py-horovod: set appropriate build env vars (#15548)

* py-horovod: set appropriate build env vars

* mxnet: add maintainer

* py-horovod: fetch git submodules

* py-torch: fix CUDA conflicts
This commit is contained in:
Adam J. Stewart 2020-03-18 18:01:20 -04:00 committed by GitHub
parent 77b11433b3
commit 51f8744ab7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 105 additions and 43 deletions

View File

@ -13,6 +13,8 @@ class Mxnet(MakefilePackage):
homepage = "http://mxnet.io"
url = "https://github.com/apache/incubator-mxnet/releases/download/1.3.0/apache-mxnet-src-1.3.0-incubating.tar.gz"
maintainers = ['adamjstewart']
version('1.3.0', sha256='c00d6fbb2947144ce36c835308e603f002c1eb90a9f4c5a62f4d398154eed4d2')
variant('cuda', default=False, description='Enable CUDA support')

View File

@ -3,10 +3,6 @@
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack import *
import fnmatch
import os
class PyHorovod(PythonPackage):
"""Horovod is a distributed deep learning training framework for
@ -14,47 +10,111 @@ class PyHorovod(PythonPackage):
homepage = "https://github.com/horovod"
git = "https://github.com/horovod/horovod.git"
url = "https://github.com/horovod/horovod/archive/v0.19.0.tar.gz"
version('master', branch='master', submodules='True')
version('0.19.0', sha256='0e9fec11cd7f5f39a09f0785d1097cb51c44537ae14c9b4b2578b5cdd21efb9b')
version('0.18.2', sha256='a073e08cec65474afdb2d011486b4cb6c7ac8fcb1eca3e02b169e1e7b4a66da6')
version('0.18.1', sha256='26e236d1f60955e9dd12b9f0a836f0691296a010fcd1ac72295970a780f4e4fb')
version('0.18.0', sha256='94f13e7110c5f3fd1aa194b9d886b5bb91c9bc02ade31bcb84fc6e7f9c043455')
version('0.17.1', sha256='14eea5744eda9c62988ffa278a9a5472cebbc6a287eca9ed48cacfcd177e8978')
version('0.17.0.post1', sha256='220b230611e22dc69777f1be4d9788a07e73a0722e511091fa156cdf68ca798b')
version('0.17.0', sha256='4bb121dda6cdaa1677535470adc1836493a9c4930ab19f6b491254ea47a12a4f')
version('0.16.4', sha256='c0168dfeb31a56ede52eae115f43fa2d06a5db55a37201064ef901c8000d708d')
version('0.16.3', sha256='1857cf1b335723366cc71e4bcd0583f2dde0c821212cda0e1b6bddfe4ba1ea0d')
version('0.16.2', sha256='baa9754e59ab0ee72d3b5769cf77e06a2c7b0a2d9626e0e14ca2ab131934ce74')
maintainers = ['adamjstewart']
variant('pytorch', default=True, description='Enables PyTorch')
variant('mxnet', default=False, description='Enables mxnet')
variant('mpi', default=True, description='Enables MPI build')
version('master', branch='master', submodules=True)
version('0.19.1', tag='v0.19.1', submodules=True)
version('0.19.0', tag='v0.19.0', submodules=True)
version('0.18.2', tag='v0.18.2', submodules=True)
version('0.18.1', tag='v0.18.1', submodules=True)
version('0.18.0', tag='v0.18.0', submodules=True)
version('0.17.1', tag='v0.17.1', submodules=True)
version('0.17.0', tag='v0.17.0', submodules=True)
version('0.16.4', tag='v0.16.4', submodules=True)
version('0.16.3', tag='v0.16.3', submodules=True)
version('0.16.2', tag='v0.16.2', submodules=True)
# Deep learning frameworks
variant('pytorch', default=True, description='Enables PyTorch')
variant('tensorflow', default=False, description='Enables TensorFlow')
variant('mxnet', default=False, description='Enables Apache MXNet')
# Distributed support
variant('gloo', default=False, description='Enables features related to distributed support')
variant('cuda', default=True, description='Enables CUDA build')
variant('mpi', default=True, description='Enables MPI build')
depends_on('python', type=('build', 'run'))
# GPU support
variant('cuda', default=True, description='Enables CUDA build')
variant('gpu_allreduce', default='mpi',
description='Backend to use for GPU_ALLREDUCE',
values=('mpi', 'nccl'), multi=False) # DDL support is deprecated
variant('gpu_allgather', default='mpi',
description='Backend to use for GPU_ALLGATHER',
values=('mpi',), multi=False)
variant('gpu_broadcast', default='mpi',
description='Backend to use for GPU_BROADCAST',
values=('mpi', 'nccl'), multi=False)
# Required dependencies
depends_on('py-setuptools', type='build')
depends_on('py-cloudpickle', type=('build', 'run'))
depends_on('py-psutil', type=('build', 'run'))
depends_on('py-pyyaml', type=('build', 'run'))
depends_on('py-six', type=('build', 'run'))
depends_on('py-torch', type=('build', 'run'))
depends_on('py-pip', type=('build'))
# Optional dependencies
depends_on('cuda', when='+cuda')
depends_on('nccl', when='+nccl')
depends_on('gloo', when='+gloo')
# Deep learning frameworks
depends_on('py-torch@0.4.0:', type=('build', 'run'), when='+pytorch')
depends_on('py-torch+cuda', type=('build', 'run'), when='+pytorch+cuda')
depends_on('py-cffi@1.4.0:', type=('build', 'run'), when='+pytorch')
depends_on('py-tensorflow@1.1.0:', type=('build', 'link', 'run'), when='+tensorflow')
depends_on('mxnet@1.4.0:+python', type=('build', 'link', 'run'), when='+mxnet')
depends_on('mxnet+cuda', type=('build', 'link', 'run'), when='+mxnet+cuda')
# Distributed support
# There does not appear to be a way to use an external Gloo installation
depends_on('cmake', type='build', when='+gloo')
depends_on('mpi', when='+mpi')
depends_on('py-torch', type=('build', 'run'), when='+pytorch')
depends_on('mxnet', when='+mxnet')
depends_on('mpi', when='gpu_allreduce=mpi')
depends_on('mpi', when='gpu_allgather=mpi')
depends_on('mpi', when='gpu_broadcast=mpi')
phases = ['clean', 'sdist', 'install']
# GPU support
depends_on('cuda', when='+cuda')
depends_on('nccl@2.0:', when='gpu_allreduce=nccl')
depends_on('nccl@2.0:', when='gpu_broadcast=nccl')
def install(self, spec, prefix):
pip = which('pip')
for file in os.listdir(prefix):
if fnmatch.fnmatch(file, 'horovod-*.tar.gz'):
pip('install', file, '--prefix={0}'.format(prefix))
# Test dependencies
depends_on('py-mock', type='test')
depends_on('py-pytest', type='test')
depends_on('py-pytest-forked', type='test')
conflicts('+gloo', when='platform=darwin', msg='Gloo cannot be compiled on MacOS')
conflicts('~gloo~mpi', msg='One of Gloo or MPI are required for Horovod to run')
conflicts('~pytorch~tensorflow~mxnet', msg='At least one deep learning backend is required')
def setup_build_environment(self, env):
# Deep learning frameworks
if '~pytorch' in self.spec:
env.set('HOROVOD_WITHOUT_PYTORCH', 1)
if '~tensorflow' in self.spec:
env.set('HOROVOD_WITHOUT_TENSORFLOW', 1)
if '~mxnet' in self.spec:
env.set('HOROVOD_WITHOUT_MXNET', 1)
# Distributed support
if '~gloo' in self.spec:
env.set('HOROVOD_WITHOUT_GLOO', 1)
if '+mpi' in self.spec:
env.set('HOROVOD_WITH_MPI', 1)
else:
env.set('HOROVOD_WITHOUT_MPI', 1)
# GPU support
if '+cuda' in self.spec:
env.set('HOROVOD_CUDA_HOME', self.spec['cuda'].prefix)
env.set('HOROVOD_CUDA_INCLUDE',
self.spec['cuda'].headers.directories[0])
env.set('HOROVOD_CUDA_LIB', self.spec['cuda'].libs.directories[0])
if '^nccl' in self.spec:
env.set('HOROVOD_NCCL_HOME', self.spec['nccl'].prefix)
env.set('HOROVOD_NCCL_INCLUDE',
self.spec['nccl'].headers.directories[0])
env.set('HOROVOD_NCCL_LIB', self.spec['nccl'].libs.directories[0])
env.set('HOROVOD_GPU_ALLREDUCE',
self.spec.variants['gpu_allreduce'].value.upper())
env.set('HOROVOD_GPU_ALLGATHER',
self.spec.variants['gpu_allgather'].value.upper())
env.set('HOROVOD_GPU_BROADCAST',
self.spec.variants['gpu_broadcast'].value.upper())
env.set('HOROVOD_ALLOW_MIXED_GPU_IMPL', 1)

View File

@ -105,22 +105,22 @@ class PyTorch(PythonPackage, CudaPackage):
cuda_arch_conflict = ('This version of Torch/Caffe2 only supports compute '
'capabilities ')
conflicts('cuda_arch=none', when='+cuda+caffe2',
conflicts('cuda_arch=none', when='+cuda',
msg='Must specify CUDA compute capabilities of your GPU, see '
'https://developer.nvidia.com/cuda-gpus')
conflicts('cuda_arch=52', when='@1.3.0:+cuda+caffe2',
conflicts('cuda_arch=52', when='@1.3.0:+cuda',
msg=cuda_arch_conflict + '>=5.3')
conflicts('cuda_arch=50', when='@1.3.0:+cuda+caffe2',
conflicts('cuda_arch=50', when='@1.3.0:+cuda',
msg=cuda_arch_conflict + '>=5.3')
conflicts('cuda_arch=35', when='@1.3.0:+cuda+caffe2',
conflicts('cuda_arch=35', when='@1.3.0:+cuda',
msg=cuda_arch_conflict + '>=5.3')
conflicts('cuda_arch=32', when='@1.3.0:+cuda+caffe2',
conflicts('cuda_arch=32', when='@1.3.0:+cuda',
msg=cuda_arch_conflict + '>=5.3')
conflicts('cuda_arch=30', when='@1.3.0:+cuda+caffe2',
conflicts('cuda_arch=30', when='@1.3.0:+cuda',
msg=cuda_arch_conflict + '>=5.3')
conflicts('cuda_arch=30', when='@1.2.0:+cuda+caffe2',
conflicts('cuda_arch=30', when='@1.2.0:+cuda',
msg=cuda_arch_conflict + '>=3.2')
conflicts('cuda_arch=20', when='@1.0.0:+cuda+caffe2',
conflicts('cuda_arch=20', when='@1.0.0:+cuda',
msg=cuda_arch_conflict + '>=3.0')
# Required dependencies