python-by-example-150-chall.../venv/lib/python3.6/site-packages/pandas/tests/test_algos.py
2019-08-04 15:26:35 +03:00

2278 lines
76 KiB
Python

from datetime import datetime
from itertools import permutations
import struct
import numpy as np
from numpy import nan
from numpy.random import RandomState
import pytest
from pandas._libs import algos as libalgos, groupby as libgroupby, hashtable as ht
from pandas.compat.numpy import np_array_datetime64_compat
import pandas.util._test_decorators as td
from pandas.core.dtypes.dtypes import CategoricalDtype as CDT
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DatetimeIndex,
Index,
IntervalIndex,
Series,
Timestamp,
compat,
)
import pandas.core.algorithms as algos
from pandas.core.arrays import DatetimeArray
import pandas.core.common as com
from pandas.core.sorting import safe_sort
import pandas.util.testing as tm
from pandas.util.testing import assert_almost_equal
class TestMatch:
def test_ints(self):
values = np.array([0, 2, 1])
to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0])
result = algos.match(to_match, values)
expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = Series(algos.match(to_match, values, np.nan))
expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0]))
tm.assert_series_equal(result, expected)
s = Series(np.arange(5), dtype=np.float32)
result = algos.match(s, [2, 4])
expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = Series(algos.match(s, [2, 4], np.nan))
expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1]))
tm.assert_series_equal(result, expected)
def test_strings(self):
values = ["foo", "bar", "baz"]
to_match = ["bar", "foo", "qux", "foo", "bar", "baz", "qux"]
result = algos.match(to_match, values)
expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = Series(algos.match(to_match, values, np.nan))
expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan]))
tm.assert_series_equal(result, expected)
class TestFactorize:
def test_basic(self):
labels, uniques = algos.factorize(["a", "b", "b", "a", "a", "c", "c", "c"])
tm.assert_numpy_array_equal(uniques, np.array(["a", "b", "c"], dtype=object))
labels, uniques = algos.factorize(
["a", "b", "b", "a", "a", "c", "c", "c"], sort=True
)
exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array(["a", "b", "c"], dtype=object)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(range(5))))
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([4, 3, 2, 1, 0], dtype=np.int64)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(range(5))), sort=True)
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([0, 1, 2, 3, 4], dtype=np.int64)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(np.arange(5.0))))
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([4.0, 3.0, 2.0, 1.0, 0.0], dtype=np.float64)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(np.arange(5.0))), sort=True)
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=np.float64)
tm.assert_numpy_array_equal(uniques, exp)
def test_mixed(self):
# doc example reshaping.rst
x = Series(["A", "A", np.nan, "B", 3.14, np.inf])
labels, uniques = algos.factorize(x)
exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = Index(["A", "B", 3.14, np.inf])
tm.assert_index_equal(uniques, exp)
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = Index([3.14, np.inf, "A", "B"])
tm.assert_index_equal(uniques, exp)
def test_datelike(self):
# M8
v1 = Timestamp("20130101 09:00:00.00004")
v2 = Timestamp("20130101")
x = Series([v1, v1, v1, v2, v2, v1])
labels, uniques = algos.factorize(x)
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = DatetimeIndex([v1, v2])
tm.assert_index_equal(uniques, exp)
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = DatetimeIndex([v2, v1])
tm.assert_index_equal(uniques, exp)
# period
v1 = pd.Period("201302", freq="M")
v2 = pd.Period("201303", freq="M")
x = Series([v1, v1, v1, v2, v2, v1])
# periods are not 'sorted' as they are converted back into an index
labels, uniques = algos.factorize(x)
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2]))
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2]))
# GH 5986
v1 = pd.to_timedelta("1 day 1 min")
v2 = pd.to_timedelta("1 day")
x = Series([v1, v2, v1, v1, v2, v2, v1])
labels, uniques = algos.factorize(x)
exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2]))
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1]))
def test_factorize_nan(self):
# nan should map to na_sentinel, not reverse_indexer[na_sentinel]
# rizer.factorize should not raise an exception if na_sentinel indexes
# outside of reverse_indexer
key = np.array([1, 2, 1, np.nan], dtype="O")
rizer = ht.Factorizer(len(key))
for na_sentinel in (-1, 20):
ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel)
expected = np.array([0, 1, 0, na_sentinel], dtype="int32")
assert len(set(key)) == len(set(expected))
tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
# nan still maps to na_sentinel when sort=False
key = np.array([0, np.nan, 1], dtype="O")
na_sentinel = -1
# TODO(wesm): unused?
ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa
expected = np.array([2, -1, 0], dtype="int32")
assert len(set(key)) == len(set(expected))
tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
@pytest.mark.parametrize(
"data,expected_label,expected_level",
[
(
[(1, 1), (1, 2), (0, 0), (1, 2), "nonsense"],
[0, 1, 2, 1, 3],
[(1, 1), (1, 2), (0, 0), "nonsense"],
),
(
[(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)],
[0, 1, 2, 1, 3],
[(1, 1), (1, 2), (0, 0), (1, 2, 3)],
),
([(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)]),
],
)
def test_factorize_tuple_list(self, data, expected_label, expected_level):
# GH9454
result = pd.factorize(data)
tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp))
expected_level_array = com.asarray_tuplesafe(expected_level, dtype=object)
tm.assert_numpy_array_equal(result[1], expected_level_array)
def test_complex_sorting(self):
# gh 12666 - check no segfault
x17 = np.array([complex(i) for i in range(17)], dtype=object)
msg = (
"unorderable types: .* [<>] .*"
"|" # the above case happens for numpy < 1.14
"'[<>]' not supported between instances of .*"
)
with pytest.raises(TypeError, match=msg):
algos.factorize(x17[::-1], sort=True)
def test_float64_factorize(self, writable):
data = np.array([1.0, 1e8, 1.0, 1e-8, 1e8, 1.0], dtype=np.float64)
data.setflags(write=writable)
exp_labels = np.array([0, 1, 0, 2, 1, 0], dtype=np.intp)
exp_uniques = np.array([1.0, 1e8, 1e-8], dtype=np.float64)
labels, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(labels, exp_labels)
tm.assert_numpy_array_equal(uniques, exp_uniques)
def test_uint64_factorize(self, writable):
data = np.array([2 ** 64 - 1, 1, 2 ** 64 - 1], dtype=np.uint64)
data.setflags(write=writable)
exp_labels = np.array([0, 1, 0], dtype=np.intp)
exp_uniques = np.array([2 ** 64 - 1, 1], dtype=np.uint64)
labels, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(labels, exp_labels)
tm.assert_numpy_array_equal(uniques, exp_uniques)
def test_int64_factorize(self, writable):
data = np.array([2 ** 63 - 1, -2 ** 63, 2 ** 63 - 1], dtype=np.int64)
data.setflags(write=writable)
exp_labels = np.array([0, 1, 0], dtype=np.intp)
exp_uniques = np.array([2 ** 63 - 1, -2 ** 63], dtype=np.int64)
labels, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(labels, exp_labels)
tm.assert_numpy_array_equal(uniques, exp_uniques)
def test_string_factorize(self, writable):
data = np.array(["a", "c", "a", "b", "c"], dtype=object)
data.setflags(write=writable)
exp_labels = np.array([0, 1, 0, 2, 1], dtype=np.intp)
exp_uniques = np.array(["a", "c", "b"], dtype=object)
labels, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(labels, exp_labels)
tm.assert_numpy_array_equal(uniques, exp_uniques)
def test_object_factorize(self, writable):
data = np.array(["a", "c", None, np.nan, "a", "b", pd.NaT, "c"], dtype=object)
data.setflags(write=writable)
exp_labels = np.array([0, 1, -1, -1, 0, 2, -1, 1], dtype=np.intp)
exp_uniques = np.array(["a", "c", "b"], dtype=object)
labels, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(labels, exp_labels)
tm.assert_numpy_array_equal(uniques, exp_uniques)
def test_deprecate_order(self):
# gh 19727 - check warning is raised for deprecated keyword, order.
# Test not valid once order keyword is removed.
data = np.array([2 ** 63, 1, 2 ** 63], dtype=np.uint64)
with tm.assert_produces_warning(expected_warning=FutureWarning):
algos.factorize(data, order=True)
with tm.assert_produces_warning(False):
algos.factorize(data)
@pytest.mark.parametrize(
"data",
[
np.array([0, 1, 0], dtype="u8"),
np.array([-2 ** 63, 1, -2 ** 63], dtype="i8"),
np.array(["__nan__", "foo", "__nan__"], dtype="object"),
],
)
def test_parametrized_factorize_na_value_default(self, data):
# arrays that include the NA default for that type, but isn't used.
l, u = algos.factorize(data)
expected_uniques = data[[0, 1]]
expected_labels = np.array([0, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(l, expected_labels)
tm.assert_numpy_array_equal(u, expected_uniques)
@pytest.mark.parametrize(
"data, na_value",
[
(np.array([0, 1, 0, 2], dtype="u8"), 0),
(np.array([1, 0, 1, 2], dtype="u8"), 1),
(np.array([-2 ** 63, 1, -2 ** 63, 0], dtype="i8"), -2 ** 63),
(np.array([1, -2 ** 63, 1, 0], dtype="i8"), 1),
(np.array(["a", "", "a", "b"], dtype=object), "a"),
(np.array([(), ("a", 1), (), ("a", 2)], dtype=object), ()),
(np.array([("a", 1), (), ("a", 1), ("a", 2)], dtype=object), ("a", 1)),
],
)
def test_parametrized_factorize_na_value(self, data, na_value):
l, u = algos._factorize_array(data, na_value=na_value)
expected_uniques = data[[1, 3]]
expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(l, expected_labels)
tm.assert_numpy_array_equal(u, expected_uniques)
@pytest.mark.parametrize("sort", [True, False])
@pytest.mark.parametrize("na_sentinel", [-1, -10, 100])
@pytest.mark.parametrize(
"data, uniques",
[
(
np.array(["b", "a", None, "b"], dtype=object),
np.array(["b", "a"], dtype=object),
),
(
pd.array([2, 1, np.nan, 2], dtype="Int64"),
pd.array([2, 1], dtype="Int64"),
),
],
ids=["numpy_array", "extension_array"],
)
def test_factorize_na_sentinel(self, sort, na_sentinel, data, uniques):
labels, uniques = algos.factorize(data, sort=sort, na_sentinel=na_sentinel)
if sort:
expected_labels = np.array([1, 0, na_sentinel, 1], dtype=np.intp)
expected_uniques = safe_sort(uniques)
else:
expected_labels = np.array([0, 1, na_sentinel, 0], dtype=np.intp)
expected_uniques = uniques
tm.assert_numpy_array_equal(labels, expected_labels)
if isinstance(data, np.ndarray):
tm.assert_numpy_array_equal(uniques, expected_uniques)
else:
tm.assert_extension_array_equal(uniques, expected_uniques)
class TestUnique:
def test_ints(self):
arr = np.random.randint(0, 100, size=50)
result = algos.unique(arr)
assert isinstance(result, np.ndarray)
def test_objects(self):
arr = np.random.randint(0, 100, size=50).astype("O")
result = algos.unique(arr)
assert isinstance(result, np.ndarray)
def test_object_refcount_bug(self):
lst = ["A", "B", "C", "D", "E"]
for i in range(1000):
len(algos.unique(lst))
def test_on_index_object(self):
mindex = pd.MultiIndex.from_arrays(
[np.arange(5).repeat(5), np.tile(np.arange(5), 5)]
)
expected = mindex.values
expected.sort()
mindex = mindex.repeat(2)
result = pd.unique(mindex)
result.sort()
tm.assert_almost_equal(result, expected)
def test_datetime64_dtype_array_returned(self):
# GH 9431
expected = np_array_datetime64_compat(
[
"2015-01-03T00:00:00.000000000+0000",
"2015-01-01T00:00:00.000000000+0000",
],
dtype="M8[ns]",
)
dt_index = pd.to_datetime(
[
"2015-01-03T00:00:00.000000000",
"2015-01-01T00:00:00.000000000",
"2015-01-01T00:00:00.000000000",
]
)
result = algos.unique(dt_index)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
s = Series(dt_index)
result = algos.unique(s)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
arr = s.values
result = algos.unique(arr)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
def test_timedelta64_dtype_array_returned(self):
# GH 9431
expected = np.array([31200, 45678, 10000], dtype="m8[ns]")
td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678])
result = algos.unique(td_index)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
s = Series(td_index)
result = algos.unique(s)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
arr = s.values
result = algos.unique(arr)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
def test_uint64_overflow(self):
s = Series([1, 2, 2 ** 63, 2 ** 63], dtype=np.uint64)
exp = np.array([1, 2, 2 ** 63], dtype=np.uint64)
tm.assert_numpy_array_equal(algos.unique(s), exp)
def test_nan_in_object_array(self):
duplicated_items = ["a", np.nan, "c", "c"]
result = pd.unique(duplicated_items)
expected = np.array(["a", np.nan, "c"], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_categorical(self):
# we are expecting to return in the order
# of appearance
expected = Categorical(list("bac"), categories=list("bac"))
# we are expecting to return in the order
# of the categories
expected_o = Categorical(list("bac"), categories=list("abc"), ordered=True)
# GH 15939
c = Categorical(list("baabc"))
result = c.unique()
tm.assert_categorical_equal(result, expected)
result = algos.unique(c)
tm.assert_categorical_equal(result, expected)
c = Categorical(list("baabc"), ordered=True)
result = c.unique()
tm.assert_categorical_equal(result, expected_o)
result = algos.unique(c)
tm.assert_categorical_equal(result, expected_o)
# Series of categorical dtype
s = Series(Categorical(list("baabc")), name="foo")
result = s.unique()
tm.assert_categorical_equal(result, expected)
result = pd.unique(s)
tm.assert_categorical_equal(result, expected)
# CI -> return CI
ci = CategoricalIndex(Categorical(list("baabc"), categories=list("bac")))
expected = CategoricalIndex(expected)
result = ci.unique()
tm.assert_index_equal(result, expected)
result = pd.unique(ci)
tm.assert_index_equal(result, expected)
def test_datetime64tz_aware(self):
# GH 15939
result = Series(
Index(
[
Timestamp("20160101", tz="US/Eastern"),
Timestamp("20160101", tz="US/Eastern"),
]
)
).unique()
expected = DatetimeArray._from_sequence(
np.array([Timestamp("2016-01-01 00:00:00-0500", tz="US/Eastern")])
)
tm.assert_extension_array_equal(result, expected)
result = Index(
[
Timestamp("20160101", tz="US/Eastern"),
Timestamp("20160101", tz="US/Eastern"),
]
).unique()
expected = DatetimeIndex(
["2016-01-01 00:00:00"], dtype="datetime64[ns, US/Eastern]", freq=None
)
tm.assert_index_equal(result, expected)
result = pd.unique(
Series(
Index(
[
Timestamp("20160101", tz="US/Eastern"),
Timestamp("20160101", tz="US/Eastern"),
]
)
)
)
expected = DatetimeArray._from_sequence(
np.array([Timestamp("2016-01-01", tz="US/Eastern")])
)
tm.assert_extension_array_equal(result, expected)
result = pd.unique(
Index(
[
Timestamp("20160101", tz="US/Eastern"),
Timestamp("20160101", tz="US/Eastern"),
]
)
)
expected = DatetimeIndex(
["2016-01-01 00:00:00"], dtype="datetime64[ns, US/Eastern]", freq=None
)
tm.assert_index_equal(result, expected)
def test_order_of_appearance(self):
# 9346
# light testing of guarantee of order of appearance
# these also are the doc-examples
result = pd.unique(Series([2, 1, 3, 3]))
tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype="int64"))
result = pd.unique(Series([2] + [1] * 5))
tm.assert_numpy_array_equal(result, np.array([2, 1], dtype="int64"))
result = pd.unique(Series([Timestamp("20160101"), Timestamp("20160101")]))
expected = np.array(["2016-01-01T00:00:00.000000000"], dtype="datetime64[ns]")
tm.assert_numpy_array_equal(result, expected)
result = pd.unique(
Index(
[
Timestamp("20160101", tz="US/Eastern"),
Timestamp("20160101", tz="US/Eastern"),
]
)
)
expected = DatetimeIndex(
["2016-01-01 00:00:00"], dtype="datetime64[ns, US/Eastern]", freq=None
)
tm.assert_index_equal(result, expected)
result = pd.unique(list("aabc"))
expected = np.array(["a", "b", "c"], dtype=object)
tm.assert_numpy_array_equal(result, expected)
result = pd.unique(Series(Categorical(list("aabc"))))
expected = Categorical(list("abc"))
tm.assert_categorical_equal(result, expected)
@pytest.mark.parametrize(
"arg ,expected",
[
(("1", "1", "2"), np.array(["1", "2"], dtype=object)),
(("foo",), np.array(["foo"], dtype=object)),
],
)
def test_tuple_with_strings(self, arg, expected):
# see GH 17108
result = pd.unique(arg)
tm.assert_numpy_array_equal(result, expected)
def test_obj_none_preservation(self):
# GH 20866
arr = np.array(["foo", None], dtype=object)
result = pd.unique(arr)
expected = np.array(["foo", None], dtype=object)
tm.assert_numpy_array_equal(result, expected, strict_nan=True)
def test_signed_zero(self):
# GH 21866
a = np.array([-0.0, 0.0])
result = pd.unique(a)
expected = np.array([-0.0]) # 0.0 and -0.0 are equivalent
tm.assert_numpy_array_equal(result, expected)
def test_different_nans(self):
# GH 21866
# create different nans from bit-patterns:
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
assert NAN1 != NAN1
assert NAN2 != NAN2
a = np.array([NAN1, NAN2]) # NAN1 and NAN2 are equivalent
result = pd.unique(a)
expected = np.array([np.nan])
tm.assert_numpy_array_equal(result, expected)
def test_first_nan_kept(self):
# GH 22295
# create different nans from bit-patterns:
bits_for_nan1 = 0xFFF8000000000001
bits_for_nan2 = 0x7FF8000000000001
NAN1 = struct.unpack("d", struct.pack("=Q", bits_for_nan1))[0]
NAN2 = struct.unpack("d", struct.pack("=Q", bits_for_nan2))[0]
assert NAN1 != NAN1
assert NAN2 != NAN2
for el_type in [np.float64, np.object]:
a = np.array([NAN1, NAN2], dtype=el_type)
result = pd.unique(a)
assert result.size == 1
# use bit patterns to identify which nan was kept:
result_nan_bits = struct.unpack("=Q", struct.pack("d", result[0]))[0]
assert result_nan_bits == bits_for_nan1
def test_do_not_mangle_na_values(self, unique_nulls_fixture, unique_nulls_fixture2):
# GH 22295
if unique_nulls_fixture is unique_nulls_fixture2:
return # skip it, values not unique
a = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=np.object)
result = pd.unique(a)
assert result.size == 2
assert a[0] is unique_nulls_fixture
assert a[1] is unique_nulls_fixture2
class TestIsin:
def test_invalid(self):
msg = (
r"only list-like objects are allowed to be passed to isin\(\),"
r" you passed a \[int\]"
)
with pytest.raises(TypeError, match=msg):
algos.isin(1, 1)
with pytest.raises(TypeError, match=msg):
algos.isin(1, [1])
with pytest.raises(TypeError, match=msg):
algos.isin([1], 1)
def test_basic(self):
result = algos.isin([1, 2], [1])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(np.array([1, 2]), [1])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series([1, 2]), [1])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series([1, 2]), Series([1]))
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series([1, 2]), {1})
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(["a", "b"], ["a"])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series(["a", "b"]), Series(["a"]))
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series(["a", "b"]), {"a"})
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(["a", "b"], [1])
expected = np.array([False, False])
tm.assert_numpy_array_equal(result, expected)
def test_i8(self):
arr = pd.date_range("20130101", periods=3).values
result = algos.isin(arr, [arr[0]])
expected = np.array([True, False, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, arr[0:2])
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, set(arr[0:2]))
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
arr = pd.timedelta_range("1 day", periods=3).values
result = algos.isin(arr, [arr[0]])
expected = np.array([True, False, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, arr[0:2])
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, set(arr[0:2]))
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
def test_large(self):
s = pd.date_range("20000101", periods=2000000, freq="s").values
result = algos.isin(s, s[0:2])
expected = np.zeros(len(s), dtype=bool)
expected[0] = True
expected[1] = True
tm.assert_numpy_array_equal(result, expected)
def test_categorical_from_codes(self):
# GH 16639
vals = np.array([0, 1, 2, 0])
cats = ["a", "b", "c"]
Sd = Series(Categorical(1).from_codes(vals, cats))
St = Series(Categorical(1).from_codes(np.array([0, 1]), cats))
expected = np.array([True, True, False, True])
result = algos.isin(Sd, St)
tm.assert_numpy_array_equal(expected, result)
def test_same_nan_is_in(self):
# GH 22160
# nan is special, because from " a is b" doesn't follow "a == b"
# at least, isin() should follow python's "np.nan in [nan] == True"
# casting to -> np.float64 -> another float-object somewhere on
# the way could lead jepardize this behavior
comps = [np.nan] # could be casted to float64
values = [np.nan]
expected = np.array([True])
result = algos.isin(comps, values)
tm.assert_numpy_array_equal(expected, result)
def test_same_object_is_in(self):
# GH 22160
# there could be special treatment for nans
# the user however could define a custom class
# with similar behavior, then we at least should
# fall back to usual python's behavior: "a in [a] == True"
class LikeNan:
def __eq__(self):
return False
def __hash__(self):
return 0
a, b = LikeNan(), LikeNan()
# same object -> True
tm.assert_numpy_array_equal(algos.isin([a], [a]), np.array([True]))
# different objects -> False
tm.assert_numpy_array_equal(algos.isin([a], [b]), np.array([False]))
def test_different_nans(self):
# GH 22160
# all nans are handled as equivalent
comps = [float("nan")]
values = [float("nan")]
assert comps[0] is not values[0] # different nan-objects
# as list of python-objects:
result = algos.isin(comps, values)
tm.assert_numpy_array_equal(np.array([True]), result)
# as object-array:
result = algos.isin(
np.asarray(comps, dtype=np.object), np.asarray(values, dtype=np.object)
)
tm.assert_numpy_array_equal(np.array([True]), result)
# as float64-array:
result = algos.isin(
np.asarray(comps, dtype=np.float64), np.asarray(values, dtype=np.float64)
)
tm.assert_numpy_array_equal(np.array([True]), result)
def test_no_cast(self):
# GH 22160
# ensure 42 is not casted to a string
comps = ["ss", 42]
values = ["42"]
expected = np.array([False, False])
result = algos.isin(comps, values)
tm.assert_numpy_array_equal(expected, result)
@pytest.mark.parametrize("empty", [[], Series(), np.array([])])
def test_empty(self, empty):
# see gh-16991
vals = Index(["a", "b"])
expected = np.array([False, False])
result = algos.isin(vals, empty)
tm.assert_numpy_array_equal(expected, result)
def test_different_nan_objects(self):
# GH 22119
comps = np.array(["nan", np.nan * 1j, float("nan")], dtype=np.object)
vals = np.array([float("nan")], dtype=np.object)
expected = np.array([False, False, True])
result = algos.isin(comps, vals)
tm.assert_numpy_array_equal(expected, result)
def test_different_nans_as_float64(self):
# GH 21866
# create different nans from bit-patterns,
# these nans will land in different buckets in the hash-table
# if no special care is taken
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
assert NAN1 != NAN1
assert NAN2 != NAN2
# check that NAN1 and NAN2 are equivalent:
arr = np.array([NAN1, NAN2], dtype=np.float64)
lookup1 = np.array([NAN1], dtype=np.float64)
result = algos.isin(arr, lookup1)
expected = np.array([True, True])
tm.assert_numpy_array_equal(result, expected)
lookup2 = np.array([NAN2], dtype=np.float64)
result = algos.isin(arr, lookup2)
expected = np.array([True, True])
tm.assert_numpy_array_equal(result, expected)
class TestValueCounts:
def test_value_counts(self):
np.random.seed(1234)
from pandas.core.reshape.tile import cut
arr = np.random.randn(4)
factor = cut(arr, 4)
# assert isinstance(factor, n)
result = algos.value_counts(factor)
breaks = [-1.194, -0.535, 0.121, 0.777, 1.433]
index = IntervalIndex.from_breaks(breaks).astype(CDT(ordered=True))
expected = Series([1, 1, 1, 1], index=index)
tm.assert_series_equal(result.sort_index(), expected.sort_index())
def test_value_counts_bins(self):
s = [1, 2, 3, 4]
result = algos.value_counts(s, bins=1)
expected = Series([4], index=IntervalIndex.from_tuples([(0.996, 4.0)]))
tm.assert_series_equal(result, expected)
result = algos.value_counts(s, bins=2, sort=False)
expected = Series(
[2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])
)
tm.assert_series_equal(result, expected)
def test_value_counts_dtypes(self):
result = algos.value_counts([1, 1.0])
assert len(result) == 1
result = algos.value_counts([1, 1.0], bins=1)
assert len(result) == 1
result = algos.value_counts(Series([1, 1.0, "1"])) # object
assert len(result) == 2
msg = "bins argument only works with numeric data"
with pytest.raises(TypeError, match=msg):
algos.value_counts(["1", 1], bins=1)
def test_value_counts_nat(self):
td = Series([np.timedelta64(10000), pd.NaT], dtype="timedelta64[ns]")
dt = pd.to_datetime(["NaT", "2014-01-01"])
for s in [td, dt]:
vc = algos.value_counts(s)
vc_with_na = algos.value_counts(s, dropna=False)
assert len(vc) == 1
assert len(vc_with_na) == 2
exp_dt = Series({Timestamp("2014-01-01 00:00:00"): 1})
tm.assert_series_equal(algos.value_counts(dt), exp_dt)
# TODO same for (timedelta)
def test_value_counts_datetime_outofbounds(self):
# GH 13663
s = Series(
[
datetime(3000, 1, 1),
datetime(5000, 1, 1),
datetime(5000, 1, 1),
datetime(6000, 1, 1),
datetime(3000, 1, 1),
datetime(3000, 1, 1),
]
)
res = s.value_counts()
exp_index = Index(
[datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)],
dtype=object,
)
exp = Series([3, 2, 1], index=exp_index)
tm.assert_series_equal(res, exp)
# GH 12424
res = pd.to_datetime(Series(["2362-01-01", np.nan]), errors="ignore")
exp = Series(["2362-01-01", np.nan], dtype=object)
tm.assert_series_equal(res, exp)
def test_categorical(self):
s = Series(Categorical(list("aaabbc")))
result = s.value_counts()
expected = Series([3, 2, 1], index=CategoricalIndex(["a", "b", "c"]))
tm.assert_series_equal(result, expected, check_index_type=True)
# preserve order?
s = s.cat.as_ordered()
result = s.value_counts()
expected.index = expected.index.as_ordered()
tm.assert_series_equal(result, expected, check_index_type=True)
def test_categorical_nans(self):
s = Series(Categorical(list("aaaaabbbcc"))) # 4,3,2,1 (nan)
s.iloc[1] = np.nan
result = s.value_counts()
expected = Series(
[4, 3, 2],
index=CategoricalIndex(["a", "b", "c"], categories=["a", "b", "c"]),
)
tm.assert_series_equal(result, expected, check_index_type=True)
result = s.value_counts(dropna=False)
expected = Series([4, 3, 2, 1], index=CategoricalIndex(["a", "b", "c", np.nan]))
tm.assert_series_equal(result, expected, check_index_type=True)
# out of order
s = Series(
Categorical(list("aaaaabbbcc"), ordered=True, categories=["b", "a", "c"])
)
s.iloc[1] = np.nan
result = s.value_counts()
expected = Series(
[4, 3, 2],
index=CategoricalIndex(
["a", "b", "c"], categories=["b", "a", "c"], ordered=True
),
)
tm.assert_series_equal(result, expected, check_index_type=True)
result = s.value_counts(dropna=False)
expected = Series(
[4, 3, 2, 1],
index=CategoricalIndex(
["a", "b", "c", np.nan], categories=["b", "a", "c"], ordered=True
),
)
tm.assert_series_equal(result, expected, check_index_type=True)
def test_categorical_zeroes(self):
# keep the `d` category with 0
s = Series(Categorical(list("bbbaac"), categories=list("abcd"), ordered=True))
result = s.value_counts()
expected = Series(
[3, 2, 1, 0],
index=Categorical(
["b", "a", "c", "d"], categories=list("abcd"), ordered=True
),
)
tm.assert_series_equal(result, expected, check_index_type=True)
def test_dropna(self):
# https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328
tm.assert_series_equal(
Series([True, True, False]).value_counts(dropna=True),
Series([2, 1], index=[True, False]),
)
tm.assert_series_equal(
Series([True, True, False]).value_counts(dropna=False),
Series([2, 1], index=[True, False]),
)
tm.assert_series_equal(
Series([True, True, False, None]).value_counts(dropna=True),
Series([2, 1], index=[True, False]),
)
tm.assert_series_equal(
Series([True, True, False, None]).value_counts(dropna=False),
Series([2, 1, 1], index=[True, False, np.nan]),
)
tm.assert_series_equal(
Series([10.3, 5.0, 5.0]).value_counts(dropna=True),
Series([2, 1], index=[5.0, 10.3]),
)
tm.assert_series_equal(
Series([10.3, 5.0, 5.0]).value_counts(dropna=False),
Series([2, 1], index=[5.0, 10.3]),
)
tm.assert_series_equal(
Series([10.3, 5.0, 5.0, None]).value_counts(dropna=True),
Series([2, 1], index=[5.0, 10.3]),
)
# 32-bit linux has a different ordering
if not compat.is_platform_32bit():
result = Series([10.3, 5.0, 5.0, None]).value_counts(dropna=False)
expected = Series([2, 1, 1], index=[5.0, 10.3, np.nan])
tm.assert_series_equal(result, expected)
def test_value_counts_normalized(self):
# GH12558
s = Series([1, 2, np.nan, np.nan, np.nan])
dtypes = (np.float64, np.object, "M8[ns]")
for t in dtypes:
s_typed = s.astype(t)
result = s_typed.value_counts(normalize=True, dropna=False)
expected = Series(
[0.6, 0.2, 0.2], index=Series([np.nan, 2.0, 1.0], dtype=t)
)
tm.assert_series_equal(result, expected)
result = s_typed.value_counts(normalize=True, dropna=True)
expected = Series([0.5, 0.5], index=Series([2.0, 1.0], dtype=t))
tm.assert_series_equal(result, expected)
def test_value_counts_uint64(self):
arr = np.array([2 ** 63], dtype=np.uint64)
expected = Series([1], index=[2 ** 63])
result = algos.value_counts(arr)
tm.assert_series_equal(result, expected)
arr = np.array([-1, 2 ** 63], dtype=object)
expected = Series([1, 1], index=[-1, 2 ** 63])
result = algos.value_counts(arr)
# 32-bit linux has a different ordering
if not compat.is_platform_32bit():
tm.assert_series_equal(result, expected)
class TestDuplicated:
def test_duplicated_with_nas(self):
keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object)
result = algos.duplicated(keys)
expected = np.array([False, False, False, True, False, True])
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep="first")
expected = np.array([False, False, False, True, False, True])
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep="last")
expected = np.array([True, False, True, False, False, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep=False)
expected = np.array([True, False, True, True, False, True])
tm.assert_numpy_array_equal(result, expected)
keys = np.empty(8, dtype=object)
for i, t in enumerate(
zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)
):
keys[i] = t
result = algos.duplicated(keys)
falses = [False] * 4
trues = [True] * 4
expected = np.array(falses + trues)
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep="last")
expected = np.array(trues + falses)
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep=False)
expected = np.array(trues + trues)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"case",
[
np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]),
np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]),
np.array(
[
1 + 1j,
2 + 2j,
1 + 1j,
5 + 5j,
3 + 3j,
2 + 2j,
4 + 4j,
1 + 1j,
5 + 5j,
6 + 6j,
]
),
np.array(["a", "b", "a", "e", "c", "b", "d", "a", "e", "f"], dtype=object),
np.array(
[1, 2 ** 63, 1, 3 ** 5, 10, 2 ** 63, 39, 1, 3 ** 5, 7], dtype=np.uint64
),
],
)
def test_numeric_object_likes(self, case):
exp_first = np.array(
[False, False, True, False, False, True, False, True, True, False]
)
exp_last = np.array(
[True, True, True, True, False, False, False, False, False, False]
)
exp_false = exp_first | exp_last
res_first = algos.duplicated(case, keep="first")
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = algos.duplicated(case, keep="last")
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = algos.duplicated(case, keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# index
for idx in [Index(case), Index(case, dtype="category")]:
res_first = idx.duplicated(keep="first")
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = idx.duplicated(keep="last")
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = idx.duplicated(keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# series
for s in [Series(case), Series(case, dtype="category")]:
res_first = s.duplicated(keep="first")
tm.assert_series_equal(res_first, Series(exp_first))
res_last = s.duplicated(keep="last")
tm.assert_series_equal(res_last, Series(exp_last))
res_false = s.duplicated(keep=False)
tm.assert_series_equal(res_false, Series(exp_false))
def test_datetime_likes(self):
dt = [
"2011-01-01",
"2011-01-02",
"2011-01-01",
"NaT",
"2011-01-03",
"2011-01-02",
"2011-01-04",
"2011-01-01",
"NaT",
"2011-01-06",
]
td = [
"1 days",
"2 days",
"1 days",
"NaT",
"3 days",
"2 days",
"4 days",
"1 days",
"NaT",
"6 days",
]
cases = [
np.array([Timestamp(d) for d in dt]),
np.array([Timestamp(d, tz="US/Eastern") for d in dt]),
np.array([pd.Period(d, freq="D") for d in dt]),
np.array([np.datetime64(d) for d in dt]),
np.array([pd.Timedelta(d) for d in td]),
]
exp_first = np.array(
[False, False, True, False, False, True, False, True, True, False]
)
exp_last = np.array(
[True, True, True, True, False, False, False, False, False, False]
)
exp_false = exp_first | exp_last
for case in cases:
res_first = algos.duplicated(case, keep="first")
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = algos.duplicated(case, keep="last")
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = algos.duplicated(case, keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# index
for idx in [
Index(case),
Index(case, dtype="category"),
Index(case, dtype=object),
]:
res_first = idx.duplicated(keep="first")
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = idx.duplicated(keep="last")
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = idx.duplicated(keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# series
for s in [
Series(case),
Series(case, dtype="category"),
Series(case, dtype=object),
]:
res_first = s.duplicated(keep="first")
tm.assert_series_equal(res_first, Series(exp_first))
res_last = s.duplicated(keep="last")
tm.assert_series_equal(res_last, Series(exp_last))
res_false = s.duplicated(keep=False)
tm.assert_series_equal(res_false, Series(exp_false))
def test_unique_index(self):
cases = [Index([1, 2, 3]), pd.RangeIndex(0, 3)]
for case in cases:
assert case.is_unique is True
tm.assert_numpy_array_equal(
case.duplicated(), np.array([False, False, False])
)
@pytest.mark.parametrize(
"arr, unique",
[
(
[(0, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 1), (1, 0), (1, 1)],
[(0, 0), (0, 1), (1, 0), (1, 1)],
),
(
[("b", "c"), ("a", "b"), ("a", "b"), ("b", "c")],
[("b", "c"), ("a", "b")],
),
([("a", 1), ("b", 2), ("a", 3), ("a", 1)], [("a", 1), ("b", 2), ("a", 3)]),
],
)
def test_unique_tuples(self, arr, unique):
# https://github.com/pandas-dev/pandas/issues/16519
expected = np.empty(len(unique), dtype=object)
expected[:] = unique
result = pd.unique(arr)
tm.assert_numpy_array_equal(result, expected)
class GroupVarTestMixin:
def test_group_var_generic_1d(self):
prng = RandomState(1234)
out = (np.nan * np.ones((5, 1))).astype(self.dtype)
counts = np.zeros(5, dtype="int64")
values = 10 * prng.rand(15, 1).astype(self.dtype)
labels = np.tile(np.arange(5), (3,)).astype("int64")
expected_out = (
np.squeeze(values).reshape((5, 3), order="F").std(axis=1, ddof=1) ** 2
)[:, np.newaxis]
expected_counts = counts + 3
self.algo(out, counts, values, labels)
assert np.allclose(out, expected_out, self.rtol)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_1d_flat_labels(self):
prng = RandomState(1234)
out = (np.nan * np.ones((1, 1))).astype(self.dtype)
counts = np.zeros(1, dtype="int64")
values = 10 * prng.rand(5, 1).astype(self.dtype)
labels = np.zeros(5, dtype="int64")
expected_out = np.array([[values.std(ddof=1) ** 2]])
expected_counts = counts + 5
self.algo(out, counts, values, labels)
assert np.allclose(out, expected_out, self.rtol)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_2d_all_finite(self):
prng = RandomState(1234)
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
counts = np.zeros(5, dtype="int64")
values = 10 * prng.rand(10, 2).astype(self.dtype)
labels = np.tile(np.arange(5), (2,)).astype("int64")
expected_out = np.std(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2
expected_counts = counts + 2
self.algo(out, counts, values, labels)
assert np.allclose(out, expected_out, self.rtol)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_2d_some_nan(self):
prng = RandomState(1234)
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
counts = np.zeros(5, dtype="int64")
values = 10 * prng.rand(10, 2).astype(self.dtype)
values[:, 1] = np.nan
labels = np.tile(np.arange(5), (2,)).astype("int64")
expected_out = np.vstack(
[
values[:, 0].reshape(5, 2, order="F").std(ddof=1, axis=1) ** 2,
np.nan * np.ones(5),
]
).T.astype(self.dtype)
expected_counts = counts + 2
self.algo(out, counts, values, labels)
tm.assert_almost_equal(out, expected_out, check_less_precise=6)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_constant(self):
# Regression test from GH 10448.
out = np.array([[np.nan]], dtype=self.dtype)
counts = np.array([0], dtype="int64")
values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype)
labels = np.zeros(3, dtype="int64")
self.algo(out, counts, values, labels)
assert counts[0] == 3
assert out[0, 0] >= 0
tm.assert_almost_equal(out[0, 0], 0.0)
class TestGroupVarFloat64(GroupVarTestMixin):
__test__ = True
algo = staticmethod(libgroupby.group_var_float64)
dtype = np.float64
rtol = 1e-5
def test_group_var_large_inputs(self):
prng = RandomState(1234)
out = np.array([[np.nan]], dtype=self.dtype)
counts = np.array([0], dtype="int64")
values = (prng.rand(10 ** 6) + 10 ** 12).astype(self.dtype)
values.shape = (10 ** 6, 1)
labels = np.zeros(10 ** 6, dtype="int64")
self.algo(out, counts, values, labels)
assert counts[0] == 10 ** 6
tm.assert_almost_equal(out[0, 0], 1.0 / 12, check_less_precise=True)
class TestGroupVarFloat32(GroupVarTestMixin):
__test__ = True
algo = staticmethod(libgroupby.group_var_float32)
dtype = np.float32
rtol = 1e-2
class TestHashTable:
def test_lookup_nan(self, writable):
xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3])
# GH 21688 ensure we can deal with readonly memory views
xs.setflags(write=writable)
m = ht.Float64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64))
def test_add_signed_zeros(self):
# GH 21866 inconsistent hash-function for float64
# default hash-function would lead to different hash-buckets
# for 0.0 and -0.0 if there are more than 2^30 hash-buckets
# but this would mean 16GB
N = 4 # 12 * 10**8 would trigger the error, if you have enough memory
m = ht.Float64HashTable(N)
m.set_item(0.0, 0)
m.set_item(-0.0, 0)
assert len(m) == 1 # 0.0 and -0.0 are equivalent
def test_add_different_nans(self):
# GH 21866 inconsistent hash-function for float64
# create different nans from bit-patterns:
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
assert NAN1 != NAN1
assert NAN2 != NAN2
# default hash function would lead to different hash-buckets
# for NAN1 and NAN2 even if there are only 4 buckets:
m = ht.Float64HashTable()
m.set_item(NAN1, 0)
m.set_item(NAN2, 0)
assert len(m) == 1 # NAN1 and NAN2 are equivalent
def test_lookup_overflow(self, writable):
xs = np.array([1, 2, 2 ** 63], dtype=np.uint64)
# GH 21688 ensure we can deal with readonly memory views
xs.setflags(write=writable)
m = ht.UInt64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64))
def test_get_unique(self):
s = Series([1, 2, 2 ** 63, 2 ** 63], dtype=np.uint64)
exp = np.array([1, 2, 2 ** 63], dtype=np.uint64)
tm.assert_numpy_array_equal(s.unique(), exp)
@pytest.mark.parametrize("nvals", [0, 10]) # resizing to 0 is special case
@pytest.mark.parametrize(
"htable, uniques, dtype, safely_resizes",
[
(ht.PyObjectHashTable, ht.ObjectVector, "object", False),
(ht.StringHashTable, ht.ObjectVector, "object", True),
(ht.Float64HashTable, ht.Float64Vector, "float64", False),
(ht.Int64HashTable, ht.Int64Vector, "int64", False),
(ht.UInt64HashTable, ht.UInt64Vector, "uint64", False),
],
)
def test_vector_resize(
self, writable, htable, uniques, dtype, safely_resizes, nvals
):
# Test for memory errors after internal vector
# reallocations (GH 7157)
vals = np.array(np.random.randn(1000), dtype=dtype)
# GH 21688 ensures we can deal with read-only memory views
vals.setflags(write=writable)
# initialise instances; cannot initialise in parametrization,
# as otherwise external views would be held on the array (which is
# one of the things this test is checking)
htable = htable()
uniques = uniques()
# get_labels may append to uniques
htable.get_labels(vals[:nvals], uniques, 0, -1)
# to_array() sets an external_view_exists flag on uniques.
tmp = uniques.to_array()
oldshape = tmp.shape
# subsequent get_labels() calls can no longer append to it
# (except for StringHashTables + ObjectVector)
if safely_resizes:
htable.get_labels(vals, uniques, 0, -1)
else:
with pytest.raises(ValueError, match="external reference.*"):
htable.get_labels(vals, uniques, 0, -1)
uniques.to_array() # should not raise here
assert tmp.shape == oldshape
@pytest.mark.parametrize(
"htable, tm_dtype",
[
(ht.PyObjectHashTable, "String"),
(ht.StringHashTable, "String"),
(ht.Float64HashTable, "Float"),
(ht.Int64HashTable, "Int"),
(ht.UInt64HashTable, "UInt"),
],
)
def test_hashtable_unique(self, htable, tm_dtype, writable):
# output of maker has guaranteed unique elements
maker = getattr(tm, "make" + tm_dtype + "Index")
s = Series(maker(1000))
if htable == ht.Float64HashTable:
# add NaN for float column
s.loc[500] = np.nan
elif htable == ht.PyObjectHashTable:
# use different NaN types for object column
s.loc[500:502] = [np.nan, None, pd.NaT]
# create duplicated selection
s_duplicated = s.sample(frac=3, replace=True).reset_index(drop=True)
s_duplicated.values.setflags(write=writable)
# drop_duplicates has own cython code (hash_table_func_helper.pxi)
# and is tested separately; keeps first occurrence like ht.unique()
expected_unique = s_duplicated.drop_duplicates(keep="first").values
result_unique = htable().unique(s_duplicated.values)
tm.assert_numpy_array_equal(result_unique, expected_unique)
# test return_inverse=True
# reconstruction can only succeed if the inverse is correct
result_unique, result_inverse = htable().unique(
s_duplicated.values, return_inverse=True
)
tm.assert_numpy_array_equal(result_unique, expected_unique)
reconstr = result_unique[result_inverse]
tm.assert_numpy_array_equal(reconstr, s_duplicated.values)
@pytest.mark.parametrize(
"htable, tm_dtype",
[
(ht.PyObjectHashTable, "String"),
(ht.StringHashTable, "String"),
(ht.Float64HashTable, "Float"),
(ht.Int64HashTable, "Int"),
(ht.UInt64HashTable, "UInt"),
],
)
def test_hashtable_factorize(self, htable, tm_dtype, writable):
# output of maker has guaranteed unique elements
maker = getattr(tm, "make" + tm_dtype + "Index")
s = Series(maker(1000))
if htable == ht.Float64HashTable:
# add NaN for float column
s.loc[500] = np.nan
elif htable == ht.PyObjectHashTable:
# use different NaN types for object column
s.loc[500:502] = [np.nan, None, pd.NaT]
# create duplicated selection
s_duplicated = s.sample(frac=3, replace=True).reset_index(drop=True)
s_duplicated.values.setflags(write=writable)
na_mask = s_duplicated.isna().values
result_unique, result_inverse = htable().factorize(s_duplicated.values)
# drop_duplicates has own cython code (hash_table_func_helper.pxi)
# and is tested separately; keeps first occurrence like ht.factorize()
# since factorize removes all NaNs, we do the same here
expected_unique = s_duplicated.dropna().drop_duplicates().values
tm.assert_numpy_array_equal(result_unique, expected_unique)
# reconstruction can only succeed if the inverse is correct. Since
# factorize removes the NaNs, those have to be excluded here as well
result_reconstruct = result_unique[result_inverse[~na_mask]]
expected_reconstruct = s_duplicated.dropna().values
tm.assert_numpy_array_equal(result_reconstruct, expected_reconstruct)
@pytest.mark.parametrize(
"hashtable",
[
ht.PyObjectHashTable,
ht.StringHashTable,
ht.Float64HashTable,
ht.Int64HashTable,
ht.UInt64HashTable,
],
)
def test_hashtable_large_sizehint(self, hashtable):
# GH 22729
size_hint = np.iinfo(np.uint32).max + 1
tbl = hashtable(size_hint=size_hint) # noqa
def test_quantile():
s = Series(np.random.randn(100))
result = algos.quantile(s, [0, 0.25, 0.5, 0.75, 1.0])
expected = algos.quantile(s.values, [0, 0.25, 0.5, 0.75, 1.0])
tm.assert_almost_equal(result, expected)
def test_unique_label_indices():
a = np.random.randint(1, 1 << 10, 1 << 15).astype("i8")
left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1]
tm.assert_numpy_array_equal(left, right, check_dtype=False)
a[np.random.choice(len(a), 10)] = -1
left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1][1:]
tm.assert_numpy_array_equal(left, right, check_dtype=False)
class TestRank:
@td.skip_if_no_scipy
def test_scipy_compat(self):
from scipy.stats import rankdata
def _check(arr):
mask = ~np.isfinite(arr)
arr = arr.copy()
result = libalgos.rank_1d_float64(arr)
arr[mask] = np.inf
exp = rankdata(arr)
exp[mask] = nan
assert_almost_equal(result, exp)
_check(np.array([nan, nan, 5.0, 5.0, 5.0, nan, 1, 2, 3, nan]))
_check(np.array([4.0, nan, 5.0, 5.0, 5.0, nan, 1, 2, 4.0, nan]))
def test_basic(self):
exp = np.array([1, 2], dtype=np.float64)
for dtype in np.typecodes["AllInteger"]:
s = Series([1, 100], dtype=dtype)
tm.assert_numpy_array_equal(algos.rank(s), exp)
def test_uint64_overflow(self):
exp = np.array([1, 2], dtype=np.float64)
for dtype in [np.float64, np.uint64]:
s = Series([1, 2 ** 63], dtype=dtype)
tm.assert_numpy_array_equal(algos.rank(s), exp)
def test_too_many_ndims(self):
arr = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]])
msg = "Array with ndim > 2 are not supported"
with pytest.raises(TypeError, match=msg):
algos.rank(arr)
@pytest.mark.single
@pytest.mark.high_memory
@pytest.mark.parametrize(
"values",
[np.arange(2 ** 24 + 1), np.arange(2 ** 25 + 2).reshape(2 ** 24 + 1, 2)],
ids=["1d", "2d"],
)
def test_pct_max_many_rows(self, values):
# GH 18271
result = algos.rank(values, pct=True).max()
assert result == 1
def test_pad_backfill_object_segfault():
old = np.array([], dtype="O")
new = np.array([datetime(2010, 12, 31)], dtype="O")
result = libalgos.pad["object"](old, new)
expected = np.array([-1], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = libalgos.pad["object"](new, old)
expected = np.array([], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = libalgos.backfill["object"](old, new)
expected = np.array([-1], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = libalgos.backfill["object"](new, old)
expected = np.array([], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
def test_arrmap():
values = np.array(["foo", "foo", "bar", "bar", "baz", "qux"], dtype="O")
result = libalgos.arrmap_object(values, lambda x: x in ["foo", "bar"])
assert result.dtype == np.bool_
class TestTseriesUtil:
def test_combineFunc(self):
pass
def test_reindex(self):
pass
def test_isna(self):
pass
def test_groupby(self):
pass
def test_groupby_withnull(self):
pass
def test_backfill(self):
old = Index([1, 5, 10])
new = Index(list(range(12)))
filler = libalgos.backfill["int64_t"](old.values, new.values)
expect_filler = np.array([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1], dtype=np.int64)
tm.assert_numpy_array_equal(filler, expect_filler)
# corner case
old = Index([1, 4])
new = Index(list(range(5, 10)))
filler = libalgos.backfill["int64_t"](old.values, new.values)
expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64)
tm.assert_numpy_array_equal(filler, expect_filler)
def test_pad(self):
old = Index([1, 5, 10])
new = Index(list(range(12)))
filler = libalgos.pad["int64_t"](old.values, new.values)
expect_filler = np.array([-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2], dtype=np.int64)
tm.assert_numpy_array_equal(filler, expect_filler)
# corner case
old = Index([5, 10])
new = Index(np.arange(5))
filler = libalgos.pad["int64_t"](old.values, new.values)
expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64)
tm.assert_numpy_array_equal(filler, expect_filler)
def test_is_lexsorted():
failure = [
np.array(
[
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
],
dtype="int64",
),
np.array(
[
30,
29,
28,
27,
26,
25,
24,
23,
22,
21,
20,
19,
18,
17,
16,
15,
14,
13,
12,
11,
10,
9,
8,
7,
6,
5,
4,
3,
2,
1,
0,
30,
29,
28,
27,
26,
25,
24,
23,
22,
21,
20,
19,
18,
17,
16,
15,
14,
13,
12,
11,
10,
9,
8,
7,
6,
5,
4,
3,
2,
1,
0,
30,
29,
28,
27,
26,
25,
24,
23,
22,
21,
20,
19,
18,
17,
16,
15,
14,
13,
12,
11,
10,
9,
8,
7,
6,
5,
4,
3,
2,
1,
0,
30,
29,
28,
27,
26,
25,
24,
23,
22,
21,
20,
19,
18,
17,
16,
15,
14,
13,
12,
11,
10,
9,
8,
7,
6,
5,
4,
3,
2,
1,
0,
],
dtype="int64",
),
]
assert not libalgos.is_lexsorted(failure)
def test_groupsort_indexer():
a = np.random.randint(0, 1000, 100).astype(np.int64)
b = np.random.randint(0, 1000, 100).astype(np.int64)
result = libalgos.groupsort_indexer(a, 1000)[0]
# need to use a stable sort
# np.argsort returns int, groupsort_indexer
# always returns int64
expected = np.argsort(a, kind="mergesort")
expected = expected.astype(np.int64)
tm.assert_numpy_array_equal(result, expected)
# compare with lexsort
# np.lexsort returns int, groupsort_indexer
# always returns int64
key = a * 1000 + b
result = libalgos.groupsort_indexer(key, 1000000)[0]
expected = np.lexsort((b, a))
expected = expected.astype(np.int64)
tm.assert_numpy_array_equal(result, expected)
def test_infinity_sort():
# GH 13445
# numpy's argsort can be unhappy if something is less than
# itself. Instead, let's give our infinities a self-consistent
# ordering, but outside the float extended real line.
Inf = libalgos.Infinity()
NegInf = libalgos.NegInfinity()
ref_nums = [NegInf, float("-inf"), -1e100, 0, 1e100, float("inf"), Inf]
assert all(Inf >= x for x in ref_nums)
assert all(Inf > x or x is Inf for x in ref_nums)
assert Inf >= Inf and Inf == Inf
assert not Inf < Inf and not Inf > Inf
assert libalgos.Infinity() == libalgos.Infinity()
assert not libalgos.Infinity() != libalgos.Infinity()
assert all(NegInf <= x for x in ref_nums)
assert all(NegInf < x or x is NegInf for x in ref_nums)
assert NegInf <= NegInf and NegInf == NegInf
assert not NegInf < NegInf and not NegInf > NegInf
assert libalgos.NegInfinity() == libalgos.NegInfinity()
assert not libalgos.NegInfinity() != libalgos.NegInfinity()
for perm in permutations(ref_nums):
assert sorted(perm) == ref_nums
# smoke tests
np.array([libalgos.Infinity()] * 32).argsort()
np.array([libalgos.NegInfinity()] * 32).argsort()
def test_infinity_against_nan():
Inf = libalgos.Infinity()
NegInf = libalgos.NegInfinity()
assert not Inf > np.nan
assert not Inf >= np.nan
assert not Inf < np.nan
assert not Inf <= np.nan
assert not Inf == np.nan
assert Inf != np.nan
assert not NegInf > np.nan
assert not NegInf >= np.nan
assert not NegInf < np.nan
assert not NegInf <= np.nan
assert not NegInf == np.nan
assert NegInf != np.nan
def test_ensure_platform_int():
arr = np.arange(100, dtype=np.intp)
result = libalgos.ensure_platform_int(arr)
assert result is arr
def test_int64_add_overflow():
# see gh-14068
msg = "Overflow in int64 addition"
m = np.iinfo(np.int64).max
n = np.iinfo(np.int64).min
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(np.array([m, m]), m)
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]))
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(np.array([n, n]), n)
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(np.array([n, n]), np.array([n, n]))
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(np.array([m, n]), np.array([n, n]))
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(
np.array([m, m]), np.array([m, m]), arr_mask=np.array([False, True])
)
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(
np.array([m, m]), np.array([m, m]), b_mask=np.array([False, True])
)
with pytest.raises(OverflowError, match=msg):
algos.checked_add_with_arr(
np.array([m, m]),
np.array([m, m]),
arr_mask=np.array([False, True]),
b_mask=np.array([False, True]),
)
with pytest.raises(OverflowError, match=msg):
with tm.assert_produces_warning(RuntimeWarning):
algos.checked_add_with_arr(np.array([m, m]), np.array([np.nan, m]))
# Check that the nan boolean arrays override whether or not
# the addition overflows. We don't check the result but just
# the fact that an OverflowError is not raised.
algos.checked_add_with_arr(
np.array([m, m]), np.array([m, m]), arr_mask=np.array([True, True])
)
algos.checked_add_with_arr(
np.array([m, m]), np.array([m, m]), b_mask=np.array([True, True])
)
algos.checked_add_with_arr(
np.array([m, m]),
np.array([m, m]),
arr_mask=np.array([True, False]),
b_mask=np.array([False, True]),
)
class TestMode:
def test_no_mode(self):
exp = Series([], dtype=np.float64)
tm.assert_series_equal(algos.mode([]), exp)
def test_mode_single(self):
# GH 15714
exp_single = [1]
data_single = [1]
exp_multi = [1]
data_multi = [1, 1]
for dt in np.typecodes["AllInteger"] + np.typecodes["Float"]:
s = Series(data_single, dtype=dt)
exp = Series(exp_single, dtype=dt)
tm.assert_series_equal(algos.mode(s), exp)
s = Series(data_multi, dtype=dt)
exp = Series(exp_multi, dtype=dt)
tm.assert_series_equal(algos.mode(s), exp)
exp = Series([1], dtype=np.int)
tm.assert_series_equal(algos.mode([1]), exp)
exp = Series(["a", "b", "c"], dtype=np.object)
tm.assert_series_equal(algos.mode(["a", "b", "c"]), exp)
def test_number_mode(self):
exp_single = [1]
data_single = [1] * 5 + [2] * 3
exp_multi = [1, 3]
data_multi = [1] * 5 + [2] * 3 + [3] * 5
for dt in np.typecodes["AllInteger"] + np.typecodes["Float"]:
s = Series(data_single, dtype=dt)
exp = Series(exp_single, dtype=dt)
tm.assert_series_equal(algos.mode(s), exp)
s = Series(data_multi, dtype=dt)
exp = Series(exp_multi, dtype=dt)
tm.assert_series_equal(algos.mode(s), exp)
def test_strobj_mode(self):
exp = ["b"]
data = ["a"] * 2 + ["b"] * 3
s = Series(data, dtype="c")
exp = Series(exp, dtype="c")
tm.assert_series_equal(algos.mode(s), exp)
exp = ["bar"]
data = ["foo"] * 2 + ["bar"] * 3
for dt in [str, object]:
s = Series(data, dtype=dt)
exp = Series(exp, dtype=dt)
tm.assert_series_equal(algos.mode(s), exp)
def test_datelike_mode(self):
exp = Series(["1900-05-03", "2011-01-03", "2013-01-02"], dtype="M8[ns]")
s = Series(["2011-01-03", "2013-01-02", "1900-05-03"], dtype="M8[ns]")
tm.assert_series_equal(algos.mode(s), exp)
exp = Series(["2011-01-03", "2013-01-02"], dtype="M8[ns]")
s = Series(
["2011-01-03", "2013-01-02", "1900-05-03", "2011-01-03", "2013-01-02"],
dtype="M8[ns]",
)
tm.assert_series_equal(algos.mode(s), exp)
def test_timedelta_mode(self):
exp = Series(["-1 days", "0 days", "1 days"], dtype="timedelta64[ns]")
s = Series(["1 days", "-1 days", "0 days"], dtype="timedelta64[ns]")
tm.assert_series_equal(algos.mode(s), exp)
exp = Series(["2 min", "1 day"], dtype="timedelta64[ns]")
s = Series(
["1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min"],
dtype="timedelta64[ns]",
)
tm.assert_series_equal(algos.mode(s), exp)
def test_mixed_dtype(self):
exp = Series(["foo"])
s = Series([1, "foo", "foo"])
tm.assert_series_equal(algos.mode(s), exp)
def test_uint64_overflow(self):
exp = Series([2 ** 63], dtype=np.uint64)
s = Series([1, 2 ** 63, 2 ** 63], dtype=np.uint64)
tm.assert_series_equal(algos.mode(s), exp)
exp = Series([1, 2 ** 63], dtype=np.uint64)
s = Series([1, 2 ** 63], dtype=np.uint64)
tm.assert_series_equal(algos.mode(s), exp)
def test_categorical(self):
c = Categorical([1, 2])
exp = c
tm.assert_categorical_equal(algos.mode(c), exp)
tm.assert_categorical_equal(c.mode(), exp)
c = Categorical([1, "a", "a"])
exp = Categorical(["a"], categories=[1, "a"])
tm.assert_categorical_equal(algos.mode(c), exp)
tm.assert_categorical_equal(c.mode(), exp)
c = Categorical([1, 1, 2, 3, 3])
exp = Categorical([1, 3], categories=[1, 2, 3])
tm.assert_categorical_equal(algos.mode(c), exp)
tm.assert_categorical_equal(c.mode(), exp)
def test_index(self):
idx = Index([1, 2, 3])
exp = Series([1, 2, 3], dtype=np.int64)
tm.assert_series_equal(algos.mode(idx), exp)
idx = Index([1, "a", "a"])
exp = Series(["a"], dtype=object)
tm.assert_series_equal(algos.mode(idx), exp)
idx = Index([1, 1, 2, 3, 3])
exp = Series([1, 3], dtype=np.int64)
tm.assert_series_equal(algos.mode(idx), exp)
exp = Series(["2 min", "1 day"], dtype="timedelta64[ns]")
idx = Index(
["1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min"],
dtype="timedelta64[ns]",
)
tm.assert_series_equal(algos.mode(idx), exp)