import numpy as np import pytest from pandas import Categorical, Series import pandas.util.testing as tm def test_value_counts_nunique(): # basics.rst doc example series = Series(np.random.randn(500)) series[20:500] = np.nan series[10:20] = 5000 result = series.nunique() assert result == 11 # GH 18051 s = Series(Categorical([])) assert s.nunique() == 0 s = Series(Categorical([np.nan])) assert s.nunique() == 0 def test_unique(): # GH714 also, dtype=float s = Series([1.2345] * 100) s[::2] = np.nan result = s.unique() assert len(result) == 2 s = Series([1.2345] * 100, dtype="f4") s[::2] = np.nan result = s.unique() assert len(result) == 2 # NAs in object arrays #714 s = Series(["foo"] * 100, dtype="O") s[::2] = np.nan result = s.unique() assert len(result) == 2 # decision about None s = Series([1, 2, 3, None, None, None], dtype=object) result = s.unique() expected = np.array([1, 2, 3, None], dtype=object) tm.assert_numpy_array_equal(result, expected) # GH 18051 s = Series(Categorical([])) tm.assert_categorical_equal(s.unique(), Categorical([]), check_dtype=False) s = Series(Categorical([np.nan])) tm.assert_categorical_equal(s.unique(), Categorical([np.nan]), check_dtype=False) def test_unique_data_ownership(): # it works! #1807 Series(Series(["a", "c", "b"]).unique()).sort_values() @pytest.mark.parametrize( "data, expected", [ (np.random.randint(0, 10, size=1000), False), (np.arange(1000), True), ([], True), ([np.nan], True), (["foo", "bar", np.nan], True), (["foo", "foo", np.nan], False), (["foo", "bar", np.nan, np.nan], False), ], ) def test_is_unique(data, expected): # GH11946 / GH25180 s = Series(data) assert s.is_unique is expected def test_is_unique_class_ne(capsys): # GH 20661 class Foo: def __init__(self, val): self._value = val def __ne__(self, other): raise Exception("NEQ not supported") with capsys.disabled(): li = [Foo(i) for i in range(5)] s = Series(li, index=[i for i in range(5)]) s.is_unique captured = capsys.readouterr() assert len(captured.err) == 0 @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, False, False, True, True, False])), ("last", Series([False, True, True, False, False, False, False])), (False, Series([False, True, True, False, True, True, False])), ], ) def test_drop_duplicates(any_numpy_dtype, keep, expected): tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype)) if tc.dtype == "bool": pytest.skip("tested separately in test_drop_duplicates_bool") tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() sc.drop_duplicates(keep=keep, inplace=True) tm.assert_series_equal(sc, tc[~expected]) @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, True])), ("last", Series([True, True, False, False])), (False, Series([True, True, True, True])), ], ) def test_drop_duplicates_bool(keep, expected): tc = Series([True, False, True, False]) tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() sc.drop_duplicates(keep=keep, inplace=True) tm.assert_series_equal(sc, tc[~expected]) @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, False, True], name="name")), ("last", Series([True, True, False, False, False], name="name")), (False, Series([True, True, True, False, True], name="name")), ], ) def test_duplicated_keep(keep, expected): s = Series(["a", "b", "b", "c", "a"], name="name") result = s.duplicated(keep=keep) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, False, True])), ("last", Series([True, True, False, False, False])), (False, Series([True, True, True, False, True])), ], ) def test_duplicated_nan_none(keep, expected): s = Series([np.nan, 3, 3, None, np.nan], dtype=object) result = s.duplicated(keep=keep) tm.assert_series_equal(result, expected)