py-smote-variants: Added package py-smote-variants (#42502)
* py-smote-variants: Added package py-smote-variants Also added py-minisom and py-metric-learn as dependencies * py-metric-learn: Added build dependency on setuptools * py-smote-variants: Added a dependency on py-pytest-runner As well as a comment about why statistics isn't included * [@spackbot] updating style on behalf of alex391 --------- Co-authored-by: Alex C Leute <aclrc@rit.edu>
This commit is contained in:
		
							
								
								
									
										26
									
								
								var/spack/repos/builtin/packages/py-metric-learn/package.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										26
									
								
								var/spack/repos/builtin/packages/py-metric-learn/package.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,26 @@ | |||||||
|  | # Copyright 2013-2024 Lawrence Livermore National Security, LLC and other | ||||||
|  | # Spack Project Developers. See the top-level COPYRIGHT file for details. | ||||||
|  | # | ||||||
|  | # SPDX-License-Identifier: (Apache-2.0 OR MIT) | ||||||
|  | 
 | ||||||
|  | from spack.package import * | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class PyMetricLearn(PythonPackage): | ||||||
|  |     """metric-learn contains efficient Python implementations of several | ||||||
|  |     popular supervised and weakly-supervised metric learning algorithms. As | ||||||
|  |     part of scikit-learn-contrib, the API of metric-learn is compatible with | ||||||
|  |     scikit-learn, the leading library for machine learning in Python. This | ||||||
|  |     allows to use all the scikit-learn routines (for pipelining, model | ||||||
|  |     selection, etc) with metric learning algorithms through a unified | ||||||
|  |     interface.""" | ||||||
|  | 
 | ||||||
|  |     homepage = "https://github.com/scikit-learn-contrib/metric-learn" | ||||||
|  |     pypi = "metric-learn/metric-learn-0.7.0.tar.gz" | ||||||
|  | 
 | ||||||
|  |     version("0.7.0", sha256="2b35246a1098d74163b16cc7779e0abfcbf9036050f4caa258e4fee55eb299cc") | ||||||
|  | 
 | ||||||
|  |     depends_on("py-setuptools", type="build") | ||||||
|  |     depends_on("py-numpy@1.11.0:", type=("build", "run")) | ||||||
|  |     depends_on("py-scipy@0.17.0:", type=("build", "run")) | ||||||
|  |     depends_on("py-scikit-learn@0.21.3:", type=("build", "run")) | ||||||
							
								
								
									
										30
									
								
								var/spack/repos/builtin/packages/py-minisom/package.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								var/spack/repos/builtin/packages/py-minisom/package.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,30 @@ | |||||||
|  | # Copyright 2013-2024 Lawrence Livermore National Security, LLC and other | ||||||
|  | # Spack Project Developers. See the top-level COPYRIGHT file for details. | ||||||
|  | # | ||||||
|  | # SPDX-License-Identifier: (Apache-2.0 OR MIT) | ||||||
|  | 
 | ||||||
|  | from spack.package import * | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class PyMinisom(PythonPackage): | ||||||
|  |     """MiniSom is a minimalistic and Numpy based implementation of the Self | ||||||
|  |     Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to | ||||||
|  |     convert complex, nonlinear statistical relationships between | ||||||
|  |     high-dimensional data items into simple geometric relationships on a | ||||||
|  |     low-dimensional display. Minisom is designed to allow researchers to easily | ||||||
|  |     build on top of it and to give students the ability to quickly grasp its | ||||||
|  |     details. | ||||||
|  | 
 | ||||||
|  |     The project initially aimed for a minimalistic implementation of the | ||||||
|  |     Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, | ||||||
|  |     dependencies, and code style. Although it has expanded in terms of | ||||||
|  |     features, it remains minimalistic by relying only on the numpy library and | ||||||
|  |     emphasizing vectorization in coding style.""" | ||||||
|  | 
 | ||||||
|  |     homepage = "https://github.com/JustGlowing/minisom" | ||||||
|  |     pypi = "MiniSom/MiniSom-2.3.1.tar.gz" | ||||||
|  | 
 | ||||||
|  |     version("2.3.1", sha256="c0f1411616d7614fbd440a811975c12c7dfc091baea33efb49f5f4eabad7b966") | ||||||
|  | 
 | ||||||
|  |     depends_on("py-numpy", type=("build", "run")) | ||||||
|  |     depends_on("py-setuptools", type=("build")) | ||||||
| @@ -0,0 +1,35 @@ | |||||||
|  | # Copyright 2013-2024 Lawrence Livermore National Security, LLC and other | ||||||
|  | # Spack Project Developers. See the top-level COPYRIGHT file for details. | ||||||
|  | # | ||||||
|  | # SPDX-License-Identifier: (Apache-2.0 OR MIT) | ||||||
|  | 
 | ||||||
|  | from spack.package import * | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class PySmoteVariants(PythonPackage): | ||||||
|  |     """Variants of the synthetic minority oversampling technique (SMOTE) for | ||||||
|  |     imbalanced learning""" | ||||||
|  | 
 | ||||||
|  |     homepage = "https://github.com/analyticalmindsltd/smote_variants" | ||||||
|  |     pypi = "smote_variants/smote_variants-0.7.3.tar.gz" | ||||||
|  | 
 | ||||||
|  |     version("0.7.3", sha256="69497c764f101a76e8a3d4a9c80176704375c7aa5e26914f19222b59fb03b890") | ||||||
|  | 
 | ||||||
|  |     depends_on("python@3.5:", type=("build", "run")) | ||||||
|  | 
 | ||||||
|  |     depends_on("py-wheel@0.33.4:", type="build") | ||||||
|  |     depends_on("py-setuptools@41.0.1:", type="build") | ||||||
|  |     depends_on("py-pytest-runner", type="build") | ||||||
|  | 
 | ||||||
|  |     depends_on("py-numpy", type=("build", "run")) | ||||||
|  |     depends_on("py-scipy", type=("build", "run")) | ||||||
|  |     depends_on("py-scikit-learn", type=("build", "run")) | ||||||
|  |     depends_on("py-joblib", type=("build", "run")) | ||||||
|  |     depends_on("py-minisom", type=("build", "run")) | ||||||
|  |     depends_on("py-tensorflow", type=("build", "run")) | ||||||
|  |     depends_on("py-keras", type=("build", "run")) | ||||||
|  |     depends_on("py-pandas", type=("build", "run")) | ||||||
|  |     depends_on("mkl") | ||||||
|  |     depends_on("py-metric-learn", type=("build", "run")) | ||||||
|  |     depends_on("py-seaborn", type=("build", "run")) | ||||||
|  |     # Not including statistics, because is only needed for python 2 | ||||||
		Reference in New Issue
	
	Block a user
	 Alex Leute
					Alex Leute