python-by-example-150-chall.../venv/lib/python3.6/site-packages/pandas/tests/extension/test_sparse.py
2019-08-04 15:26:35 +03:00

371 lines
12 KiB
Python

import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import SparseArray, SparseDtype
from pandas.tests.extension import base
import pandas.util.testing as tm
def make_data(fill_value):
if np.isnan(fill_value):
data = np.random.uniform(size=100)
else:
data = np.random.randint(1, 100, size=100)
if data[0] == data[1]:
data[0] += 1
data[2::3] = fill_value
return data
@pytest.fixture
def dtype():
return SparseDtype()
@pytest.fixture(params=[0, np.nan])
def data(request):
"""Length-100 PeriodArray for semantics test."""
res = SparseArray(make_data(request.param), fill_value=request.param)
return res
@pytest.fixture
def data_for_twos(request):
return SparseArray(np.ones(100) * 2)
@pytest.fixture(params=[0, np.nan])
def data_missing(request):
"""Length 2 array with [NA, Valid]"""
return SparseArray([np.nan, 1], fill_value=request.param)
@pytest.fixture(params=[0, np.nan])
def data_repeated(request):
"""Return different versions of data for count times"""
def gen(count):
for _ in range(count):
yield SparseArray(make_data(request.param), fill_value=request.param)
yield gen
@pytest.fixture(params=[0, np.nan])
def data_for_sorting(request):
return SparseArray([2, 3, 1], fill_value=request.param)
@pytest.fixture(params=[0, np.nan])
def data_missing_for_sorting(request):
return SparseArray([2, np.nan, 1], fill_value=request.param)
@pytest.fixture
def na_value():
return np.nan
@pytest.fixture
def na_cmp():
return lambda left, right: pd.isna(left) and pd.isna(right)
@pytest.fixture(params=[0, np.nan])
def data_for_grouping(request):
return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param)
class BaseSparseTests:
def _check_unsupported(self, data):
if data.dtype == SparseDtype(int, 0):
pytest.skip("Can't store nan in int array.")
@pytest.mark.xfail(reason="SparseArray does not support setitem")
def test_ravel(self, data):
super().test_ravel(data)
class TestDtype(BaseSparseTests, base.BaseDtypeTests):
def test_array_type_with_arg(self, data, dtype):
assert dtype.construct_array_type() is SparseArray
class TestInterface(BaseSparseTests, base.BaseInterfaceTests):
def test_no_values_attribute(self, data):
pytest.skip("We have values")
def test_copy(self, data):
# __setitem__ does not work, so we only have a smoke-test
data.copy()
class TestConstructors(BaseSparseTests, base.BaseConstructorsTests):
pass
class TestReshaping(BaseSparseTests, base.BaseReshapingTests):
def test_concat_mixed_dtypes(self, data):
# https://github.com/pandas-dev/pandas/issues/20762
# This should be the same, aside from concat([sparse, float])
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"A": [1, 2, 3]})
df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
dfs = [df1, df2, df3]
# dataframes
result = pd.concat(dfs)
expected = pd.concat(
[x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs]
)
self.assert_frame_equal(result, expected)
def test_concat_columns(self, data, na_value):
self._check_unsupported(data)
super().test_concat_columns(data, na_value)
def test_align(self, data, na_value):
self._check_unsupported(data)
super().test_align(data, na_value)
def test_align_frame(self, data, na_value):
self._check_unsupported(data)
super().test_align_frame(data, na_value)
def test_align_series_frame(self, data, na_value):
self._check_unsupported(data)
super().test_align_series_frame(data, na_value)
def test_merge(self, data, na_value):
self._check_unsupported(data)
super().test_merge(data, na_value)
class TestGetitem(BaseSparseTests, base.BaseGetitemTests):
def test_get(self, data):
s = pd.Series(data, index=[2 * i for i in range(len(data))])
if np.isnan(s.values.fill_value):
assert np.isnan(s.get(4)) and np.isnan(s.iloc[2])
else:
assert s.get(4) == s.iloc[2]
assert s.get(2) == s.iloc[1]
def test_reindex(self, data, na_value):
self._check_unsupported(data)
super().test_reindex(data, na_value)
# Skipping TestSetitem, since we don't implement it.
class TestMissing(BaseSparseTests, base.BaseMissingTests):
def test_isna(self, data_missing):
expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value))
expected = SparseArray([True, False], dtype=expected_dtype)
result = pd.isna(data_missing)
self.assert_equal(result, expected)
result = pd.Series(data_missing).isna()
expected = pd.Series(expected)
self.assert_series_equal(result, expected)
# GH 21189
result = pd.Series(data_missing).drop([0, 1]).isna()
expected = pd.Series([], dtype=expected_dtype)
self.assert_series_equal(result, expected)
def test_fillna_limit_pad(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super().test_fillna_limit_pad(data_missing)
def test_fillna_limit_backfill(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super().test_fillna_limit_backfill(data_missing)
def test_fillna_series_method(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super().test_fillna_limit_backfill(data_missing)
@pytest.mark.skip(reason="Unsupported")
def test_fillna_series(self):
# this one looks doable.
pass
def test_fillna_frame(self, data_missing):
# Have to override to specify that fill_value will change.
fill_value = data_missing[1]
result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
if pd.isna(data_missing.fill_value):
dtype = SparseDtype(data_missing.dtype, fill_value)
else:
dtype = data_missing.dtype
expected = pd.DataFrame(
{
"A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype),
"B": [1, 2],
}
)
self.assert_frame_equal(result, expected)
class TestMethods(BaseSparseTests, base.BaseMethodsTests):
def test_combine_le(self, data_repeated):
# We return a Series[SparseArray].__le__ returns a
# Series[Sparse[bool]]
# rather than Series[bool]
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.SparseArray(
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
fill_value=False,
)
)
self.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.SparseArray([a <= val for a in list(orig_data1)], fill_value=False)
)
self.assert_series_equal(result, expected)
def test_fillna_copy_frame(self, data_missing):
arr = data_missing.take([1, 1])
df = pd.DataFrame({"A": arr})
filled_val = df.iloc[0, 0]
result = df.fillna(filled_val)
assert df.values.base is not result.values.base
assert df.A._values.to_dense() is arr.to_dense()
def test_fillna_copy_series(self, data_missing):
arr = data_missing.take([1, 1])
ser = pd.Series(arr)
filled_val = ser[0]
result = ser.fillna(filled_val)
assert ser._values is not result._values
assert ser._values.to_dense() is arr.to_dense()
@pytest.mark.skip(reason="Not Applicable")
def test_fillna_length_mismatch(self, data_missing):
pass
def test_where_series(self, data, na_value):
assert data[0] != data[1]
cls = type(data)
a, b = data[:2]
ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
cond = np.array([True, True, False, False])
result = ser.where(cond)
new_dtype = SparseDtype("float", 0.0)
expected = pd.Series(
cls._from_sequence([a, a, na_value, na_value], dtype=new_dtype)
)
self.assert_series_equal(result, expected)
other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
cond = np.array([True, False, True, True])
result = ser.where(cond, other)
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
self.assert_series_equal(result, expected)
def test_combine_first(self, data):
if data.dtype.subtype == "int":
# Right now this is upcasted to float, just like combine_first
# for Series[int]
pytest.skip("TODO(SparseArray.__setitem__ will preserve dtype.")
super().test_combine_first(data)
def test_searchsorted(self, data_for_sorting, as_series):
with tm.assert_produces_warning(PerformanceWarning):
super().test_searchsorted(data_for_sorting, as_series)
class TestCasting(BaseSparseTests, base.BaseCastingTests):
pass
class TestArithmeticOps(BaseSparseTests, base.BaseArithmeticOpsTests):
series_scalar_exc = None
frame_scalar_exc = None
divmod_exc = None
series_array_exc = None
def _skip_if_different_combine(self, data):
if data.fill_value == 0:
# arith ops call on dtype.fill_value so that the sparsity
# is maintained. Combine can't be called on a dtype in
# general, so we can't make the expected. This is tested elsewhere
raise pytest.skip("Incorrected expected from Series.combine")
def test_error(self, data, all_arithmetic_operators):
pass
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
self._skip_if_different_combine(data)
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
self._skip_if_different_combine(data)
super().test_arith_series_with_array(data, all_arithmetic_operators)
class TestComparisonOps(BaseSparseTests, base.BaseComparisonOpsTests):
def _compare_other(self, s, data, op_name, other):
op = self.get_op_from_name(op_name)
# array
result = pd.Series(op(data, other))
# hard to test the fill value, since we don't know what expected
# is in general.
# Rely on tests in `tests/sparse` to validate that.
assert isinstance(result.dtype, SparseDtype)
assert result.dtype.subtype == np.dtype("bool")
with np.errstate(all="ignore"):
expected = pd.Series(
pd.SparseArray(
op(np.asarray(data), np.asarray(other)),
fill_value=result.values.fill_value,
)
)
tm.assert_series_equal(result, expected)
# series
s = pd.Series(data)
result = op(s, other)
tm.assert_series_equal(result, expected)
class TestPrinting(BaseSparseTests, base.BasePrintingTests):
@pytest.mark.xfail(reason="Different repr", strict=True)
def test_array_repr(self, data, size):
super().test_array_repr(data, size)
class TestParsing(BaseSparseTests, base.BaseParsingTests):
@pytest.mark.parametrize("engine", ["c", "python"])
def test_EA_types(self, engine, data):
expected_msg = r".*must implement _from_sequence_of_strings.*"
with pytest.raises(NotImplementedError, match=expected_msg):
super().test_EA_types(engine, data)