||
_, ax = self.plt.subplots()
|
||||
for kind in plotting.PlotAccessor._common_kinds:
|
||||
|
||||
msg = "no numeric data to plot"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s.plot(kind=kind, ax=ax)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_valid_object_plot(self):
|
||||
s = Series(range(10), dtype=object)
|
||||
for kind in plotting.PlotAccessor._common_kinds:
|
||||
_check_plot_works(s.plot, kind=kind)
|
||||
|
||||
def test_partially_invalid_plot_data(self):
|
||||
s = Series(["a", "b", 1.0, 2])
|
||||
_, ax = self.plt.subplots()
|
||||
for kind in plotting.PlotAccessor._common_kinds:
|
||||
|
||||
msg = "no numeric data to plot"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s.plot(kind=kind, ax=ax)
|
||||
|
||||
def test_invalid_kind(self):
|
||||
s = Series([1, 2])
|
||||
with pytest.raises(ValueError):
|
||||
s.plot(kind="aasdf")
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_dup_datetime_index_plot(self):
|
||||
dr1 = date_range("1/1/2009", periods=4)
|
||||
dr2 = date_range("1/2/2009", periods=4)
|
||||
index = dr1.append(dr2)
|
||||
values = randn(index.size)
|
||||
s = Series(values, index=index)
|
||||
_check_plot_works(s.plot)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_errorbar_plot(self):
|
||||
|
||||
s = Series(np.arange(10), name="x")
|
||||
s_err = np.random.randn(10)
|
||||
d_err = DataFrame(randn(10, 2), index=s.index, columns=["x", "y"])
|
||||
# test line and bar plots
|
||||
kinds = ["line", "bar"]
|
||||
for kind in kinds:
|
||||
ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, yerr=s_err, kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, yerr=d_err, kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=1, yerr=1)
|
||||
|
||||
ax = _check_plot_works(s.plot, xerr=s_err)
|
||||
self._check_has_errorbars(ax, xerr=1, yerr=0)
|
||||
|
||||
# test time series plotting
|
||||
ix = date_range("1/1/2000", "1/1/2001", freq="M")
|
||||
ts = Series(np.arange(12), index=ix, name="x")
|
||||
ts_err = Series(np.random.randn(12), index=ix)
|
||||
td_err = DataFrame(randn(12, 2), index=ix, columns=["x", "y"])
|
||||
|
||||
ax = _check_plot_works(ts.plot, yerr=ts_err)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(ts.plot, yerr=td_err)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
|
||||
# check incorrect lengths and types
|
||||
with pytest.raises(ValueError):
|
||||
s.plot(yerr=np.arange(11))
|
||||
|
||||
s_err = ["zzz"] * 10
|
||||
with pytest.raises(TypeError):
|
||||
s.plot(yerr=s_err)
|
||||
|
||||
def test_table(self):
|
||||
_check_plot_works(self.series.plot, table=True)
|
||||
_check_plot_works(self.series.plot, table=self.series)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_series_grid_settings(self):
|
||||
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
|
||||
self._check_grid_settings(
|
||||
Series([1, 2, 3]),
|
||||
plotting.PlotAccessor._series_kinds + plotting.PlotAccessor._common_kinds,
|
||||
)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_standard_colors(self):
|
||||
from pandas.plotting._matplotlib.style import _get_standard_colors
|
||||
|
||||
for c in ["r", "red", "green", "#FF0000"]:
|
||||
result = _get_standard_colors(1, color=c)
|
||||
assert result == [c]
|
||||
|
||||
result = _get_standard_colors(1, color=[c])
|
||||
assert result == [c]
|
||||
|
||||
result = _get_standard_colors(3, color=c)
|
||||
assert result == [c] * 3
|
||||
|
||||
result = _get_standard_colors(3, color=[c])
|
||||
assert result == [c] * 3
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_standard_colors_all(self):
|
||||
import matplotlib.colors as colors
|
||||
from pandas.plotting._matplotlib.style import _get_standard_colors
|
||||
|
||||
# multiple colors like mediumaquamarine
|
||||
for c in colors.cnames:
|
||||
result = _get_standard_colors(num_colors=1, color=c)
|
||||
assert result == [c]
|
||||
|
||||
result = _get_standard_colors(num_colors=1, color=[c])
|
||||
assert result == [c]
|
||||
|
||||
result = _get_standard_colors(num_colors=3, color=c)
|
||||
assert result == [c] * 3
|
||||
|
||||
result = _get_standard_colors(num_colors=3, color=[c])
|
||||
assert result == [c] * 3
|
||||
|
||||
# single letter colors like k
|
||||
for c in colors.ColorConverter.colors:
|
||||
result = _get_standard_colors(num_colors=1, color=c)
|
||||
assert result == [c]
|
||||
|
||||
result = _get_standard_colors(num_colors=1, color=[c])
|
||||
assert result == [c]
|
||||
|
||||
result = _get_standard_colors(num_colors=3, color=c)
|
||||
assert result == [c] * 3
|
||||
|
||||
result = _get_standard_colors(num_colors=3, color=[c])
|
||||
assert result == [c] * 3
|
||||
|
||||
def test_series_plot_color_kwargs(self):
|
||||
# GH1890
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series(np.arange(12) + 1).plot(color="green", ax=ax)
|
||||
self._check_colors(ax.get_lines(), linecolors=["green"])
|
||||
|
||||
def test_time_series_plot_color_kwargs(self):
|
||||
# #1890
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series(np.arange(12) + 1, index=date_range("1/1/2000", periods=12)).plot(
|
||||
color="green", ax=ax
|
||||
)
|
||||
self._check_colors(ax.get_lines(), linecolors=["green"])
|
||||
|
||||
def test_time_series_plot_color_with_empty_kwargs(self):
|
||||
import matplotlib as mpl
|
||||
|
||||
def_colors = self._unpack_cycler(mpl.rcParams)
|
||||
index = date_range("1/1/2000", periods=12)
|
||||
s = Series(np.arange(1, 13), index=index)
|
||||
|
||||
ncolors = 3
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
for i in range(ncolors):
|
||||
ax = s.plot(ax=ax)
|
||||
self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors])
|
||||
|
||||
def test_xticklabels(self):
|
||||
# GH11529
|
||||
s = Series(np.arange(10), index=["P{i:02d}".format(i=i) for i in range(10)])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(xticks=[0, 3, 5, 9], ax=ax)
|
||||
exp = ["P{i:02d}".format(i=i) for i in [0, 3, 5, 9]]
|
||||
self._check_text_labels(ax.get_xticklabels(), exp)
|
||||
|
||||
def test_custom_business_day_freq(self):
|
||||
# GH7222
|
||||
from pandas.tseries.offsets import CustomBusinessDay
|
||||
|
||||
s = Series(
|
||||
range(100, 121),
|
||||
index=pd.bdate_range(
|
||||
start="2014-05-01",
|
||||
end="2014-06-01",
|
||||
freq=CustomBusinessDay(holidays=["2014-05-26"]),
|
||||
),
|
||||
)
|
||||
|
||||
_check_plot_works(s.plot)
|
||||
|
||||
@pytest.mark.xfail
|
||||
def test_plot_accessor_updates_on_inplace(self):
|
||||
s = Series([1, 2, 3, 4])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(ax=ax)
|
||||
before = ax.xaxis.get_ticklocs()
|
||||
|
||||
s.drop([0, 1], inplace=True)
|
||||
_, ax = self.plt.subplots()
|
||||
after = ax.xaxis.get_ticklocs()
|
||||
tm.assert_numpy_array_equal(before, after)
|
||||
Reference in New Issue
Block a user