from collections import OrderedDict import pydoc import warnings import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Series, TimedeltaIndex, date_range, period_range, timedelta_range, ) from pandas.core.arrays import PeriodArray from pandas.core.indexes.datetimes import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_series_equal, ensure_clean import pandas.io.formats.printing as printing from .common import TestData class SharedWithSparse: """ A collection of tests Series and SparseSeries can share. In generic tests on this class, use ``self._assert_series_equal()`` which is implemented in sub-classes. """ def _assert_series_equal(self, left, right): """Dispatch to series class dependent assertion""" raise NotImplementedError def test_scalarop_preserve_name(self): result = self.ts * 2 assert result.name == self.ts.name def test_copy_name(self): result = self.ts.copy() assert result.name == self.ts.name def test_copy_index_name_checking(self): # don't want to be able to modify the index stored elsewhere after # making a copy self.ts.index.name = None assert self.ts.index.name is None assert self.ts is self.ts cp = self.ts.copy() cp.index.name = "foo" printing.pprint_thing(self.ts.index.name) assert self.ts.index.name is None def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) assert result.name == self.ts.name def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts assert result.name == self.ts.name result = self.ts.mul(self.ts) assert result.name == self.ts.name result = self.ts * self.ts[:-2] assert result.name == self.ts.name # names don't match, don't preserve cp = self.ts.copy() cp.name = "something else" result = self.ts + cp assert result.name is None result = self.ts.add(cp) assert result.name is None ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"] ops = ops + ["r" + op for op in ops] for op in ops: # names match, preserve s = self.ts.copy() result = getattr(s, op)(s) assert result.name == self.ts.name # names don't match, don't preserve cp = self.ts.copy() cp.name = "changed" result = getattr(s, op)(cp) assert result.name is None def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) assert result.name == self.ts.name def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] assert result.name == self.ts.name result = self.ts[[0, 2, 4]] assert result.name == self.ts.name result = self.ts[5:10] assert result.name == self.ts.name def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): with ensure_clean() as path: obj.to_pickle(path) unpickled = pd.read_pickle(path) return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() assert result.name == self.ts.name def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) assert result.name == self.ts.name @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning") def test_to_sparse_pass_name(self): result = self.ts.to_sparse() assert result.name == self.ts.name def test_constructor_dict(self): d = {"a": 0.0, "b": 1.0, "c": 2.0} result = self.series_klass(d) expected = self.series_klass(d, index=sorted(d.keys())) self._assert_series_equal(result, expected) result = self.series_klass(d, index=["b", "c", "d", "a"]) expected = self.series_klass([1, 2, np.nan, 0], index=["b", "c", "d", "a"]) self._assert_series_equal(result, expected) def test_constructor_subclass_dict(self): data = tm.TestSubDict((x, 10.0 * x) for x in range(10)) series = self.series_klass(data) expected = self.series_klass(dict(data.items())) self._assert_series_equal(series, expected) def test_constructor_ordereddict(self): # GH3283 data = OrderedDict( ("col{i}".format(i=i), np.random.random()) for i in range(12) ) series = self.series_klass(data) expected = self.series_klass(list(data.values()), list(data.keys())) self._assert_series_equal(series, expected) # Test with subclass class A(OrderedDict): pass series = self.series_klass(A(data)) self._assert_series_equal(series, expected) def test_constructor_dict_multiindex(self): d = {("a", "a"): 0.0, ("b", "a"): 1.0, ("b", "c"): 2.0} _d = sorted(d.items()) result = self.series_klass(d) expected = self.series_klass( [x[1] for x in _d], index=pd.MultiIndex.from_tuples([x[0] for x in _d]) ) self._assert_series_equal(result, expected) d["z"] = 111.0 _d.insert(0, ("z", d["z"])) result = self.series_klass(d) expected = self.series_klass( [x[1] for x in _d], index=pd.Index([x[0] for x in _d], tupleize_cols=False) ) result = result.reindex(index=expected.index) self._assert_series_equal(result, expected) def test_constructor_dict_timedelta_index(self): # GH #12169 : Resample category data with timedelta index # construct Series from dict as data and TimedeltaIndex as index # will result NaN in result Series data expected = self.series_klass( data=["A", "B", "C"], index=pd.to_timedelta([0, 10, 20], unit="s") ) result = self.series_klass( data={ pd.to_timedelta(0, unit="s"): "A", pd.to_timedelta(10, unit="s"): "B", pd.to_timedelta(20, unit="s"): "C", }, index=pd.to_timedelta([0, 10, 20], unit="s"), ) self._assert_series_equal(result, expected) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_from_array_deprecated(self): # multiple FutureWarnings, so can't assert stacklevel with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self.series_klass.from_array([1, 2, 3]) def test_sparse_accessor_updates_on_inplace(self): s = pd.Series([1, 1, 2, 3], dtype="Sparse[int]") s.drop([0, 1], inplace=True) assert s.sparse.density == 1.0 class TestSeriesMisc(TestData, SharedWithSparse): series_klass = Series # SharedWithSparse tests use generic, series_klass-agnostic assertion _assert_series_equal = staticmethod(tm.assert_series_equal) def test_tab_completion(self): # GH 9910 s = Series(list("abcd")) # Series of str values should have .str but not .dt/.cat in __dir__ assert "str" in dir(s) assert "dt" not in dir(s) assert "cat" not in dir(s) # similarly for .dt s = Series(date_range("1/1/2015", periods=5)) assert "dt" in dir(s) assert "str" not in dir(s) assert "cat" not in dir(s) # Similarly for .cat, but with the twist that str and dt should be # there if the categories are of that type first cat and str. s = Series(list("abbcd"), dtype="category") assert "cat" in dir(s) assert "str" in dir(s) # as it is a string categorical assert "dt" not in dir(s) # similar to cat and str s = Series(date_range("1/1/2015", periods=5)).astype("category") assert "cat" in dir(s) assert "str" not in dir(s) assert "dt" in dir(s) # as it is a datetime categorical def test_tab_completion_with_categorical(self): # test the tab completion display ok_for_cat = [ "name", "index", "categorical", "categories", "codes", "ordered", "set_categories", "add_categories", "remove_categories", "rename_categories", "reorder_categories", "remove_unused_categories", "as_ordered", "as_unordered", ] def get_dir(s): results = [r for r in s.cat.__dir__() if not r.startswith("_")] return list(sorted(set(results))) s = Series(list("aabbcde")).astype("category") results = get_dir(s) tm.assert_almost_equal(results, list(sorted(set(ok_for_cat)))) @pytest.mark.parametrize( "index", [ tm.makeUnicodeIndex(10), tm.makeStringIndex(10), tm.makeCategoricalIndex(10), Index(["foo", "bar", "baz"] * 2), tm.makeDateIndex(10), tm.makePeriodIndex(10), tm.makeTimedeltaIndex(10), tm.makeIntIndex(10), tm.makeUIntIndex(10), tm.makeIntIndex(10), tm.makeFloatIndex(10), Index([True, False]), Index(["a{}".format(i) for i in range(101)]), pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")), pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")), ], ) def test_index_tab_completion(self, index): # dir contains string-like values of the Index. s = pd.Series(index=index) dir_s = dir(s) for i, x in enumerate(s.index.unique(level=0)): if i < 100: assert not isinstance(x, str) or not x.isidentifier() or x in dir_s else: assert x not in dir_s def test_not_hashable(self): s_empty = Series() s = Series([1]) msg = "'Series' objects are mutable, thus they cannot be hashed" with pytest.raises(TypeError, match=msg): hash(s_empty) with pytest.raises(TypeError, match=msg): hash(s) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_iter(self): for i, val in enumerate(self.series): assert val == self.series[i] for i, val in enumerate(self.ts): assert val == self.ts[i] def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys assert getkeys() is self.ts.index def test_values(self): tm.assert_almost_equal(self.ts.values, self.ts, check_dtype=False) def test_iteritems(self): for idx, val in self.series.iteritems(): assert val == self.series[idx] for idx, val in self.ts.iteritems(): assert val == self.ts[idx] # assert is lazy (genrators don't define reverse, lists do) assert not hasattr(self.series.iteritems(), "reverse") def test_items(self): for idx, val in self.series.items(): assert val == self.series[idx] for idx, val in self.ts.items(): assert val == self.ts[idx] # assert is lazy (genrators don't define reverse, lists do) assert not hasattr(self.series.items(), "reverse") def test_raise_on_info(self): s = Series(np.random.randn(10)) msg = "'Series' object has no attribute 'info'" with pytest.raises(AttributeError, match=msg): s.info() def test_copy(self): for deep in [None, False, True]: s = Series(np.arange(10), dtype="float64") # default deep is True if deep is None: s2 = s.copy() else: s2 = s.copy(deep=deep) s2[::2] = np.NaN if deep is None or deep is True: # Did not modify original Series assert np.isnan(s2[0]) assert not np.isnan(s[0]) else: # we DID modify the original Series assert np.isnan(s2[0]) assert np.isnan(s[0]) def test_copy_tzaware(self): # GH#11794 # copy of tz-aware expected = Series([Timestamp("2012/01/01", tz="UTC")]) expected2 = Series([Timestamp("1999/01/01", tz="UTC")]) for deep in [None, False, True]: s = Series([Timestamp("2012/01/01", tz="UTC")]) if deep is None: s2 = s.copy() else: s2 = s.copy(deep=deep) s2[0] = pd.Timestamp("1999/01/01", tz="UTC") # default deep is True if deep is None or deep is True: # Did not modify original Series assert_series_equal(s2, expected2) assert_series_equal(s, expected) else: # we DID modify the original Series assert_series_equal(s2, expected2) assert_series_equal(s, expected2) def test_axis_alias(self): s = Series([1, 2, np.nan]) assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index")) assert s.dropna().sum("rows") == 3 assert s._get_axis_number("rows") == 0 assert s._get_axis_name("rows") == "index" def test_class_axis(self): # https://github.com/pandas-dev/pandas/issues/18147 # no exception and no empty docstring assert pydoc.getdoc(Series.index) def test_numpy_unique(self): # it works! np.unique(self.ts) def test_ndarray_compat(self): # test numpy compat with Series as sub-class of NDFrame tsdf = DataFrame( np.random.randn(1000, 3), columns=["A", "B", "C"], index=date_range("1/1/2000", periods=1000), ) def f(x): return x[x.idxmax()] result = tsdf.apply(f) expected = tsdf.max() tm.assert_series_equal(result, expected) # .item() with tm.assert_produces_warning(FutureWarning): s = Series([1]) result = s.item() assert result == 1 assert s.item() == s.iloc[0] # using an ndarray like function s = Series(np.random.randn(10)) result = Series(np.ones_like(s)) expected = Series(1, index=range(10), dtype="float64") tm.assert_series_equal(result, expected) # ravel s = Series(np.random.randn(10)) tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F")) # compress # GH 6658 s = Series([0, 1.0, -1], index=list("abc")) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = np.compress(s > 0, s) tm.assert_series_equal(result, Series([1.0], index=["b"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = np.compress(s < -1, s) # result empty Index(dtype=object) as the same as original exp = Series([], dtype="float64", index=Index([], dtype="object")) tm.assert_series_equal(result, exp) s = Series([0, 1.0, -1], index=[0.1, 0.2, 0.3]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = np.compress(s > 0, s) tm.assert_series_equal(result, Series([1.0], index=[0.2])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = np.compress(s < -1, s) # result empty Float64Index as the same as original exp = Series([], dtype="float64", index=Index([], dtype="float64")) tm.assert_series_equal(result, exp) def test_str_accessor_updates_on_inplace(self): s = pd.Series(list("abc")) s.drop([0], inplace=True) assert len(s.str.lower()) == 2 def test_str_attribute(self): # GH9068 methods = ["strip", "rstrip", "lstrip"] s = Series([" jack", "jill ", " jesse ", "frank"]) for method in methods: expected = Series([getattr(str, method)(x) for x in s.values]) assert_series_equal(getattr(Series.str, method)(s.str), expected) # str accessor only valid with string values s = Series(range(5)) with pytest.raises(AttributeError, match="only use .str accessor"): s.str.repeat(2) def test_empty_method(self): s_empty = pd.Series() assert s_empty.empty for full_series in [pd.Series([1]), pd.Series(index=[1])]: assert not full_series.empty def test_tab_complete_warning(self, ip): # https://github.com/pandas-dev/pandas/issues/16409 pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.completer import provisionalcompleter code = "import pandas as pd; s = pd.Series()" ip.run_code(code) with tm.assert_produces_warning(None): with provisionalcompleter("ignore"): list(ip.Completer.completions("s.", 1)) def test_integer_series_size(self): # GH 25580 s = Series(range(9)) assert s.size == 9 s = Series(range(9), dtype="Int64") assert s.size == 9 def test_get_values_deprecation(self): s = Series(range(9)) with tm.assert_produces_warning(FutureWarning): res = s.get_values() tm.assert_numpy_array_equal(res, s.values) class TestCategoricalSeries: @pytest.mark.parametrize( "method", [ lambda x: x.cat.set_categories([1, 2, 3]), lambda x: x.cat.reorder_categories([2, 3, 1], ordered=True), lambda x: x.cat.rename_categories([1, 2, 3]), lambda x: x.cat.remove_unused_categories(), lambda x: x.cat.remove_categories([2]), lambda x: x.cat.add_categories([4]), lambda x: x.cat.as_ordered(), lambda x: x.cat.as_unordered(), ], ) def test_getname_categorical_accessor(self, method): # GH 17509 s = Series([1, 2, 3], name="A").astype("category") expected = "A" result = method(s).name assert result == expected def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) tm.assert_index_equal(s.cat.categories, Index(["a", "b"])) assert not s.cat.ordered, False exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) tm.assert_categorical_equal(s.values, exp) res = s.cat.set_categories(["b", "a"]) tm.assert_categorical_equal(res.values, exp) s[:] = "a" s = s.cat.remove_unused_categories() tm.assert_index_equal(s.cat.categories, Index(["a"])) def test_cat_accessor_api(self): # GH 9322 from pandas.core.arrays.categorical import CategoricalAccessor assert Series.cat is CategoricalAccessor s = Series(list("aabbcde")).astype("category") assert isinstance(s.cat, CategoricalAccessor) invalid = Series([1]) with pytest.raises(AttributeError, match="only use .cat accessor"): invalid.cat assert not hasattr(invalid, "cat") def test_cat_accessor_no_new_attributes(self): # https://github.com/pandas-dev/pandas/issues/10673 c = Series(list("aabbcde")).astype("category") with pytest.raises(AttributeError, match="You cannot add any new attribute"): c.cat.xlabel = "a" def test_cat_accessor_updates_on_inplace(self): s = Series(list("abc")).astype("category") s.drop(0, inplace=True) s.cat.remove_unused_categories(inplace=True) assert len(s.cat.categories) == 2 def test_categorical_delegations(self): # invalid accessor msg = r"Can only use \.cat accessor with a 'category' dtype" with pytest.raises(AttributeError, match=msg): Series([1, 2, 3]).cat with pytest.raises(AttributeError, match=msg): Series([1, 2, 3]).cat() with pytest.raises(AttributeError, match=msg): Series(["a", "b", "c"]).cat with pytest.raises(AttributeError, match=msg): Series(np.arange(5.0)).cat with pytest.raises(AttributeError, match=msg): Series([Timestamp("20130101")]).cat # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = Index(["a", "b", "c"]) tm.assert_index_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = Index([1, 2, 3]) tm.assert_index_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype="int8") tm.assert_series_equal(s.cat.codes, exp_codes) assert s.cat.ordered s = s.cat.as_unordered() assert not s.cat.ordered s.cat.as_ordered(inplace=True) assert s.cat.ordered # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = Index(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_) s = s.cat.set_categories(["c", "b", "a"]) tm.assert_index_equal(s.cat.categories, exp_categories) tm.assert_numpy_array_equal(s.values.__array__(), exp_values) tm.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c"])) exp_categories = Index(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"], dtype=np.object_) s = s.cat.remove_unused_categories() tm.assert_index_equal(s.cat.categories, exp_categories) tm.assert_numpy_array_equal(s.values.__array__(), exp_values) tm.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: msg = "'Series' object has no attribute 'set_categories'" with pytest.raises(AttributeError, match=msg): s.set_categories([4, 3, 2, 1]) # right: s.cat.set_categories([4,3,2,1]) # GH18862 (let Series.cat.rename_categories take callables) s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) result = s.cat.rename_categories(lambda x: x.upper()) expected = Series( Categorical(["A", "B", "C", "A"], categories=["A", "B", "C"], ordered=True) ) tm.assert_series_equal(result, expected) def test_dt_accessor_api_for_categorical(self): # https://github.com/pandas-dev/pandas/issues/10661 from pandas.core.indexes.accessors import Properties s_dr = Series(date_range("1/1/2015", periods=5, tz="MET")) c_dr = s_dr.astype("category") s_pr = Series(period_range("1/1/2015", freq="D", periods=5)) c_pr = s_pr.astype("category") s_tdr = Series(timedelta_range("1 days", "10 days")) c_tdr = s_tdr.astype("category") # only testing field (like .day) # and bool (is_month_start) get_ops = lambda x: x._datetimelike_ops test_data = [ ("Datetime", get_ops(DatetimeIndex), s_dr, c_dr), ("Period", get_ops(PeriodArray), s_pr, c_pr), ("Timedelta", get_ops(TimedeltaIndex), s_tdr, c_tdr), ] assert isinstance(c_dr.dt, Properties) special_func_defs = [ ("strftime", ("%Y-%m-%d",), {}), ("tz_convert", ("EST",), {}), ("round", ("D",), {}), ("floor", ("D",), {}), ("ceil", ("D",), {}), ("asfreq", ("D",), {}), # ('tz_localize', ("UTC",), {}), ] _special_func_names = [f[0] for f in special_func_defs] # the series is already localized _ignore_names = ["tz_localize", "components"] for name, attr_names, s, c in test_data: func_names = [ f for f in dir(s.dt) if not ( f.startswith("_") or f in attr_names or f in _special_func_names or f in _ignore_names ) ] func_defs = [(f, (), {}) for f in func_names] for f_def in special_func_defs: if f_def[0] in dir(s.dt): func_defs.append(f_def) for func, args, kwargs in func_defs: with warnings.catch_warnings(): if func == "to_period": # dropping TZ warnings.simplefilter("ignore", UserWarning) res = getattr(c.dt, func)(*args, **kwargs) exp = getattr(s.dt, func)(*args, **kwargs) if isinstance(res, DataFrame): tm.assert_frame_equal(res, exp) elif isinstance(res, Series): tm.assert_series_equal(res, exp) else: tm.assert_almost_equal(res, exp) for attr in attr_names: try: res = getattr(c.dt, attr) exp = getattr(s.dt, attr) except Exception as e: print(name, attr) raise e if isinstance(res, DataFrame): tm.assert_frame_equal(res, exp) elif isinstance(res, Series): tm.assert_series_equal(res, exp) else: tm.assert_almost_equal(res, exp) invalid = Series([1, 2, 3]).astype("category") msg = "Can only use .dt accessor with datetimelike" with pytest.raises(AttributeError, match=msg): invalid.dt assert not hasattr(invalid, "str")