817 lines
24 KiB
Python
817 lines
24 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.core.dtypes.generic import ABCIndexClass
|
|
|
|
import pandas as pd
|
|
from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar
|
|
from pandas.core.arrays import IntegerArray, integer_array
|
|
from pandas.core.arrays.integer import (
|
|
Int8Dtype,
|
|
Int16Dtype,
|
|
Int32Dtype,
|
|
Int64Dtype,
|
|
UInt8Dtype,
|
|
UInt16Dtype,
|
|
UInt32Dtype,
|
|
UInt64Dtype,
|
|
)
|
|
from pandas.tests.extension.base import BaseOpsUtil
|
|
import pandas.util.testing as tm
|
|
|
|
|
|
def make_data():
|
|
return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100]
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
Int8Dtype,
|
|
Int16Dtype,
|
|
Int32Dtype,
|
|
Int64Dtype,
|
|
UInt8Dtype,
|
|
UInt16Dtype,
|
|
UInt32Dtype,
|
|
UInt64Dtype,
|
|
]
|
|
)
|
|
def dtype(request):
|
|
return request.param()
|
|
|
|
|
|
@pytest.fixture
|
|
def data(dtype):
|
|
return integer_array(make_data(), dtype=dtype)
|
|
|
|
|
|
@pytest.fixture
|
|
def data_missing(dtype):
|
|
return integer_array([np.nan, 1], dtype=dtype)
|
|
|
|
|
|
@pytest.fixture(params=["data", "data_missing"])
|
|
def all_data(request, data, data_missing):
|
|
"""Parametrized fixture giving 'data' and 'data_missing'"""
|
|
if request.param == "data":
|
|
return data
|
|
elif request.param == "data_missing":
|
|
return data_missing
|
|
|
|
|
|
def test_dtypes(dtype):
|
|
# smoke tests on auto dtype construction
|
|
|
|
if dtype.is_signed_integer:
|
|
assert np.dtype(dtype.type).kind == "i"
|
|
else:
|
|
assert np.dtype(dtype.type).kind == "u"
|
|
assert dtype.name is not None
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype, expected",
|
|
[
|
|
(Int8Dtype(), "Int8Dtype()"),
|
|
(Int16Dtype(), "Int16Dtype()"),
|
|
(Int32Dtype(), "Int32Dtype()"),
|
|
(Int64Dtype(), "Int64Dtype()"),
|
|
(UInt8Dtype(), "UInt8Dtype()"),
|
|
(UInt16Dtype(), "UInt16Dtype()"),
|
|
(UInt32Dtype(), "UInt32Dtype()"),
|
|
(UInt64Dtype(), "UInt64Dtype()"),
|
|
],
|
|
)
|
|
def test_repr_dtype(dtype, expected):
|
|
assert repr(dtype) == expected
|
|
|
|
|
|
def test_repr_array():
|
|
result = repr(integer_array([1, None, 3]))
|
|
expected = "<IntegerArray>\n[1, NaN, 3]\nLength: 3, dtype: Int64"
|
|
assert result == expected
|
|
|
|
|
|
def test_repr_array_long():
|
|
data = integer_array([1, 2, None] * 1000)
|
|
expected = (
|
|
"<IntegerArray>\n"
|
|
"[ 1, 2, NaN, 1, 2, NaN, 1, 2, NaN, 1,\n"
|
|
" ...\n"
|
|
" NaN, 1, 2, NaN, 1, 2, NaN, 1, 2, NaN]\n"
|
|
"Length: 3000, dtype: Int64"
|
|
)
|
|
result = repr(data)
|
|
assert result == expected
|
|
|
|
|
|
class TestConstructors:
|
|
def test_from_dtype_from_float(self, data):
|
|
# construct from our dtype & string dtype
|
|
dtype = data.dtype
|
|
|
|
# from float
|
|
expected = pd.Series(data)
|
|
result = pd.Series(np.array(data).astype("float"), dtype=str(dtype))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# from int / list
|
|
expected = pd.Series(data)
|
|
result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# from int / array
|
|
expected = pd.Series(data).dropna().reset_index(drop=True)
|
|
dropped = np.array(data.dropna()).astype(np.dtype((dtype.type)))
|
|
result = pd.Series(dropped, dtype=str(dtype))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
class TestArithmeticOps(BaseOpsUtil):
|
|
def _check_divmod_op(self, s, op, other, exc=None):
|
|
super()._check_divmod_op(s, op, other, None)
|
|
|
|
def _check_op(self, s, op_name, other, exc=None):
|
|
op = self.get_op_from_name(op_name)
|
|
result = op(s, other)
|
|
|
|
# compute expected
|
|
mask = s.isna()
|
|
|
|
# if s is a DataFrame, squeeze to a Series
|
|
# for comparison
|
|
if isinstance(s, pd.DataFrame):
|
|
result = result.squeeze()
|
|
s = s.squeeze()
|
|
mask = mask.squeeze()
|
|
|
|
# other array is an Integer
|
|
if isinstance(other, IntegerArray):
|
|
omask = getattr(other, "mask", None)
|
|
mask = getattr(other, "data", other)
|
|
if omask is not None:
|
|
mask |= omask
|
|
|
|
# 1 ** na is na, so need to unmask those
|
|
if op_name == "__pow__":
|
|
mask = np.where(s == 1, False, mask)
|
|
|
|
elif op_name == "__rpow__":
|
|
mask = np.where(other == 1, False, mask)
|
|
|
|
# float result type or float op
|
|
if (
|
|
is_float_dtype(other)
|
|
or is_float(other)
|
|
or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"]
|
|
):
|
|
rs = s.astype("float")
|
|
expected = op(rs, other)
|
|
self._check_op_float(result, expected, mask, s, op_name, other)
|
|
|
|
# integer result type
|
|
else:
|
|
rs = pd.Series(s.values._data, name=s.name)
|
|
expected = op(rs, other)
|
|
self._check_op_integer(result, expected, mask, s, op_name, other)
|
|
|
|
def _check_op_float(self, result, expected, mask, s, op_name, other):
|
|
# check comparisons that are resulting in float dtypes
|
|
|
|
expected[mask] = np.nan
|
|
if "floordiv" in op_name:
|
|
# Series op sets 1//0 to np.inf, which IntegerArray does not do (yet)
|
|
mask2 = np.isinf(expected) & np.isnan(result)
|
|
expected[mask2] = np.nan
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def _check_op_integer(self, result, expected, mask, s, op_name, other):
|
|
# check comparisons that are resulting in integer dtypes
|
|
|
|
# to compare properly, we convert the expected
|
|
# to float, mask to nans and convert infs
|
|
# if we have uints then we process as uints
|
|
# then conert to float
|
|
# and we ultimately want to create a IntArray
|
|
# for comparisons
|
|
|
|
fill_value = 0
|
|
|
|
# mod/rmod turn floating 0 into NaN while
|
|
# integer works as expected (no nan)
|
|
if op_name in ["__mod__", "__rmod__"]:
|
|
if is_scalar(other):
|
|
if other == 0:
|
|
expected[s.values == 0] = 0
|
|
else:
|
|
expected = expected.fillna(0)
|
|
else:
|
|
expected[(s.values == 0) & ((expected == 0) | expected.isna())] = 0
|
|
try:
|
|
expected[(expected == np.inf) | (expected == -np.inf)] = fill_value
|
|
original = expected
|
|
expected = expected.astype(s.dtype)
|
|
|
|
except ValueError:
|
|
|
|
expected = expected.astype(float)
|
|
expected[(expected == np.inf) | (expected == -np.inf)] = fill_value
|
|
original = expected
|
|
expected = expected.astype(s.dtype)
|
|
|
|
expected[mask] = np.nan
|
|
|
|
# assert that the expected astype is ok
|
|
# (skip for unsigned as they have wrap around)
|
|
if not s.dtype.is_unsigned_integer:
|
|
original = pd.Series(original)
|
|
|
|
# we need to fill with 0's to emulate what an astype('int') does
|
|
# (truncation) for certain ops
|
|
if op_name in ["__rtruediv__", "__rdiv__"]:
|
|
mask |= original.isna()
|
|
original = original.fillna(0).astype("int")
|
|
|
|
original = original.astype("float")
|
|
original[mask] = np.nan
|
|
tm.assert_series_equal(original, expected.astype("float"))
|
|
|
|
# assert our expected result
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_arith_integer_array(self, data, all_arithmetic_operators):
|
|
# we operate with a rhs of an integer array
|
|
|
|
op = all_arithmetic_operators
|
|
|
|
s = pd.Series(data)
|
|
rhs = pd.Series([1] * len(data), dtype=data.dtype)
|
|
rhs.iloc[-1] = np.nan
|
|
|
|
self._check_op(s, op, rhs)
|
|
|
|
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
|
|
# scalar
|
|
op = all_arithmetic_operators
|
|
|
|
s = pd.Series(data)
|
|
self._check_op(s, op, 1, exc=TypeError)
|
|
|
|
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
|
|
# frame & scalar
|
|
op = all_arithmetic_operators
|
|
|
|
df = pd.DataFrame({"A": data})
|
|
self._check_op(df, op, 1, exc=TypeError)
|
|
|
|
def test_arith_series_with_array(self, data, all_arithmetic_operators):
|
|
# ndarray & other series
|
|
op = all_arithmetic_operators
|
|
|
|
s = pd.Series(data)
|
|
other = np.ones(len(s), dtype=s.dtype.type)
|
|
self._check_op(s, op, other, exc=TypeError)
|
|
|
|
def test_arith_coerce_scalar(self, data, all_arithmetic_operators):
|
|
|
|
op = all_arithmetic_operators
|
|
s = pd.Series(data)
|
|
|
|
other = 0.01
|
|
self._check_op(s, op, other)
|
|
|
|
@pytest.mark.parametrize("other", [1.0, 1.0, np.array(1.0), np.array([1.0])])
|
|
def test_arithmetic_conversion(self, all_arithmetic_operators, other):
|
|
# if we have a float operand we should have a float result
|
|
# if that is equal to an integer
|
|
op = self.get_op_from_name(all_arithmetic_operators)
|
|
|
|
s = pd.Series([1, 2, 3], dtype="Int64")
|
|
result = op(s, other)
|
|
assert result.dtype is np.dtype("float")
|
|
|
|
@pytest.mark.parametrize("other", [0, 0.5])
|
|
def test_arith_zero_dim_ndarray(self, other):
|
|
arr = integer_array([1, None, 2])
|
|
result = arr + np.array(other)
|
|
expected = arr + other
|
|
tm.assert_equal(result, expected)
|
|
|
|
def test_error(self, data, all_arithmetic_operators):
|
|
# invalid ops
|
|
|
|
op = all_arithmetic_operators
|
|
s = pd.Series(data)
|
|
ops = getattr(s, op)
|
|
opa = getattr(data, op)
|
|
|
|
# invalid scalars
|
|
with pytest.raises(TypeError):
|
|
ops("foo")
|
|
with pytest.raises(TypeError):
|
|
ops(pd.Timestamp("20180101"))
|
|
|
|
# invalid array-likes
|
|
with pytest.raises(TypeError):
|
|
ops(pd.Series("foo", index=s.index))
|
|
|
|
if op != "__rpow__":
|
|
# TODO(extension)
|
|
# rpow with a datetimelike coerces the integer array incorrectly
|
|
with pytest.raises(TypeError):
|
|
ops(pd.Series(pd.date_range("20180101", periods=len(s))))
|
|
|
|
# 2d
|
|
with pytest.raises(NotImplementedError):
|
|
opa(pd.DataFrame({"A": s}))
|
|
with pytest.raises(NotImplementedError):
|
|
opa(np.arange(len(s)).reshape(-1, len(s)))
|
|
|
|
def test_pow(self):
|
|
# https://github.com/pandas-dev/pandas/issues/22022
|
|
a = integer_array([1, np.nan, np.nan, 1])
|
|
b = integer_array([1, np.nan, 1, np.nan])
|
|
result = a ** b
|
|
expected = pd.core.arrays.integer_array([1, np.nan, np.nan, 1])
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
def test_rpow_one_to_na(self):
|
|
# https://github.com/pandas-dev/pandas/issues/22022
|
|
arr = integer_array([np.nan, np.nan])
|
|
result = np.array([1.0, 2.0]) ** arr
|
|
expected = np.array([1.0, np.nan])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
class TestComparisonOps(BaseOpsUtil):
|
|
def _compare_other(self, data, op_name, other):
|
|
op = self.get_op_from_name(op_name)
|
|
|
|
# array
|
|
result = pd.Series(op(data, other))
|
|
expected = pd.Series(op(data._data, other))
|
|
|
|
# fill the nan locations
|
|
expected[data._mask] = op_name == "__ne__"
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# series
|
|
s = pd.Series(data)
|
|
result = op(s, other)
|
|
|
|
expected = pd.Series(data._data)
|
|
expected = op(expected, other)
|
|
|
|
# fill the nan locations
|
|
expected[data._mask] = op_name == "__ne__"
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_compare_scalar(self, data, all_compare_operators):
|
|
op_name = all_compare_operators
|
|
self._compare_other(data, op_name, 0)
|
|
|
|
def test_compare_array(self, data, all_compare_operators):
|
|
op_name = all_compare_operators
|
|
other = pd.Series([0] * len(data))
|
|
self._compare_other(data, op_name, other)
|
|
|
|
|
|
class TestCasting:
|
|
pass
|
|
|
|
@pytest.mark.parametrize("dropna", [True, False])
|
|
def test_construct_index(self, all_data, dropna):
|
|
# ensure that we do not coerce to Float64Index, rather
|
|
# keep as Index
|
|
|
|
all_data = all_data[:10]
|
|
if dropna:
|
|
other = np.array(all_data[~all_data.isna()])
|
|
else:
|
|
other = all_data
|
|
|
|
result = pd.Index(integer_array(other, dtype=all_data.dtype))
|
|
expected = pd.Index(other, dtype=object)
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("dropna", [True, False])
|
|
def test_astype_index(self, all_data, dropna):
|
|
# as an int/uint index to Index
|
|
|
|
all_data = all_data[:10]
|
|
if dropna:
|
|
other = all_data[~all_data.isna()]
|
|
else:
|
|
other = all_data
|
|
|
|
dtype = all_data.dtype
|
|
idx = pd.Index(np.array(other))
|
|
assert isinstance(idx, ABCIndexClass)
|
|
|
|
result = idx.astype(dtype)
|
|
expected = idx.astype(object).astype(dtype)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_astype(self, all_data):
|
|
all_data = all_data[:10]
|
|
|
|
ints = all_data[~all_data.isna()]
|
|
mixed = all_data
|
|
dtype = Int8Dtype()
|
|
|
|
# coerce to same type - ints
|
|
s = pd.Series(ints)
|
|
result = s.astype(all_data.dtype)
|
|
expected = pd.Series(ints)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# coerce to same other - ints
|
|
s = pd.Series(ints)
|
|
result = s.astype(dtype)
|
|
expected = pd.Series(ints, dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# coerce to same numpy_dtype - ints
|
|
s = pd.Series(ints)
|
|
result = s.astype(all_data.dtype.numpy_dtype)
|
|
expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# coerce to same type - mixed
|
|
s = pd.Series(mixed)
|
|
result = s.astype(all_data.dtype)
|
|
expected = pd.Series(mixed)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# coerce to same other - mixed
|
|
s = pd.Series(mixed)
|
|
result = s.astype(dtype)
|
|
expected = pd.Series(mixed, dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# coerce to same numpy_dtype - mixed
|
|
s = pd.Series(mixed)
|
|
with pytest.raises(ValueError):
|
|
s.astype(all_data.dtype.numpy_dtype)
|
|
|
|
# coerce to object
|
|
s = pd.Series(mixed)
|
|
result = s.astype("object")
|
|
expected = pd.Series(np.asarray(mixed))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"])
|
|
def test_astype_specific_casting(self, dtype):
|
|
s = pd.Series([1, 2, 3], dtype="Int64")
|
|
result = s.astype(dtype)
|
|
expected = pd.Series([1, 2, 3], dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
s = pd.Series([1, 2, 3, None], dtype="Int64")
|
|
result = s.astype(dtype)
|
|
expected = pd.Series([1, 2, 3, None], dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_construct_cast_invalid(self, dtype):
|
|
|
|
msg = "cannot safely"
|
|
arr = [1.2, 2.3, 3.7]
|
|
with pytest.raises(TypeError, match=msg):
|
|
integer_array(arr, dtype=dtype)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
pd.Series(arr).astype(dtype)
|
|
|
|
arr = [1.2, 2.3, 3.7, np.nan]
|
|
with pytest.raises(TypeError, match=msg):
|
|
integer_array(arr, dtype=dtype)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
pd.Series(arr).astype(dtype)
|
|
|
|
|
|
def test_frame_repr(data_missing):
|
|
|
|
df = pd.DataFrame({"A": data_missing})
|
|
result = repr(df)
|
|
expected = " A\n0 NaN\n1 1"
|
|
assert result == expected
|
|
|
|
|
|
def test_conversions(data_missing):
|
|
|
|
# astype to object series
|
|
df = pd.DataFrame({"A": data_missing})
|
|
result = df["A"].astype("object")
|
|
expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# convert to object ndarray
|
|
# we assert that we are exactly equal
|
|
# including type conversions of scalars
|
|
result = df["A"].astype("object").values
|
|
expected = np.array([np.nan, 1], dtype=object)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
for r, e in zip(result, expected):
|
|
if pd.isnull(r):
|
|
assert pd.isnull(e)
|
|
elif is_integer(r):
|
|
assert r == e
|
|
assert is_integer(e)
|
|
else:
|
|
assert r == e
|
|
assert type(r) == type(e)
|
|
|
|
|
|
def test_integer_array_constructor():
|
|
values = np.array([1, 2, 3, 4], dtype="int64")
|
|
mask = np.array([False, False, False, True], dtype="bool")
|
|
|
|
result = IntegerArray(values, mask)
|
|
expected = integer_array([1, 2, 3, np.nan], dtype="int64")
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
with pytest.raises(TypeError):
|
|
IntegerArray(values.tolist(), mask)
|
|
|
|
with pytest.raises(TypeError):
|
|
IntegerArray(values, mask.tolist())
|
|
|
|
with pytest.raises(TypeError):
|
|
IntegerArray(values.astype(float), mask)
|
|
|
|
with pytest.raises(TypeError):
|
|
IntegerArray(values)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"a, b",
|
|
[
|
|
([1, None], [1, np.nan]),
|
|
([None], [np.nan]),
|
|
([None, np.nan], [np.nan, np.nan]),
|
|
([np.nan, np.nan], [np.nan, np.nan]),
|
|
],
|
|
)
|
|
def test_integer_array_constructor_none_is_nan(a, b):
|
|
result = integer_array(a)
|
|
expected = integer_array(b)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
def test_integer_array_constructor_copy():
|
|
values = np.array([1, 2, 3, 4], dtype="int64")
|
|
mask = np.array([False, False, False, True], dtype="bool")
|
|
|
|
result = IntegerArray(values, mask)
|
|
assert result._data is values
|
|
assert result._mask is mask
|
|
|
|
result = IntegerArray(values, mask, copy=True)
|
|
assert result._data is not values
|
|
assert result._mask is not mask
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"values",
|
|
[
|
|
["foo", "bar"],
|
|
["1", "2"],
|
|
"foo",
|
|
1,
|
|
1.0,
|
|
pd.date_range("20130101", periods=2),
|
|
np.array(["foo"]),
|
|
[[1, 2], [3, 4]],
|
|
[np.nan, {"a": 1}],
|
|
],
|
|
)
|
|
def test_to_integer_array_error(values):
|
|
# error in converting existing arrays to IntegerArrays
|
|
with pytest.raises(TypeError):
|
|
integer_array(values)
|
|
|
|
|
|
def test_to_integer_array_inferred_dtype():
|
|
# if values has dtype -> respect it
|
|
result = integer_array(np.array([1, 2], dtype="int8"))
|
|
assert result.dtype == Int8Dtype()
|
|
result = integer_array(np.array([1, 2], dtype="int32"))
|
|
assert result.dtype == Int32Dtype()
|
|
|
|
# if values have no dtype -> always int64
|
|
result = integer_array([1, 2])
|
|
assert result.dtype == Int64Dtype()
|
|
|
|
|
|
def test_to_integer_array_dtype_keyword():
|
|
result = integer_array([1, 2], dtype="int8")
|
|
assert result.dtype == Int8Dtype()
|
|
|
|
# if values has dtype -> override it
|
|
result = integer_array(np.array([1, 2], dtype="int8"), dtype="int32")
|
|
assert result.dtype == Int32Dtype()
|
|
|
|
|
|
def test_to_integer_array_float():
|
|
result = integer_array([1.0, 2.0])
|
|
expected = integer_array([1, 2])
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
|
|
integer_array([1.5, 2.0])
|
|
|
|
# for float dtypes, the itemsize is not preserved
|
|
result = integer_array(np.array([1.0, 2.0], dtype="float32"))
|
|
assert result.dtype == Int64Dtype()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"bool_values, int_values, target_dtype, expected_dtype",
|
|
[
|
|
([False, True], [0, 1], Int64Dtype(), Int64Dtype()),
|
|
([False, True], [0, 1], "Int64", Int64Dtype()),
|
|
([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()),
|
|
],
|
|
)
|
|
def test_to_integer_array_bool(bool_values, int_values, target_dtype, expected_dtype):
|
|
result = integer_array(bool_values, dtype=target_dtype)
|
|
assert result.dtype == expected_dtype
|
|
expected = integer_array(int_values, dtype=target_dtype)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"values, to_dtype, result_dtype",
|
|
[
|
|
(np.array([1], dtype="int64"), None, Int64Dtype),
|
|
(np.array([1, np.nan]), None, Int64Dtype),
|
|
(np.array([1, np.nan]), "int8", Int8Dtype),
|
|
],
|
|
)
|
|
def test_to_integer_array(values, to_dtype, result_dtype):
|
|
# convert existing arrays to IntegerArrays
|
|
result = integer_array(values, dtype=to_dtype)
|
|
assert result.dtype == result_dtype()
|
|
expected = integer_array(values, dtype=result_dtype())
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
def test_cross_type_arithmetic():
|
|
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": pd.Series([1, 2, np.nan], dtype="Int64"),
|
|
"B": pd.Series([1, np.nan, 3], dtype="UInt8"),
|
|
"C": [1, 2, 3],
|
|
}
|
|
)
|
|
|
|
result = df.A + df.C
|
|
expected = pd.Series([2, 4, np.nan], dtype="Int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = (df.A + df.C) * 3 == 12
|
|
expected = pd.Series([False, True, False])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = df.A + df.B
|
|
expected = pd.Series([2, np.nan, np.nan], dtype="Int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
|
|
def test_preserve_dtypes(op):
|
|
# TODO(#22346): preserve Int64 dtype
|
|
# for ops that enable (mean would actually work here
|
|
# but generally it is a float return value)
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": ["a", "b", "b"],
|
|
"B": [1, None, 3],
|
|
"C": integer_array([1, None, 3], dtype="Int64"),
|
|
}
|
|
)
|
|
|
|
# op
|
|
result = getattr(df.C, op)()
|
|
assert isinstance(result, int)
|
|
|
|
# groupby
|
|
result = getattr(df.groupby("A"), op)()
|
|
|
|
expected = pd.DataFrame(
|
|
{"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")},
|
|
index=pd.Index(["a", "b"], name="A"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("op", ["mean"])
|
|
def test_reduce_to_float(op):
|
|
# some reduce ops always return float, even if the result
|
|
# is a rounded number
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": ["a", "b", "b"],
|
|
"B": [1, None, 3],
|
|
"C": integer_array([1, None, 3], dtype="Int64"),
|
|
}
|
|
)
|
|
|
|
# op
|
|
result = getattr(df.C, op)()
|
|
assert isinstance(result, float)
|
|
|
|
# groupby
|
|
result = getattr(df.groupby("A"), op)()
|
|
|
|
expected = pd.DataFrame(
|
|
{"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")},
|
|
index=pd.Index(["a", "b"], name="A"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_astype_nansafe():
|
|
# see gh-22343
|
|
arr = integer_array([np.nan, 1, 2], dtype="Int8")
|
|
msg = "cannot convert float NaN to integer"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
arr.astype("uint32")
|
|
|
|
|
|
@pytest.mark.parametrize("ufunc", [np.abs, np.sign])
|
|
def test_ufuncs_single_int(ufunc):
|
|
a = integer_array([1, 2, -3, np.nan])
|
|
result = ufunc(a)
|
|
expected = integer_array(ufunc(a.astype(float)))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
s = pd.Series(a)
|
|
result = ufunc(s)
|
|
expected = pd.Series(integer_array(ufunc(a.astype(float))))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
|
|
def test_ufuncs_single_float(ufunc):
|
|
a = integer_array([1, 2, -3, np.nan])
|
|
with np.errstate(invalid="ignore"):
|
|
result = ufunc(a)
|
|
expected = ufunc(a.astype(float))
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
s = pd.Series(a)
|
|
with np.errstate(invalid="ignore"):
|
|
result = ufunc(s)
|
|
expected = ufunc(s.astype(float))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("ufunc", [np.add, np.subtract])
|
|
def test_ufuncs_binary_int(ufunc):
|
|
# two IntegerArrays
|
|
a = integer_array([1, 2, -3, np.nan])
|
|
result = ufunc(a, a)
|
|
expected = integer_array(ufunc(a.astype(float), a.astype(float)))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# IntegerArray with numpy array
|
|
arr = np.array([1, 2, 3, 4])
|
|
result = ufunc(a, arr)
|
|
expected = integer_array(ufunc(a.astype(float), arr))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = ufunc(arr, a)
|
|
expected = integer_array(ufunc(arr, a.astype(float)))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# IntegerArray with scalar
|
|
result = ufunc(a, 1)
|
|
expected = integer_array(ufunc(a.astype(float), 1))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
result = ufunc(1, a)
|
|
expected = integer_array(ufunc(1, a.astype(float)))
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("values", [[0, 1], [0, None]])
|
|
def test_ufunc_reduce_raises(values):
|
|
a = integer_array(values)
|
|
with pytest.raises(NotImplementedError):
|
|
np.add.reduce(a)
|
|
|
|
|
|
# TODO(jreback) - these need testing / are broken
|
|
|
|
# shift
|
|
|
|
# set_index (destroys type)
|