import numpy as np import pytest import pandas as pd from pandas import SparseDtype import pandas.util.testing as tm class TestSeriesSubclassing: def test_indexing_sliced(self): s = tm.SubclassedSeries([1, 2, 3, 4], index=list("abcd")) res = s.loc[["a", "b"]] exp = tm.SubclassedSeries([1, 2], index=list("ab")) tm.assert_series_equal(res, exp) res = s.iloc[[2, 3]] exp = tm.SubclassedSeries([3, 4], index=list("cd")) tm.assert_series_equal(res, exp) res = s.loc[["a", "b"]] exp = tm.SubclassedSeries([1, 2], index=list("ab")) tm.assert_series_equal(res, exp) def test_to_frame(self): s = tm.SubclassedSeries([1, 2, 3, 4], index=list("abcd"), name="xxx") res = s.to_frame() exp = tm.SubclassedDataFrame({"xxx": [1, 2, 3, 4]}, index=list("abcd")) tm.assert_frame_equal(res, exp) def test_subclass_unstack(self): # GH 15564 s = tm.SubclassedSeries([1, 2, 3, 4], index=[list("aabb"), list("xyxy")]) res = s.unstack() exp = tm.SubclassedDataFrame({"x": [1, 3], "y": [2, 4]}, index=["a", "b"]) tm.assert_frame_equal(res, exp) def test_subclass_empty_repr(self): assert "SubclassedSeries" in repr(tm.SubclassedSeries()) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestSparseSeriesSubclassing: def test_subclass_sparse_slice(self): # int64 s = tm.SubclassedSparseSeries([1, 2, 3, 4, 5]) exp = tm.SubclassedSparseSeries([2, 3, 4], index=[1, 2, 3]) tm.assert_sp_series_equal(s.loc[1:3], exp) assert s.loc[1:3].dtype == SparseDtype(np.int64) exp = tm.SubclassedSparseSeries([2, 3], index=[1, 2]) tm.assert_sp_series_equal(s.iloc[1:3], exp) assert s.iloc[1:3].dtype == SparseDtype(np.int64) exp = tm.SubclassedSparseSeries([2, 3], index=[1, 2]) tm.assert_sp_series_equal(s[1:3], exp) assert s[1:3].dtype == SparseDtype(np.int64) # float64 s = tm.SubclassedSparseSeries([1.0, 2.0, 3.0, 4.0, 5.0]) exp = tm.SubclassedSparseSeries([2.0, 3.0, 4.0], index=[1, 2, 3]) tm.assert_sp_series_equal(s.loc[1:3], exp) assert s.loc[1:3].dtype == SparseDtype(np.float64) exp = tm.SubclassedSparseSeries([2.0, 3.0], index=[1, 2]) tm.assert_sp_series_equal(s.iloc[1:3], exp) assert s.iloc[1:3].dtype == SparseDtype(np.float64) exp = tm.SubclassedSparseSeries([2.0, 3.0], index=[1, 2]) tm.assert_sp_series_equal(s[1:3], exp) assert s[1:3].dtype == SparseDtype(np.float64) def test_subclass_sparse_addition(self): s1 = tm.SubclassedSparseSeries([1, 3, 5]) s2 = tm.SubclassedSparseSeries([-2, 5, 12]) exp = tm.SubclassedSparseSeries([-1, 8, 17]) tm.assert_sp_series_equal(s1 + s2, exp) s1 = tm.SubclassedSparseSeries([4.0, 5.0, 6.0]) s2 = tm.SubclassedSparseSeries([1.0, 2.0, 3.0]) exp = tm.SubclassedSparseSeries([5.0, 7.0, 9.0]) tm.assert_sp_series_equal(s1 + s2, exp) def test_subclass_sparse_to_frame(self): s = tm.SubclassedSparseSeries([1, 2], index=list("ab"), name="xxx") res = s.to_frame() exp_arr = pd.SparseArray([1, 2], dtype=np.int64, kind="block", fill_value=0) exp = tm.SubclassedSparseDataFrame( {"xxx": exp_arr}, index=list("ab"), default_fill_value=0 ) tm.assert_sp_frame_equal(res, exp) # create from int dict res = tm.SubclassedSparseDataFrame( {"xxx": [1, 2]}, index=list("ab"), default_fill_value=0 ) tm.assert_sp_frame_equal(res, exp) s = tm.SubclassedSparseSeries([1.1, 2.1], index=list("ab"), name="xxx") res = s.to_frame() exp = tm.SubclassedSparseDataFrame({"xxx": [1.1, 2.1]}, index=list("ab")) tm.assert_sp_frame_equal(res, exp)