python-by-example-150-chall.../venv/lib/python3.6/site-packages/pandas/tests/sparse/test_pivot.py
2019-08-04 15:26:35 +03:00

66 lines
2.4 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import _np_version_under1p17
import pandas.util.testing as tm
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestPivotTable:
def setup_method(self, method):
rs = np.random.RandomState(0)
self.dense = pd.DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": rs.randn(8),
"D": rs.randn(8),
"E": [np.nan, np.nan, 1, 2, np.nan, 1, np.nan, np.nan],
}
)
self.sparse = self.dense.to_sparse()
def test_pivot_table(self):
res_sparse = pd.pivot_table(self.sparse, index="A", columns="B", values="C")
res_dense = pd.pivot_table(self.dense, index="A", columns="B", values="C")
tm.assert_frame_equal(res_sparse, res_dense)
res_sparse = pd.pivot_table(self.sparse, index="A", columns="B", values="E")
res_dense = pd.pivot_table(self.dense, index="A", columns="B", values="E")
tm.assert_frame_equal(res_sparse, res_dense)
res_sparse = pd.pivot_table(
self.sparse, index="A", columns="B", values="E", aggfunc="mean"
)
res_dense = pd.pivot_table(
self.dense, index="A", columns="B", values="E", aggfunc="mean"
)
tm.assert_frame_equal(res_sparse, res_dense)
def test_pivot_table_with_nans(self):
res_sparse = pd.pivot_table(
self.sparse, index="A", columns="B", values="E", aggfunc="sum"
)
res_dense = pd.pivot_table(
self.dense, index="A", columns="B", values="E", aggfunc="sum"
)
tm.assert_frame_equal(res_sparse, res_dense)
@pytest.mark.xfail(
not _np_version_under1p17,
reason="failing occasionally on numpy > 1.17",
strict=False,
)
def test_pivot_table_multi(self):
res_sparse = pd.pivot_table(
self.sparse, index="A", columns="B", values=["D", "E"]
)
res_dense = pd.pivot_table(
self.dense, index="A", columns="B", values=["D", "E"]
)
res_dense = res_dense.apply(lambda x: x.astype("Sparse[float64]"))
tm.assert_frame_equal(res_sparse, res_dense)