Add vendored packages back
This commit is contained in:
committed by
Todd Gamblin
parent
5175189412
commit
033cb86fd6
73
lib/spack/external/_vendoring/altgraph/GraphStat.py
vendored
Normal file
73
lib/spack/external/_vendoring/altgraph/GraphStat.py
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
"""
|
||||
altgraph.GraphStat - Functions providing various graph statistics
|
||||
=================================================================
|
||||
"""
|
||||
|
||||
|
||||
def degree_dist(graph, limits=(0, 0), bin_num=10, mode="out"):
|
||||
"""
|
||||
Computes the degree distribution for a graph.
|
||||
|
||||
Returns a list of tuples where the first element of the tuple is the
|
||||
center of the bin representing a range of degrees and the second element
|
||||
of the tuple are the number of nodes with the degree falling in the range.
|
||||
|
||||
Example::
|
||||
|
||||
....
|
||||
"""
|
||||
|
||||
deg = []
|
||||
if mode == "inc":
|
||||
get_deg = graph.inc_degree
|
||||
else:
|
||||
get_deg = graph.out_degree
|
||||
|
||||
for node in graph:
|
||||
deg.append(get_deg(node))
|
||||
|
||||
if not deg:
|
||||
return []
|
||||
|
||||
results = _binning(values=deg, limits=limits, bin_num=bin_num)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
_EPS = 1.0 / (2.0 ** 32)
|
||||
|
||||
|
||||
def _binning(values, limits=(0, 0), bin_num=10):
|
||||
"""
|
||||
Bins data that falls between certain limits, if the limits are (0, 0) the
|
||||
minimum and maximum values are used.
|
||||
|
||||
Returns a list of tuples where the first element of the tuple is the
|
||||
center of the bin and the second element of the tuple are the counts.
|
||||
"""
|
||||
if limits == (0, 0):
|
||||
min_val, max_val = min(values) - _EPS, max(values) + _EPS
|
||||
else:
|
||||
min_val, max_val = limits
|
||||
|
||||
# get bin size
|
||||
bin_size = (max_val - min_val) / float(bin_num)
|
||||
bins = [0] * (bin_num)
|
||||
|
||||
# will ignore these outliers for now
|
||||
for value in values:
|
||||
try:
|
||||
if (value - min_val) >= 0:
|
||||
index = int((value - min_val) / float(bin_size))
|
||||
bins[index] += 1
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
# make it ready for an x,y plot
|
||||
result = []
|
||||
center = (bin_size / 2) + min_val
|
||||
for i, y in enumerate(bins):
|
||||
x = center + bin_size * i
|
||||
result.append((x, y))
|
||||
|
||||
return result
|
||||
Reference in New Issue
Block a user