python-by-example-150-chall.../venv/lib/python3.6/site-packages/pandas/tests/sparse/test_indexing.py
2019-08-04 15:26:35 +03:00

1059 lines
38 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas.core.sparse.api import SparseDtype
import pandas.util.testing as tm
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
class TestSparseSeriesIndexing:
def setup_method(self, method):
self.orig = pd.Series([1, np.nan, np.nan, 3, np.nan])
self.sparse = self.orig.to_sparse()
def test_getitem(self):
orig = self.orig
sparse = self.sparse
assert sparse[0] == 1
assert np.isnan(sparse[1])
assert sparse[3] == 3
result = sparse[[1, 3, 4]]
exp = orig[[1, 3, 4]].to_sparse()
tm.assert_sp_series_equal(result, exp)
# dense array
result = sparse[orig % 2 == 1]
exp = orig[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse[sparse % 2 == 1]
exp = orig[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array
result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)]
tm.assert_sp_series_equal(result, exp)
def test_getitem_slice(self):
orig = self.orig
sparse = self.sparse
tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse())
tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse())
tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse())
tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse())
def test_getitem_int_dtype(self):
# GH 8292
s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], name="xxx")
res = s[::2]
exp = pd.SparseSeries([0, 2, 4, 6], index=[0, 2, 4, 6], name="xxx")
tm.assert_sp_series_equal(res, exp)
assert res.dtype == SparseDtype(np.int64)
s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], fill_value=0, name="xxx")
res = s[::2]
exp = pd.SparseSeries(
[0, 2, 4, 6], index=[0, 2, 4, 6], fill_value=0, name="xxx"
)
tm.assert_sp_series_equal(res, exp)
assert res.dtype == SparseDtype(np.int64)
def test_getitem_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0])
sparse = orig.to_sparse(fill_value=0)
assert sparse[0] == 1
assert np.isnan(sparse[1])
assert sparse[2] == 0
assert sparse[3] == 3
result = sparse[[1, 3, 4]]
exp = orig[[1, 3, 4]].to_sparse(fill_value=0)
tm.assert_sp_series_equal(result, exp)
# dense array
result = sparse[orig % 2 == 1]
exp = orig[orig % 2 == 1].to_sparse(fill_value=0)
tm.assert_sp_series_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse[sparse % 2 == 1]
exp = orig[orig % 2 == 1].to_sparse(fill_value=0)
tm.assert_sp_series_equal(result, exp)
# sparse array
result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)]
tm.assert_sp_series_equal(result, exp)
def test_getitem_ellipsis(self):
# GH 9467
s = pd.SparseSeries([1, np.nan, 2, 0, np.nan])
tm.assert_sp_series_equal(s[...], s)
s = pd.SparseSeries([1, np.nan, 2, 0, np.nan], fill_value=0)
tm.assert_sp_series_equal(s[...], s)
def test_getitem_slice_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0])
sparse = orig.to_sparse(fill_value=0)
tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse(fill_value=0))
tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse(fill_value=0))
tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse(fill_value=0))
tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse(fill_value=0))
def test_loc(self):
orig = self.orig
sparse = self.sparse
assert sparse.loc[0] == 1
assert np.isnan(sparse.loc[1])
result = sparse.loc[[1, 3, 4]]
exp = orig.loc[[1, 3, 4]].to_sparse()
tm.assert_sp_series_equal(result, exp)
# exceeds the bounds
result = sparse.reindex([1, 3, 4, 5])
exp = orig.reindex([1, 3, 4, 5]).to_sparse()
tm.assert_sp_series_equal(result, exp)
# padded with NaN
assert np.isnan(result[-1])
# dense array
result = sparse.loc[orig % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse.loc[sparse % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array
result = sparse.loc[pd.SparseArray(sparse % 2 == 1, dtype=bool)]
tm.assert_sp_series_equal(result, exp)
def test_loc_index(self):
orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list("ABCDE"))
sparse = orig.to_sparse()
assert sparse.loc["A"] == 1
assert np.isnan(sparse.loc["B"])
result = sparse.loc[["A", "C", "D"]]
exp = orig.loc[["A", "C", "D"]].to_sparse()
tm.assert_sp_series_equal(result, exp)
# dense array
result = sparse.loc[orig % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse.loc[sparse % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array
result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)]
tm.assert_sp_series_equal(result, exp)
def test_loc_index_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0], index=list("ABCDE"))
sparse = orig.to_sparse(fill_value=0)
assert sparse.loc["A"] == 1
assert np.isnan(sparse.loc["B"])
result = sparse.loc[["A", "C", "D"]]
exp = orig.loc[["A", "C", "D"]].to_sparse(fill_value=0)
tm.assert_sp_series_equal(result, exp)
# dense array
result = sparse.loc[orig % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0)
tm.assert_sp_series_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse.loc[sparse % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0)
tm.assert_sp_series_equal(result, exp)
def test_loc_slice(self):
orig = self.orig
sparse = self.sparse
tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse())
def test_loc_slice_index_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0], index=list("ABCDE"))
sparse = orig.to_sparse(fill_value=0)
tm.assert_sp_series_equal(
sparse.loc["C":], orig.loc["C":].to_sparse(fill_value=0)
)
def test_loc_slice_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0])
sparse = orig.to_sparse(fill_value=0)
tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse(fill_value=0))
def test_iloc(self):
orig = self.orig
sparse = self.sparse
assert sparse.iloc[3] == 3
assert np.isnan(sparse.iloc[2])
result = sparse.iloc[[1, 3, 4]]
exp = orig.iloc[[1, 3, 4]].to_sparse()
tm.assert_sp_series_equal(result, exp)
result = sparse.iloc[[1, -2, -4]]
exp = orig.iloc[[1, -2, -4]].to_sparse()
tm.assert_sp_series_equal(result, exp)
with pytest.raises(IndexError):
sparse.iloc[[1, 3, 5]]
def test_iloc_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0])
sparse = orig.to_sparse(fill_value=0)
assert sparse.iloc[3] == 3
assert np.isnan(sparse.iloc[1])
assert sparse.iloc[4] == 0
result = sparse.iloc[[1, 3, 4]]
exp = orig.iloc[[1, 3, 4]].to_sparse(fill_value=0)
tm.assert_sp_series_equal(result, exp)
def test_iloc_slice(self):
orig = pd.Series([1, np.nan, np.nan, 3, np.nan])
sparse = orig.to_sparse()
tm.assert_sp_series_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse())
def test_iloc_slice_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0])
sparse = orig.to_sparse(fill_value=0)
tm.assert_sp_series_equal(
sparse.iloc[2:], orig.iloc[2:].to_sparse(fill_value=0)
)
def test_at(self):
orig = pd.Series([1, np.nan, np.nan, 3, np.nan])
sparse = orig.to_sparse()
assert sparse.at[0] == orig.at[0]
assert np.isnan(sparse.at[1])
assert np.isnan(sparse.at[2])
assert sparse.at[3] == orig.at[3]
assert np.isnan(sparse.at[4])
orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list("abcde"))
sparse = orig.to_sparse()
assert sparse.at["a"] == orig.at["a"]
assert np.isnan(sparse.at["b"])
assert np.isnan(sparse.at["c"])
assert sparse.at["d"] == orig.at["d"]
assert np.isnan(sparse.at["e"])
def test_at_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0], index=list("abcde"))
sparse = orig.to_sparse(fill_value=0)
assert sparse.at["a"] == orig.at["a"]
assert np.isnan(sparse.at["b"])
assert sparse.at["c"] == orig.at["c"]
assert sparse.at["d"] == orig.at["d"]
assert sparse.at["e"] == orig.at["e"]
def test_iat(self):
orig = self.orig
sparse = self.sparse
assert sparse.iat[0] == orig.iat[0]
assert np.isnan(sparse.iat[1])
assert np.isnan(sparse.iat[2])
assert sparse.iat[3] == orig.iat[3]
assert np.isnan(sparse.iat[4])
assert np.isnan(sparse.iat[-1])
assert sparse.iat[-5] == orig.iat[-5]
def test_iat_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0])
sparse = orig.to_sparse()
assert sparse.iat[0] == orig.iat[0]
assert np.isnan(sparse.iat[1])
assert sparse.iat[2] == orig.iat[2]
assert sparse.iat[3] == orig.iat[3]
assert sparse.iat[4] == orig.iat[4]
assert sparse.iat[-1] == orig.iat[-1]
assert sparse.iat[-5] == orig.iat[-5]
def test_get(self):
s = pd.SparseSeries([1, np.nan, np.nan, 3, np.nan])
assert s.get(0) == 1
assert np.isnan(s.get(1))
assert s.get(5) is None
s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list("ABCDE"))
assert s.get("A") == 1
assert np.isnan(s.get("B"))
assert s.get("C") == 0
assert s.get("XX") is None
s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list("ABCDE"), fill_value=0)
assert s.get("A") == 1
assert np.isnan(s.get("B"))
assert s.get("C") == 0
assert s.get("XX") is None
def test_take(self):
orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list("ABCDE"))
sparse = orig.to_sparse()
tm.assert_sp_series_equal(sparse.take([0]), orig.take([0]).to_sparse())
tm.assert_sp_series_equal(
sparse.take([0, 1, 3]), orig.take([0, 1, 3]).to_sparse()
)
tm.assert_sp_series_equal(
sparse.take([-1, -2]), orig.take([-1, -2]).to_sparse()
)
def test_take_fill_value(self):
orig = pd.Series([1, np.nan, 0, 3, 0], index=list("ABCDE"))
sparse = orig.to_sparse(fill_value=0)
tm.assert_sp_series_equal(
sparse.take([0]), orig.take([0]).to_sparse(fill_value=0)
)
exp = orig.take([0, 1, 3]).to_sparse(fill_value=0)
tm.assert_sp_series_equal(sparse.take([0, 1, 3]), exp)
exp = orig.take([-1, -2]).to_sparse(fill_value=0)
tm.assert_sp_series_equal(sparse.take([-1, -2]), exp)
def test_reindex(self):
orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list("ABCDE"))
sparse = orig.to_sparse()
res = sparse.reindex(["A", "E", "C", "D"])
exp = orig.reindex(["A", "E", "C", "D"]).to_sparse()
tm.assert_sp_series_equal(res, exp)
# all missing & fill_value
res = sparse.reindex(["B", "E", "C"])
exp = orig.reindex(["B", "E", "C"]).to_sparse()
tm.assert_sp_series_equal(res, exp)
orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list("ABCDE"))
sparse = orig.to_sparse()
res = sparse.reindex(["A", "E", "C", "D"])
exp = orig.reindex(["A", "E", "C", "D"]).to_sparse()
tm.assert_sp_series_equal(res, exp)
def test_fill_value_reindex(self):
orig = pd.Series([1, np.nan, 0, 3, 0], index=list("ABCDE"))
sparse = orig.to_sparse(fill_value=0)
res = sparse.reindex(["A", "E", "C", "D"])
exp = orig.reindex(["A", "E", "C", "D"]).to_sparse(fill_value=0)
tm.assert_sp_series_equal(res, exp)
# includes missing and fill_value
res = sparse.reindex(["A", "B", "C"])
exp = orig.reindex(["A", "B", "C"]).to_sparse(fill_value=0)
tm.assert_sp_series_equal(res, exp)
# all missing
orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list("ABCDE"))
sparse = orig.to_sparse(fill_value=0)
res = sparse.reindex(["A", "E", "C", "D"])
exp = orig.reindex(["A", "E", "C", "D"]).to_sparse(fill_value=0)
tm.assert_sp_series_equal(res, exp)
# all fill_value
orig = pd.Series([0.0, 0.0, 0.0, 0.0, 0.0], index=list("ABCDE"))
sparse = orig.to_sparse(fill_value=0)
def test_fill_value_reindex_coerces_float_int(self):
orig = pd.Series([1, np.nan, 0, 3, 0], index=list("ABCDE"))
sparse = orig.to_sparse(fill_value=0)
res = sparse.reindex(["A", "E", "C", "D"])
exp = orig.reindex(["A", "E", "C", "D"]).to_sparse(fill_value=0)
tm.assert_sp_series_equal(res, exp)
def test_reindex_fill_value(self):
floats = pd.Series([1.0, 2.0, 3.0]).to_sparse()
result = floats.reindex([1, 2, 3], fill_value=0)
expected = pd.Series([2.0, 3.0, 0], index=[1, 2, 3]).to_sparse()
tm.assert_sp_series_equal(result, expected)
def test_reindex_nearest(self):
s = pd.Series(np.arange(10, dtype="float64")).to_sparse()
target = [0.1, 0.9, 1.5, 2.0]
actual = s.reindex(target, method="nearest")
expected = pd.Series(np.around(target), target).to_sparse()
tm.assert_sp_series_equal(expected, actual)
actual = s.reindex(target, method="nearest", tolerance=0.2)
expected = pd.Series([0, 1, np.nan, 2], target).to_sparse()
tm.assert_sp_series_equal(expected, actual)
actual = s.reindex(target, method="nearest", tolerance=[0.3, 0.01, 0.4, 3])
expected = pd.Series([0, np.nan, np.nan, 2], target).to_sparse()
tm.assert_sp_series_equal(expected, actual)
@pytest.mark.parametrize("kind", ["integer", "block"])
@pytest.mark.parametrize("fill", [True, False, np.nan])
def tests_indexing_with_sparse(self, kind, fill):
# see gh-13985
arr = pd.SparseArray([1, 2, 3], kind=kind)
indexer = pd.SparseArray([True, False, True], fill_value=fill, dtype=bool)
expected = arr[indexer]
result = pd.SparseArray([1, 3], kind=kind)
tm.assert_sp_array_equal(result, expected)
s = pd.SparseSeries(arr, index=["a", "b", "c"], dtype=np.float64)
expected = pd.SparseSeries(
[1, 3],
index=["a", "c"],
kind=kind,
dtype=SparseDtype(np.float64, s.fill_value),
)
tm.assert_sp_series_equal(s[indexer], expected)
tm.assert_sp_series_equal(s.loc[indexer], expected)
tm.assert_sp_series_equal(s.iloc[indexer], expected)
indexer = pd.SparseSeries(indexer, index=["a", "b", "c"])
tm.assert_sp_series_equal(s[indexer], expected)
tm.assert_sp_series_equal(s.loc[indexer], expected)
msg = "iLocation based boolean indexing cannot use an indexable as a mask"
with pytest.raises(ValueError, match=msg):
s.iloc[indexer]
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
class TestSparseSeriesMultiIndexing(TestSparseSeriesIndexing):
def setup_method(self, method):
# Mi with duplicated values
idx = pd.MultiIndex.from_tuples(
[("A", 0), ("A", 1), ("B", 0), ("C", 0), ("C", 1)]
)
self.orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=idx)
self.sparse = self.orig.to_sparse()
def test_getitem_multi(self):
orig = self.orig
sparse = self.sparse
assert sparse[0] == orig[0]
assert np.isnan(sparse[1])
assert sparse[3] == orig[3]
tm.assert_sp_series_equal(sparse["A"], orig["A"].to_sparse())
tm.assert_sp_series_equal(sparse["B"], orig["B"].to_sparse())
result = sparse[[1, 3, 4]]
exp = orig[[1, 3, 4]].to_sparse()
tm.assert_sp_series_equal(result, exp)
# dense array
result = sparse[orig % 2 == 1]
exp = orig[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse[sparse % 2 == 1]
exp = orig[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array
result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)]
tm.assert_sp_series_equal(result, exp)
def test_getitem_multi_tuple(self):
orig = self.orig
sparse = self.sparse
assert sparse["C", 0] == orig["C", 0]
assert np.isnan(sparse["A", 1])
assert np.isnan(sparse["B", 0])
def test_getitems_slice_multi(self):
orig = self.orig
sparse = self.sparse
tm.assert_sp_series_equal(sparse[2:], orig[2:].to_sparse())
tm.assert_sp_series_equal(sparse.loc["B":], orig.loc["B":].to_sparse())
tm.assert_sp_series_equal(sparse.loc["C":], orig.loc["C":].to_sparse())
tm.assert_sp_series_equal(sparse.loc["A":"B"], orig.loc["A":"B"].to_sparse())
tm.assert_sp_series_equal(sparse.loc[:"B"], orig.loc[:"B"].to_sparse())
def test_loc(self):
# need to be override to use different label
orig = self.orig
sparse = self.sparse
tm.assert_sp_series_equal(sparse.loc["A"], orig.loc["A"].to_sparse())
tm.assert_sp_series_equal(sparse.loc["B"], orig.loc["B"].to_sparse())
result = sparse.loc[[1, 3, 4]]
exp = orig.loc[[1, 3, 4]].to_sparse()
tm.assert_sp_series_equal(result, exp)
# exceeds the bounds
result = sparse.loc[[1, 3, 4, 5]]
exp = orig.loc[[1, 3, 4, 5]].to_sparse()
tm.assert_sp_series_equal(result, exp)
# single element list (GH 15447)
result = sparse.loc[["A"]]
exp = orig.loc[["A"]].to_sparse()
tm.assert_sp_series_equal(result, exp)
# dense array
result = sparse.loc[orig % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse.loc[sparse % 2 == 1]
exp = orig.loc[orig % 2 == 1].to_sparse()
tm.assert_sp_series_equal(result, exp)
# sparse array
result = sparse.loc[pd.SparseArray(sparse % 2 == 1, dtype=bool)]
tm.assert_sp_series_equal(result, exp)
def test_loc_multi_tuple(self):
orig = self.orig
sparse = self.sparse
assert sparse.loc["C", 0] == orig.loc["C", 0]
assert np.isnan(sparse.loc["A", 1])
assert np.isnan(sparse.loc["B", 0])
def test_loc_slice(self):
orig = self.orig
sparse = self.sparse
tm.assert_sp_series_equal(sparse.loc["A":], orig.loc["A":].to_sparse())
tm.assert_sp_series_equal(sparse.loc["B":], orig.loc["B":].to_sparse())
tm.assert_sp_series_equal(sparse.loc["C":], orig.loc["C":].to_sparse())
tm.assert_sp_series_equal(sparse.loc["A":"B"], orig.loc["A":"B"].to_sparse())
tm.assert_sp_series_equal(sparse.loc[:"B"], orig.loc[:"B"].to_sparse())
def test_reindex(self):
# GH 15447
orig = self.orig
sparse = self.sparse
res = sparse.reindex([("A", 0), ("C", 1)])
exp = orig.reindex([("A", 0), ("C", 1)]).to_sparse()
tm.assert_sp_series_equal(res, exp)
# On specific level:
res = sparse.reindex(["A", "C", "B"], level=0)
exp = orig.reindex(["A", "C", "B"], level=0).to_sparse()
tm.assert_sp_series_equal(res, exp)
# single element list (GH 15447)
res = sparse.reindex(["A"], level=0)
exp = orig.reindex(["A"], level=0).to_sparse()
tm.assert_sp_series_equal(res, exp)
with pytest.raises(TypeError):
# Incomplete keys are not accepted for reindexing:
sparse.reindex(["A", "C"])
# "copy" argument:
res = sparse.reindex(sparse.index, copy=True)
exp = orig.reindex(orig.index, copy=True).to_sparse()
tm.assert_sp_series_equal(res, exp)
assert sparse is not res
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
class TestSparseDataFrameIndexing:
def test_getitem(self):
orig = pd.DataFrame(
[[1, np.nan, np.nan], [2, 3, np.nan], [np.nan, np.nan, 4], [0, np.nan, 5]],
columns=list("xyz"),
)
sparse = orig.to_sparse()
tm.assert_sp_series_equal(sparse["x"], orig["x"].to_sparse())
tm.assert_sp_frame_equal(sparse[["x"]], orig[["x"]].to_sparse())
tm.assert_sp_frame_equal(sparse[["z", "x"]], orig[["z", "x"]].to_sparse())
tm.assert_sp_frame_equal(
sparse[[True, False, True, True]],
orig[[True, False, True, True]].to_sparse(),
)
tm.assert_sp_frame_equal(sparse.iloc[[1, 2]], orig.iloc[[1, 2]].to_sparse())
def test_getitem_fill_value(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
columns=list("xyz"),
)
sparse = orig.to_sparse(fill_value=0)
result = sparse[["z"]]
expected = orig[["z"]].to_sparse(fill_value=0)
tm.assert_sp_frame_equal(result, expected, check_fill_value=False)
tm.assert_sp_series_equal(sparse["y"], orig["y"].to_sparse(fill_value=0))
exp = orig[["x"]].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse[["x"]], exp)
exp = orig[["z", "x"]].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse[["z", "x"]], exp)
indexer = [True, False, True, True]
exp = orig[indexer].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse[indexer], exp)
exp = orig.iloc[[1, 2]].to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.iloc[[1, 2]], exp)
def test_loc(self):
orig = pd.DataFrame(
[[1, np.nan, np.nan], [2, 3, np.nan], [np.nan, np.nan, 4]],
columns=list("xyz"),
)
sparse = orig.to_sparse()
assert sparse.loc[0, "x"] == 1
assert np.isnan(sparse.loc[1, "z"])
assert sparse.loc[2, "z"] == 4
# have to specify `kind='integer'`, since we construct a
# new SparseArray here, and the default sparse type is
# integer there, but block in SparseSeries
tm.assert_sp_series_equal(sparse.loc[0], orig.loc[0].to_sparse(kind="integer"))
tm.assert_sp_series_equal(sparse.loc[1], orig.loc[1].to_sparse(kind="integer"))
tm.assert_sp_series_equal(
sparse.loc[2, :], orig.loc[2, :].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(
sparse.loc[2, :], orig.loc[2, :].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(sparse.loc[:, "y"], orig.loc[:, "y"].to_sparse())
tm.assert_sp_series_equal(sparse.loc[:, "y"], orig.loc[:, "y"].to_sparse())
result = sparse.loc[[1, 2]]
exp = orig.loc[[1, 2]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.loc[[1, 2], :]
exp = orig.loc[[1, 2], :].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.loc[:, ["x", "z"]]
exp = orig.loc[:, ["x", "z"]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.loc[[0, 2], ["x", "z"]]
exp = orig.loc[[0, 2], ["x", "z"]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
# exceeds the bounds
result = sparse.reindex([1, 3, 4, 5])
exp = orig.reindex([1, 3, 4, 5]).to_sparse()
tm.assert_sp_frame_equal(result, exp)
# dense array
result = sparse.loc[orig.x % 2 == 1]
exp = orig.loc[orig.x % 2 == 1].to_sparse()
tm.assert_sp_frame_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse.loc[sparse.x % 2 == 1]
exp = orig.loc[orig.x % 2 == 1].to_sparse()
tm.assert_sp_frame_equal(result, exp)
# sparse array
result = sparse.loc[pd.SparseArray(sparse.x % 2 == 1, dtype=bool)]
tm.assert_sp_frame_equal(result, exp)
def test_loc_index(self):
orig = pd.DataFrame(
[[1, np.nan, np.nan], [2, 3, np.nan], [np.nan, np.nan, 4]],
index=list("abc"),
columns=list("xyz"),
)
sparse = orig.to_sparse()
assert sparse.loc["a", "x"] == 1
assert np.isnan(sparse.loc["b", "z"])
assert sparse.loc["c", "z"] == 4
tm.assert_sp_series_equal(
sparse.loc["a"], orig.loc["a"].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(
sparse.loc["b"], orig.loc["b"].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(
sparse.loc["b", :], orig.loc["b", :].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(
sparse.loc["b", :], orig.loc["b", :].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(sparse.loc[:, "z"], orig.loc[:, "z"].to_sparse())
tm.assert_sp_series_equal(sparse.loc[:, "z"], orig.loc[:, "z"].to_sparse())
result = sparse.loc[["a", "b"]]
exp = orig.loc[["a", "b"]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.loc[["a", "b"], :]
exp = orig.loc[["a", "b"], :].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.loc[:, ["x", "z"]]
exp = orig.loc[:, ["x", "z"]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.loc[["c", "a"], ["x", "z"]]
exp = orig.loc[["c", "a"], ["x", "z"]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
# dense array
result = sparse.loc[orig.x % 2 == 1]
exp = orig.loc[orig.x % 2 == 1].to_sparse()
tm.assert_sp_frame_equal(result, exp)
# sparse array (actuary it coerces to normal Series)
result = sparse.loc[sparse.x % 2 == 1]
exp = orig.loc[orig.x % 2 == 1].to_sparse()
tm.assert_sp_frame_equal(result, exp)
# sparse array
result = sparse.loc[pd.SparseArray(sparse.x % 2 == 1, dtype=bool)]
tm.assert_sp_frame_equal(result, exp)
def test_loc_slice(self):
orig = pd.DataFrame(
[[1, np.nan, np.nan], [2, 3, np.nan], [np.nan, np.nan, 4]],
columns=list("xyz"),
)
sparse = orig.to_sparse()
tm.assert_sp_frame_equal(sparse.loc[2:], orig.loc[2:].to_sparse())
def test_iloc(self):
orig = pd.DataFrame([[1, np.nan, np.nan], [2, 3, np.nan], [np.nan, np.nan, 4]])
sparse = orig.to_sparse()
assert sparse.iloc[1, 1] == 3
assert np.isnan(sparse.iloc[2, 0])
tm.assert_sp_series_equal(sparse.iloc[0], orig.loc[0].to_sparse(kind="integer"))
tm.assert_sp_series_equal(sparse.iloc[1], orig.loc[1].to_sparse(kind="integer"))
tm.assert_sp_series_equal(
sparse.iloc[2, :], orig.iloc[2, :].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(
sparse.iloc[2, :], orig.iloc[2, :].to_sparse(kind="integer")
)
tm.assert_sp_series_equal(sparse.iloc[:, 1], orig.iloc[:, 1].to_sparse())
tm.assert_sp_series_equal(sparse.iloc[:, 1], orig.iloc[:, 1].to_sparse())
result = sparse.iloc[[1, 2]]
exp = orig.iloc[[1, 2]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.iloc[[1, 2], :]
exp = orig.iloc[[1, 2], :].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.iloc[:, [1, 0]]
exp = orig.iloc[:, [1, 0]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
result = sparse.iloc[[2], [1, 0]]
exp = orig.iloc[[2], [1, 0]].to_sparse()
tm.assert_sp_frame_equal(result, exp)
with pytest.raises(IndexError):
sparse.iloc[[1, 3, 5]]
def test_iloc_slice(self):
orig = pd.DataFrame(
[[1, np.nan, np.nan], [2, 3, np.nan], [np.nan, np.nan, 4]],
columns=list("xyz"),
)
sparse = orig.to_sparse()
tm.assert_sp_frame_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse())
def test_at(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse()
assert sparse.at["A", "x"] == orig.at["A", "x"]
assert np.isnan(sparse.at["B", "z"])
assert np.isnan(sparse.at["C", "y"])
assert sparse.at["D", "x"] == orig.at["D", "x"]
def test_at_fill_value(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse(fill_value=0)
assert sparse.at["A", "x"] == orig.at["A", "x"]
assert np.isnan(sparse.at["B", "z"])
assert np.isnan(sparse.at["C", "y"])
assert sparse.at["D", "x"] == orig.at["D", "x"]
def test_iat(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse()
assert sparse.iat[0, 0] == orig.iat[0, 0]
assert np.isnan(sparse.iat[1, 2])
assert np.isnan(sparse.iat[2, 1])
assert sparse.iat[2, 0] == orig.iat[2, 0]
assert np.isnan(sparse.iat[-1, -2])
assert sparse.iat[-1, -1] == orig.iat[-1, -1]
def test_iat_fill_value(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse(fill_value=0)
assert sparse.iat[0, 0] == orig.iat[0, 0]
assert np.isnan(sparse.iat[1, 2])
assert np.isnan(sparse.iat[2, 1])
assert sparse.iat[2, 0] == orig.iat[2, 0]
assert np.isnan(sparse.iat[-1, -2])
assert sparse.iat[-1, -1] == orig.iat[-1, -1]
def test_take(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
columns=list("xyz"),
)
sparse = orig.to_sparse()
tm.assert_sp_frame_equal(sparse.take([0]), orig.take([0]).to_sparse())
tm.assert_sp_frame_equal(sparse.take([0, 1]), orig.take([0, 1]).to_sparse())
tm.assert_sp_frame_equal(sparse.take([-1, -2]), orig.take([-1, -2]).to_sparse())
def test_take_fill_value(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
columns=list("xyz"),
)
sparse = orig.to_sparse(fill_value=0)
exp = orig.take([0]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.take([0]), exp)
exp = orig.take([0, 1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.take([0, 1]), exp)
exp = orig.take([-1, -2]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(sparse.take([-1, -2]), exp)
def test_reindex(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse()
res = sparse.reindex(["A", "C", "B"])
exp = orig.reindex(["A", "C", "B"]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
orig = pd.DataFrame(
[
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse()
res = sparse.reindex(["A", "C", "B"])
exp = orig.reindex(["A", "C", "B"]).to_sparse()
tm.assert_sp_frame_equal(res, exp)
def test_reindex_fill_value(self):
orig = pd.DataFrame(
[[1, np.nan, 0], [2, 3, np.nan], [0, np.nan, 4], [0, np.nan, 5]],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse(fill_value=0)
res = sparse.reindex(["A", "C", "B"])
exp = orig.reindex(["A", "C", "B"]).to_sparse(fill_value=0)
tm.assert_sp_frame_equal(res, exp)
# all missing
orig = pd.DataFrame(
[
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
],
index=list("ABCD"),
columns=list("xyz"),
)
sparse = orig.to_sparse(fill_value=0)
res = sparse.reindex(["A", "C", "B"])
exp = orig.reindex(["A", "C", "B"]).to_sparse(fill_value=0)
tm.assert_sp_frame_equal(res, exp)
# all fill_value
orig = pd.DataFrame(
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
index=list("ABCD"),
columns=list("xyz"),
dtype=np.int,
)
sparse = orig.to_sparse(fill_value=0)
res = sparse.reindex(["A", "C", "B"])
exp = orig.reindex(["A", "C", "B"]).to_sparse(fill_value=0)
tm.assert_sp_frame_equal(res, exp)
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
class TestMultitype:
def setup_method(self, method):
self.cols = ["string", "int", "float", "object"]
self.string_series = pd.SparseSeries(["a", "b", "c"])
self.int_series = pd.SparseSeries([1, 2, 3])
self.float_series = pd.SparseSeries([1.1, 1.2, 1.3])
self.object_series = pd.SparseSeries([[], {}, set()])
self.sdf = pd.SparseDataFrame(
{
"string": self.string_series,
"int": self.int_series,
"float": self.float_series,
"object": self.object_series,
}
)
self.sdf = self.sdf[self.cols]
self.ss = pd.SparseSeries(["a", 1, 1.1, []], index=self.cols)
def test_frame_basic_dtypes(self):
for _, row in self.sdf.iterrows():
assert row.dtype == SparseDtype(object)
tm.assert_sp_series_equal(
self.sdf["string"], self.string_series, check_names=False
)
tm.assert_sp_series_equal(self.sdf["int"], self.int_series, check_names=False)
tm.assert_sp_series_equal(
self.sdf["float"], self.float_series, check_names=False
)
tm.assert_sp_series_equal(
self.sdf["object"], self.object_series, check_names=False
)
def test_frame_indexing_single(self):
tm.assert_sp_series_equal(
self.sdf.iloc[0],
pd.SparseSeries(["a", 1, 1.1, []], index=self.cols),
check_names=False,
)
tm.assert_sp_series_equal(
self.sdf.iloc[1],
pd.SparseSeries(["b", 2, 1.2, {}], index=self.cols),
check_names=False,
)
tm.assert_sp_series_equal(
self.sdf.iloc[2],
pd.SparseSeries(["c", 3, 1.3, set()], index=self.cols),
check_names=False,
)
def test_frame_indexing_multiple(self):
tm.assert_sp_frame_equal(self.sdf, self.sdf[:])
tm.assert_sp_frame_equal(self.sdf, self.sdf.loc[:])
tm.assert_sp_frame_equal(
self.sdf.iloc[[1, 2]],
pd.SparseDataFrame(
{
"string": self.string_series.iloc[[1, 2]],
"int": self.int_series.iloc[[1, 2]],
"float": self.float_series.iloc[[1, 2]],
"object": self.object_series.iloc[[1, 2]],
},
index=[1, 2],
)[self.cols],
)
tm.assert_sp_frame_equal(
self.sdf[["int", "string"]],
pd.SparseDataFrame({"int": self.int_series, "string": self.string_series}),
)
def test_series_indexing_single(self):
for i, idx in enumerate(self.cols):
assert self.ss.iloc[i] == self.ss[idx]
tm.assert_class_equal(self.ss.iloc[i], self.ss[idx], obj="series index")
assert self.ss["string"] == "a"
assert self.ss["int"] == 1
assert self.ss["float"] == 1.1
assert self.ss["object"] == []
def test_series_indexing_multiple(self):
tm.assert_sp_series_equal(
self.ss.loc[["string", "int"]],
pd.SparseSeries(["a", 1], index=["string", "int"]),
)
tm.assert_sp_series_equal(
self.ss.loc[["string", "object"]],
pd.SparseSeries(["a", []], index=["string", "object"]),
)