Fix bug introduced in #30191. `Spec.installed` and `Spec.installed_upstream` should just return
`False` for abstract specs, as they can be called in that context.
- [x] `Spec.installed` returns `False` now instead of asserting that the `Spec`
is concrete.
- [x] `Spec.installed_upstream` returns `False` now instead of asserting that the `Spec`
is concrete.
- [x] `Spec.installed_upstream` no longer caches its result, as install status seems
like a bad thing to cache -- it can easily be invalidated. Calling code should
use transactions if there are peformance issues, as with other places in Spack.
- [x] add tests for `Spec.installed` and `Spec.installed_upstream`
This PR moves the `installed` and `installed_upstream` properties from `PackageBase` to `Spec` and is a step towards being able to reuse specs for which we don't have a `package.py` available. It _should_ be sufficient to complete the concretization step and see the spec in the concretized DAG.
To fully reuse a spec without a package.py though we need a way to serialize enough data to reconstruct the results of calls to:
- `Spec.libs`, `Spec.headers` and `Spec.ommand`
- `Package.setup_dependent_*_environment` and `Package.setup_run_environment`
- [x] Add stub methods to packages with warnings
- [x] Add a missing "root=False" in cmd/fetch.py
- [x] Assert that a spec is concrete before checking installation status
This PR updates the list of images we build nightly, deprecating
Ubuntu 16.04 and CentOS 8 and adding Ubuntu 20.04, Ubuntu 22.04
and CentOS Stream. It also removes a lot of duplication by generating
the Dockerfiles during the CI workflow and uploading them as artifacts
for later inspection or reuse.
Fix test_ci_generate_prune_untouched(), which would fail if run when
the latest commit changed the .gitlab-ci.yml. This change mocks the
get_stack_changed() method in that test to disregard the state of
the current spack repo in favor of a mock repo under test control.
gitlab ci: Remove code for relating CDash builds
Relating CDash builds to their dependencies was a seldom used feature. Removing
it will make it easier for us to reorganize our CDash projects & build groups in the
future by eliminating the needs to keep track of CDash build ids in our binary mirrors.
* Allow packages to add a 'submodules' property that determines when ad-hoc Git-commit-based versions should initialize submodules
* add support for ad-hoc git-commit-based versions to instantiate submodules if the associated package has a 'submodules' property and it indicates this should happen for the associated spec
* allow Package-level submodule request to influence all explicitly-defined version() in the Package
* skip test on windows which fails because of long paths
Spack added support in #24639 for ad-hoc Git-commit-hash-based
versions: A user can install a package x@hash, where X is a package
that stores its source code in a Git repository, and the hash refers
to a commit in that repository which is not recorded as an explicit
version in the package.py file for X.
A couple issues were found relating to this:
* If an environment defines an alternative package repo (i.e. with
repos.yaml), and spack.yaml contains user Specs with ad-hoc
Git-commit-hash-based versions for packages in that repo,
then as part of retrieving the data needed for version comparisons
it will attempt to retrieve the package before the environment's
configuration is instantiated.
* The bookkeeping information added to compare ad-hoc git versions was
being stripped from Specs during concretization (such that user
Specs which succeeded before concretizing would then fail after)
This addresses the issues:
* The first issue is resolved by deferring access to the associated
Package until the versions are actually compared to one another.
* The second issue is resolved by ensuring that the Git bookkeeping
information is explicitly applied to Specs after they are concretized.
This also:
* Resolves an ambiguity in the mock_git_version_info fixture used to
create a tree of Git commits and provide a list where each index
maps to a known commit.
* Isolates the cache used for Git repositories in tests using the
mock_git_version_info fixture
* Adds a TODO which points out that if the remote Git repository
overwrites tags, that Spack will then fail when using
ad-hoc Git-commit-hash-based versions
This commit updates the `gpg publish` command to work with the mirror
arguments, when trying to push keys to a mirror.
- [x] update `gpg publish command
- [x] add test for publishing GPG keys and rebuilding the key index within a mirror
In a typical call to spack, the OperatingSystem gets instantiated
multiple times. For macOS, each one requires a call to `sw_vers`, which
is done through the Executable helper class. Memoizing
reduces the call count from "spac spec" from three to one.
Currently environments are indexed by build hashes. When looking into this bug I noticed there is a disconnect between environments that are concretized in memory for the first time and environments that are read from a `spack.lock`. The issue is that specs read from a `spack.lock` don't have a full hash, since they are indexed by a build hash which is strictly coarser. They are also marked "final" as they are read from a file, so we can't compute additional hashes.
This bugfix PR makes "first concretization" equivalent to re-reading the specs from a corresponding `spack.lock`, and doing so unveiled a few tests were we were making wrong assumptions and relying on the fact that a `spack.lock` file was not there already.
* Add unit test
* Modify mpich to trigger jobs in pipelines
* Fix two failing unit tests
* Fix another full_hash vs. build_hash mismatch in tests
* Ignore top-level module config; add auto-update
In Spack 0.17 we got module sets (modules:[name]:[prop]), and for
backwards compat modules:[prop] was short for modules:default:[prop].
But this makes it awkward to define default config for the "default"
module set.
Since 0.17 is branched off, we can now deprecate top-level module config
(that is, just ignore it with a warning).
This PR does that, and it implements `spack config update modules` to
make upgrading easy (we should have added that to 0.17 already...)
It also removes references to `dotkit` stuff which was already
deprecated in 0.13 and could have been removed in 0.14.
Prefix inspections are the only exception, since the top-level prefix inspections
used for `spack load` and `spack env activate`.
Spack currently allows dependencies to be concretized for an
architecture incompatible with the root. This commit adds rules
to make this situation impossible by design.
* Extract the MetaPathFinder and Loaders for packages in their own classes
https://peps.python.org/pep-0451/
Currently, RepoPath and Repo implement the (deprecated) interface of
MetaPathFinder (find_module) and of Loader (load_module). This commit
extracts both of them and places the code in their own classes.
The MetaPathFinder interface is updated to contain both the deprecated
"find_module" (for Python 2.7 support) and the recommended "find_spec".
Update of the Loader interface is deferred at a subsequent commit.
* Move the lines to be prepended inside "RepoLoader"
Also adjust the naming of a few variables too
* Remove spack.util.imp, since code is only used in spack.repo
* Remove support from loading Python modules Python > 3 but < 3.5
* Remove `Repo._create_namespace`
This function was interacting badly with the MetaPathFinder
and causing issues with "normal" imports. Removing the
function allows to do things like:
```python
import spack.pkg.builtin.mpich
cls = spack.pkg.builtin.mpich.Mpich
```
* Remove code needed to trigger the Singleton evaluation
The finder is coded in a way to trigger the Singleton,
so we don't need external code now that we register it
at module level into `sys.meta_path`.
* Add unit tests
Some servers require `User-Agent` to be set, and otherwise error with
access denied. One such example is mpich.
To fix this, set `User-Agent: Spackbot/[version]` as a header.
Apparently by convention, it should include the word `bot`.
#27021 broke fetching for CVS-based packages because:
- The mirror logic was using URL parsing to extract a path from the
CVS repository location
- #27021 added sanity checks to enforce that strings passed to the
URL parser were actually URLs
This replaces the call to "url_util.parse" with logic that is
customized for CVS. This implies that VCSFetchStrategy should
rename the "url_attr" attribute to something more generic, but
that should be handled separately.
Allow declaring possible values for variants with an associated condition. If the variant takes one of those values, the condition is imposed as a further constraint.
The idea of this PR is to implement part of the mechanisms needed for modeling [packages with multiple build-systems]( https://github.com/spack/seps/pull/3). After this PR the build-system directive can be implemented as:
```python
variant(
'build-system',
default='cmake',
values=(
'autotools',
conditional('cmake', when='@X.Y:')
),
description='...',
)
```
Modifications:
- [x] Allow conditional possible values in variants
- [x] Add a unit-test for the feature
- [x] Add documentation
* tests for rewiring pure specs to spliced specs
* relocate text, binaries, and links
* using llnl.util.symlink for windows compat.
Note: This does not include CLI hooks for relocation.
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
- Add variants for various common build flags, including support for both versions of the Racket VM environment.
- Prevent `-j` flags to `make`, which has been known to cause problems with Racket builds.
- Prefer the minimal release to improve install times. Bells and whistles carry their own runtime dependencies and should be installed via `raco`. An enterprising user may even create a `RacketPackage` class to make spack aware of `raco` installed packages.
- Match the official version numbering scheme.
Update "spack external find --all" to also find library-only packages.
A Package can add a ".libraries" attribute, which is a list of regular
expressions to use to find libraries associated with the Package.
"spack external find --all" will search LD_LIBRARY_PATH for potential
libraries.
This PR adds examples for NCCL, RCCL, and hipblas packages. These
examples specify the suffix ".so" for the regular expressions used
to find libraries, so generally are only useful for detecting library
packages on Linux.
Do not prompt user with checksum warning when using git commit hashes
as versions. Spack was incorrectly reporting this as a potential
problem: it would display a prompt asking the user whether they
want to proceed if Spack was running in a terminal, or it would
terminate the running instance of Spack if running as part of a
script.
* Add pl2bat to PATH: Windows on Perl requires the script pl2bat.bat
and Perl to be available to the installer via the PATH. The build
and dependent environments of Perl on Windows have the install
prefix bin added to the PATH.
* symlink with win32file module instead of using Executable to
call mklink (mklink is a shell function and so is not accessible
in this manner).
We've previously generated CI pipelines for PRs, and they rebuild any packages that don't have
a binary in an existing build cache. The assumption we were making was that ALL prior merged
builds would be in cache, but due to the way we do security in the pipeline, they aren't. `develop`
pipelines can take a while to catch up with the latest PRs, and while it does that, there may be a
bunch of redundant builds on PRs that duplicate things being rebuilt on `develop`. Until we can
do better caching of PR builds, we'll have this problem.
We can do better in PRs, though, by *only* rebuilding things in the CI environment that are actually
touched by the PR. This change computes exactly what packages are changed by a PR branch and
*only* includes those packages' dependents and dependencies in the generated pipeline. Other
as-yet unbuilt packages are pruned from CI for the PR.
For `develop` pipelines, we still want to build everything to ensure that the stack works, and to ensure
that `develop` catches up with PRs. This is especially true since we do not do rebuilds for *every* commit
on `develop` -- just the most recent one after each `develop` pipeline finishes. Since we skip around,
we may end up missing builds unless we ensure that we rebuild everything.
We differentiate between `develop` and PR pipelines in `.gitlab-ci.yml` by setting
`SPACK_PRUNE_UNTOUCHED` for PRs. `develop` will still have the old behavior.
- [x] Add `SPACK_PRUNE_UNTOUCHED` variable to `spack ci`
- [x] Refactor `spack pkg` command by moving historical package checking logic to `spack.repo`
- [x] Implement pruning logic in `spack ci` to remove untouched packages
- [x] add tests
* cmake: use CMAKE_INSTALL_RPATH_USE_LINK_PATH
Spack has a heuristic to add rpaths for packages it knows are required,
but it's really a heuristic, and it does not work when the dependencies
put their libraries in a different folder than `<prefix>/lib{64,}`.
CMake patches binaries after install with the "install rpaths", which by
default are provided by Spack and its heuristic through
`CMAKE_INSTALL_RPATH`.
CMake however knows better what libraries are effectively being linked
to, and has an option to include those in the install rpath too, through
`CMAKE_INSTALL_RPATH_USE_LINK_PATH`.
These two CMake options are complementary, repeated rpaths seem to be
filtered, and the "use link path" paths are appended to Spack's
heuristic "install rpath".
So, it seems like a good idea to enable "use link path" by default, so
that:
- `dlopen` by library name uses Spack's heuristic search paths
- linked libraries in non-standard locations within a prefix get an
rpath thanks to CMake.
* docs
Add output of build- and install-time tests to info command
Enable dependencies, variants, and versions by default (i.e., provide --no*
options; add gcc to test_info_fields to increase coverage for c_names->v_names
We shouldn't be using "remove_linked_tree" to remove the lock file,
since that function expects to receive a directory path as an
argument.
Also, as a further measure to avoid regression, this commit restores
the "ignore_errors=True" argument on linux and adds a unit test
checking that "remove_linked_tree" doesn't change file permissions
as a side effect of a failure to remove.
Reduces the number of stat calls to a bare minimum:
- Single pass over src prefixes
- Handle projection clashes in memory
Symlinked directories in the src prefixes are now conditionally
transformed into directories with symlinks in the dst dir. Notably
`intel-mkl`, `cuda` and `qt` has top-level symlinked directories that
previously resulted in empty directories in the view. We now avoid
cycles and possible exponential blowup by only expanding symlinks that:
- point to dirs deeper in the folder structure;
- are a fixed depth of 2.
Currently `old_root` is computed by reading the symlink at `self.root`.
We should be more defensive in removing it by checking that it is in the
same directory as the new root. Otherwise, in the worst case, when
someone runs `spack env create --with-view=./view -d .` and `view`
already exists and is a symlink to `/`, Spack effectively runs `rm -rf /`.
`file` was used to detect Python scripts with shebangs, so that the interpreter could be changed from <python prefix> to <view path>. With this change, we detect shebangs using Python instead, so that `file` is no longer required.
The number of commit characters in patch files fetched from GitHub can change,
so we should use `full_index=1` to enforce full commit hashes (and a stable
patch `sha256`).
Similarly, URLs for branches like `master` don't give us stable patch files,
because branches are moving targets. Use specific tags or commits for those.
- [x] update all github patch URLs to use `full_index=1`
- [x] don't use `master` or other branches for patches
- [x] add an audit check and a test for `?full_index=1`
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Known issues reports only 2 issues, among the bugs reported on GitHub.
One of the two is also outdated, since the issue has been solved
with the new concretizer. Thus, this commit removes the section.
When you install Spack from a tarball, it will always show an exact
version for Spack itself, even when you don't download a tagged commit:
```
$ wget -q https://github.com/spack/spack/archive/refs/heads/develop.tar.gz
$ tar -xf develop.tar.gz
$ ./spack-develop/bin/spack --version
0.16.2
```
This PR sets the Spack version to `0.18.0.dev0` on develop, following [PEP440](https://github.com/spack/spack/pull/25267#issuecomment-896340234) as
suggested by Adam Stewart.
```
spack (fix/set-dev-version)$ spack --version
0.18.0.dev0 (git 0.17.1-1526-e270464ae0)
spack (fix/set-dev-version)$ mv .git .git_
spack $ spack --version
0.18.0.dev0
```
- [x] Update the release guide
- [x] Add __version__ to spack's __init__.py
- [x] Use PEP 440 canonical version strings
- [x] Make spack --version output [actual version] (git version)
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
* Add tests to ensure google cloud storage urls work as mirrors
This commit adds two tests to track that GCS buckets can work as
mirrors, and can be parsed as valid URLs.
Currently, gs:// format URLs are not correctly parsed.
* Fix URL parsing for GCS buckets
This commit adds GCS bucket URLs as valid URLs.
* lower priority of package-provided urls
This change favors urls found in a scraped page over those provided by
the package from `url_for_version`. In most cases this doesn't matter,
but R specifically returns known bad URLs in some cases, and the
fallback path for a failed fetch uses `fetch_remote_versions` to find a
substitute. This fixes that problem.
fixes#29204
* consider what links actually exist in all cases
Checksum was only actually scraping when called with no versions. It
now always scrapes and then selects URLs from the set of URLs known to
exist whenever possible.
fixes#25831
* bow to the wrath of flake8
* test-fetch urls from package, prefer if successful
* Update lib/spack/spack/package.py
Co-authored-by: Seth R. Johnson <johnsonsr@ornl.gov>
* reword as suggested
* re-enable mypy specific ignore and ignore pyflakes
* remove flake8 ignore from .flake8
* address review comments
* address comments
* add sneaky missing substitute
I missed this one because we call substitute on a URL that doesn't
contain a version component. I'm not sure how that's supposed to work,
but apparently it's required by at least one mock package, so back in it
goes.
Co-authored-by: Seth R. Johnson <johnsonsr@ornl.gov>
Adds `spack external read-cray-manifest`, which reads a json file that describes a set of package DAGs. The parsed results are stored directly in the database. A user can see these installed specs with `spack find` (like any installed spec). The easiest way to use them right now as dependencies is to run `spack spec ... ^/hash-of-external-package`.
Changes include:
* `spack external read-cray-manifest --file <path/to/file>` will add all specs described in the file to Spack's installation DB and will also install described compilers to the compilers configuration (the expected format of the file is described in this PR as well including examples of the file)
* Database records now may include an "origin" (the command added in this PR registers the origin as "external-db"). In the future, it is assumed users may want to be able to treat installs registered with this command differently (e.g. they may want to uninstall all specs added with this command)
* Hash properties are now always preserved when copying specs if the source spec is concrete
* I don't think the hashes of installed-and-concrete specs should change and this was the easiest way to handle that
* also specs that are concrete preserve their `.normal` property when copied (external specs may mention compilers that are not registered, and without this change they would fail in `normalize` when calling `validate_or_raise`)
* it might be this should only be the case if the spec was installed
- [x] Improve testing
- [x] Specifically mark DB records added with this command (so that users can do something like "uninstall all packages added with `spack read-external-db`)
* This is now possible with `spack uninstall --all --origin=external-db` (this will remove all specs added from manifest files)
- [x] Strip variants that are listed in json entries but don't actually exist for the package
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
This PR removes a few outdated sections from the "Basics" part of the
documentation. It also makes a few topic under the environment section
more prominent by removing an unneeded spack.yaml subsection and
promoting everything under it.
Consolidate Spack's internal filepath logic to a select
few places and refactor to consistent internal useage of
os.path utilities. Creates a prefix, and a series of utilities
in the path utility module that facilitate handling paths
in a platform agnostic manner.
Convert Windows paths to posix paths internally
Prefer posixpath.join instead of os.path.join
Updated util/ directory to account for Windows integration
Co-authored-by: Stephen Crowell <stephen.crowell@khq.kitware.com>
Co-authored-by: John Parent <john.parent@kitware.com>
Module template format for windows (#23041)
* Incorporate new search location
* Add external user option
* proper doc string
* Explicit commands in getting started
* raise during chgrp on Win
recover installer changes
Notate admin privleges
Windows phase install hooks
Find external python and install ninja (#23496)
Allow external find python to find windows python and spack install ninja
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
Fixup common tests
* Remove requirement for Python 2.6
* Skip new failing test
Windows: Update url util to handle Windows paths (#27959)
* update url util to handle windows paths
* Update tests to handle fixed url handling
* canonicalize path only when the path type matches the host platform
* Skip some url tests on Windows
Co-authored-by: Omar Padron <omar.padron@kitware.com>
Use threading.TIMEOUT_MAX when available (#24246)
This value was introduced in Python 3.2. Specifying a timeout greater than
this value will raise an OverflowError.
Co-authored-by: Lou Lawrence <lou.lawrence@kitware.com>
Co-authored-by: John Parent <john.parent@kitware.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
Add compiler hint to the root spec for Windows
Reporters on Windows (#26038)
Reporters use Jinja2 as the templating engine, and Jinja2 indexes
templates by Unix separators, even on Windows, so search using Unix paths
on all systems.
Support patching on win via git (#25871)
Handle GRP on windows
CMake - Windows Bootstrap (#25825)
Remove hardcoded cmake compiler (#26410)
Revert breaking cmake changes
Ensure no autotools on Windows
Perl on Windows (#26612)
Python source build windows (#26313)
Reconfigure sysconf for Windows
Python2.6 compatibility
Fxixup new sbang tests for windows
Ruby support (#28287)
Add NASM support (#28319)
Add mock Ninja package for testing
* Style fixes
* Use Python's zipfile, if available
The compression libs are optional in Python. Rely on python as a
first attempt then fall back to `unzip`
MSVC's internal CMake and Ninja now detected by spack external find and added to packages.yaml
Saving progress on packaging zlib for Windows
Fixing the shared CMake flag
* Loading Intel's ifx Fortran compiler into MSVC; if there are multiple
versions of MSVC installed and detected, ifx will only be placed into
the first block written in compilers.yaml. The version number of ifx can
be detected using MSVC's version flag (instead of /QV) by using
ignore_version_errors. This commit also provides support for detection
of Intel compilers in their own compiler block by adding ifx.exe to the
fc/f77_name blocks inside intel.py
* Giving CMake a Fortran compiler argument
* Adding patch file for removing duplicated mangling header for versions 3.9.1 and older; static and shared now successfully building on Windows
* Have netlib-lapack depend on ninja@1.10
Co-authored-by: John R. Cary <cary@txcorp.com>
Co-authored-by: Jared Popelar <jpopelar@txcorp.com>
Making a default config.yaml for Windows
Small path length for build_stage
Provide more prerequisite details, mention default config.yaml
Killing an unnecessary setvars call
Replacing some lost changes, proofreading, updating windows-supported package list
Co-authored-by: John Parent <john.parent@kitware.com>
* Add 'make-installer' command for Windows
* Add '--bat' arg to env activate, env deactivate and unload commands
* An equivalent script to setup-env on linux: spack_cmd.bat. This script
has a wrapper to evaluate cd, load/unload, env activate/deactivate.(#21734)
* Add spacktivate and config editor (#22049)
* spack_cmd: will find python and spack on its own. It preferentially
tries to use python on your PATH (#22414)
* Ignore Windows python installer if found (#23134)
* Bundle git in windows installer (#23597)
* Add Windows section to Getting Started document
(#23131), (#23295), (#24240)
Co-authored-by: Stephen Crowell <stephen.crowell@kitware.com>
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
Co-authored-by: Jared Popelar <jpopelar@txcorp.com>
Co-authored-by: Ben Cowan <benc@txcorp.com>
Update Installer CI
Co-authored-by: John Parent <john.parent@kitware.com>
Made the vcvars batch script location a member variable of the msvc compiler subclass, initialized from the compiler executable path. Added a setup_custom_environment() method to the msvc subclass that sources the vcvars script, dumps the environment, and copies the relevant environment variables to the Spack environment. Added class variables to the Windows OS and MSVC compiler subclasses to enable finding the compiler executables and determining their versions.
* Fixed path and uid issues.
* Added needed import statement; kluged .exe extension.
* Got package to build. Some manual intervention necessary, including sourcing the MSVC setup script and having certain configuration parameters.
* Removed CMake executable suffix hack.
To provide Windows-compatible functionality, spack code should use
llnl.util.symlink instead of os.symlink. On non-Windows platforms
and on Windows where supported, os.symlink will still be used.
Use junctions when symlinks aren't supported on Windows (#22583)
Support islink for junctions (#24182)
Windows: Update llnl/util/filesystem
* Use '/' as path separator on Windows.
* Recognizing that Windows paths start with '<Letter>:/' instead of '/'
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: John Parent <john.parent@kitware.com>
os.rename() fails on Windows if file already exists.
Create getuid utility function (#21736)
On Windows, replace os.getuid with ctypes.windll.shell32.IsUserAnAdmin().
Tests: Use getuid util function
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
1. Forwarding sys.stdin, e.g. use input_multiprocess_fd,
gives an error on Windows. Skipping for now
3. subprocess_context needs to serialize for Windows, like it does
for Mac.
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: John Parent <john.parent@kitware.com>
* Snapshot of some MSVC infrastructure added during experiments a while ago. Rebasing from spack/develop.
* Added platform and OS definitions for Windows.
* Updated Windows platform file to conform to new archspec use.
* Added Windows as a platform; introduced some debugging code.
* Added type annotations.
* Fixed copyright.
* Removed print statements.
* Ensure `spack arch` returns correctly on Windows (#21428)
* Correctly identify windows as 'windows-Windows10-AMD64'
Re-work the checks and comparisons around commit versions, when no
commit version is involved the overhead is now in the noise, where one
is the overhead is now constant rather than linear.
fixes#29446
The new setup_*_environment functions have been falling back
to calling the old functions and warn the user since #11115.
This commit removes the fallback behavior and any use of:
- setup_environment
- setup_dependent_environment
in the codebase
Change the internal representation of `Spec` to allow for multiple dependencies or
dependents stemming from the same package. This change permits to represent cases
which are frequent in cross compiled environments or to bootstrap compilers.
Modifications:
- [x] Substitute `DependencyMap` with `_EdgeMap`. The main differences are that the
latter does not support direct item assignment and can be modified only through its
API. It also provides a `select_by` method to query items.
- [x] Reworked a few public APIs of `Spec` to get list of dependencies or related edges.
- [x] Added unit tests to prevent regression on #11983 and prove the synthetic construction
of specs with multiple deps from the same package.
Since #22845 went in first, this PR reuses that format and thus it should not change hashes.
The same package may be present multiple times in the list of dependencies with different
associated specs (each with its own hash).
* environment.py: allow link:run
Some users want minimal views, excluding run-type dependencies, since
those type of dependencies are covered by rpaths and the symlinked
libraries in the view aren't used anyways.
With this change, an environment like this:
```
spack:
specs: ['py-flake8']
view:
default:
root: view
link: run
```
includes python packages and python, but no link type deps of python.
Speeds up comparison on `Version` by ~2.5x, e.g.
```python
In [1]: v = spack.version.Version('1.0.0'); w = spack.version.Version('1.0.2')
In [2]: %timeit v < w
1.47 µs ± 5.59 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
535 ns ± 1.75 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```
fixes#29203
This PR fixes a subtle bug we have when importing
Spack packages as Python modules that can lead to
multiple module objects being created for the same
package.
It also fixes all the places in unit-tests where
"relying" on the old bug was crucial to have a new
"clean" state of the package class.
This commit reverts the GCS fetch strategy to before commit:
d759612523
The previous commit added some s3 syntax to handle connections, but
added them into the GCS fetch strategy in a way that prevents GCS from
working anymore.
* rocmcc compiler: initial commit based on aocc and clang
Co-authored-by: luker <luke.roskop@hpe.com>
Co-authored-by: Tom Scogland <scogland1@llnl.gov>
The status displayed in the terminal title could be wrong when doing
distributed builds. For instance, doing `spack install glib` in two
different terminals could lead to the current package being reported as
`40/29` due to the way Spack handles retrying locks.
Work around this by keeping track of the package IDs that were already
encountered to avoid counting packages twice.
See https://github.com/spack/spack/pull/28468/files#r809156986
If we exit before generating the:
error("Dependencies must have compatible OS's with their dependents").
...
facts we'll output a problem that is effectively
different by the one solved by clingo.
* cmd/checksum: prefer url matching url_from_version
This is a minimal change toward getting the right archive from places
like github. The heuristic is:
* if an archive url exists, take its version
* generate a url from the package with pkg.url_from_version
* if they match
* stop considering other URLs for this version
* otherwise, continue replacing the url for the version
I doubt this will always work, but it should address a variety of
versions of this bug. A good test right now is `spack checksum gh`,
which checksums macos binaries without this, and the correct source
packages with it.
fixes#15985
related to #14129
related to #13940
* add heuristics to help create as well
Since create can't rely on an existing package, this commit adds another
pair of heuristics:
1. if the current version is a specifically listed archive, don't
replace it
2. if the current url matches the result of applying
`spack.url.substitute_version(a, ver)` for any a in archive_urls,
prefer it and don't replace it
fixes#13940
* clean up style and a lingering debug import
* ok flake8, you got me
* document reference_package argument
* Update lib/spack/spack/util/web.py
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* try to appease sphinx
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
We can see what is in the bootstrap store with `spack find -b`, and you can clean it with `spack
clean -b`, but we can't do much else with it, and if there are bootstrap issues they can be hard to
debug.
We already have `spack --mock`, which allows you to swap in the mock packages from the command
line. This PR introduces `spack -b` / `spack --bootstrap`, which runs all of spack with
`ensure_bootstrap_configuration()` set. This means that you can run `spack -b find`, `spack -b
install`, `spack -b spec`, etc. to see what *would* happen with bootstrap configuration, to remove
specific bootstrap packages, etc. This will hopefully make developers' lives easier as they deal
with bootstrap packages.
This PR also uses a `nullcontext` context manager. `nullcontext` has been implemented in several
other places in Spack, and this PR consolidates them to `llnl.util.lang`, with a note that we can
delete the function if we ever reqyire a new enough Python.
- [x] introduce `spack --bootstrap` option
- [x] consolidated all `nullcontext` usages to `llnl.util.lang`
Some "concrete" versions on the command line, e.g. `qt@5` are really
meant to satisfy some actual concrete version from a package. We should
only assume the user is introducing a new, unknown version on the CLI
if we, well, don't know of any version that satisfies the user's
request. So, if we know about `5.11.1` and `5.11.3` and they ask for
`5.11.2`, we'd ask the solver to consider `5.11.2` as a solution. If
they just ask for `5`, though, `5.11.1` or `5.11.3` are fine solutions,
as they satisfy `@5`, so use them.
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
See https://github.com/spack/spack/issues/25353#issuecomment-1041868116
This commit changes the default behavior of
```
$ spack external find
```
from searching all the possible packages Spack knows about to
search only for the ones tagged as being a "build-tool".
It also introduces a `--all` option to restore the old behavior.
Prefer `sw_vers` to `platform.mac_ver`. In anaconda3 installation, for example, the latter reports 10.16 on Monterey -- I think this is affected by how and where the python instance was built.
Use MACOSX_DEPLOYMENT_TARGET if present to override the operating system choice.
It will be useful for metrics gathering and possibly debugging to
have this environment variable available in the runner pods that
do the actual rebuilds.
Since Spack does not install external packages, this commit skips them by
default when running stand-alone tests. The assumption is that such packages
have likely undergone an acceptance test process.
However, the tests can be run against installed externals using
```
% spack test run --externals ...
```
fixes#28260
Since we iterate over different variants from many packages, the variant
values may have types which are not comparable, which causes errors
at runtime. This is not a real issue though, since we don't need the facts
to be ordered. Thus, to avoid needless sorting, the sorted function has
been removed and a comment has been added to tip any developer that
might need to inspect these clauses for debugging to add back sorting
on the first two items only.
It's kind of difficult to add a test for this, since the error depends on
whether Python sorting algorithm ever needs to compare the third
value of a tuple being ordered.
* extensions: allow multiple "extends" directives
This will allow multiple extends directives in a package as long as only one of
them is selected as a dependency in the concrete spec.
* document the option to have multiple extends
Reuse previously was a very invasive change that required parameters to be added to all
the methods that called `concretize()` on a `Spec` object. With the addition of
concretizer configuration, we can use the config system to simplify this argument
passing and keep the code cleaner.
We decided that concretizer config options should be read at `Solver` instantiation
time, and if config changes between instnatiation of a particular solver and
`solve()` invocation, the `Solver` should use the settings from `__init__()`.
- [x] remove `reuse` keyword argument from most concretize functions
- [x] refactor usages to use `spack.config.override("concretizer:reuse", True)`
- [x] rework argument passing in `Solver` so that parameters are set from config
at instantiation time
`--reuse` was previously handled individually by each command that
needed it. We are growing more concretization options, and they'll
need their own section for commands that support them.
Now there are two concretization options:
* `--reuse`: Attempt to reuse packages from installs and buildcaches.
* `--fresh`: Opposite of reuse -- traditional spack install.
To handle thes, this PR adds a `ConfigSetAction` for `argparse`, so
that you can write argparse code like this:
```
subgroup.add_argument(
'--reuse', action=ConfigSetAction, dest="concretizer:reuse",
const=True, default=None,
help='reuse installed dependencies/buildcaches when possible'
)
```
With this, you don't need to add logic to pull the argument out and
handle it; the `ConfigSetAction` just does it for you. This can probably
be used to clean up some other commands later, as well.
Code that was previously passing `reuse=True` around everywhere has
been refactored to use config, and config is set from the CLI using
a new `add_concretizer_args()` function in `spack.cmd.common.arguments`.
- [x] Add `ConfigSetAction` to simplify concretizer config on the CLI
- [x] Refactor code so that it does not pass `reuse=True` to every function.
- [x] Refactor commands to use `add_concretizer_args()` and to pass
concretizer config using the config system.
Config scopes were different for `config` and `mutable_config`,
and `mutable_config` did not have a command line scope.
- [x] Fix by consolidating the creation logic for the two fixtures.
The concretizer is going to grow to have many more configuration,
and we really need some structured config for that.
* We have the `config:concretizer` option that chooses the solver,
but extending that is awkward (we'd need to replace a string with
a `dict`) and the solver choice will be deprecated eventually.
* We have the `concretization` option in environments, but it's
not a top-level config section -- it's just for environments,
and it also only admits a string right now.
To avoid overlapping with either of these and to allow the most
extensibility in the future, this adds a new `concretizer` config
section that can be used in and outside of environments. There
is only one option right now: `reuse`. This can expand to include
other options later.
Likely, we will soon deprecate `config:concretizer` and warn when
the user doesn't use `clingo`, and we will eventually (sometime later)
move the `together` / `separately` options from `concretization` into
the top-level `concretizer` section.
This commit just adds the new section and schema. Fully wiring it
up is TBD.
The solver has a lot of configuration associated with it. Rather
than adding arguments to everything, we should encapsulate that
in a class. This is the start of that work; it replaces `solve()`
and its kwargs with a class and properties.
* Add 'stable' to the list of infinity version names.
Rename libunwind 1.5-head to 1.5-stable.
* Add stable to the infinite version list in packaging_guide.rst.
* core: Make platform environment an instance not class method
In preparation for accessing data constructed in __init__.
* macos: set consistent macosx deployment target
This should silence numerous warnings from mixed gcc/macos toolchains.
* perl: prevent too-new deployment target version
```
*** Unexpected MACOSX_DEPLOYMENT_TARGET=11
***
*** Please either set it to a valid macOS version number (e.g., 10.15) or to empty.
```
* Stylin'
* Add deployment target overrides to failing autoconf packages
* Move configure workaround to base autoconf package
This reverts commit 3c119eaf8b4fb37c943d503beacf5ad2aa513d4c.
* Stylin'
* macos: add utility functions for SDK
These aren't yet used but should probably be added to spack debug
report.
* Remove node_target_satisfies/3 in favor of target_satisfies/2
When emitting input facts we don't need to couple target with
packages, but we can emit fewer facts independently and let
the grounder combine them.
* Remove compiler_version_satisfies/4 in favor of compiler_version_satisfies/3
When emitting input facts we don't need to couple compilers with
packages, but we can emit fewer facts independently and let
the grounder combine them.
* Introduce heuristic in the ASP-program
With heuristic we can drive clingo to make better
initial guesses, which lead to fewer choices and
conflicts in the overall solve
* Fix reindex with uninstalled deps
When a prefix of a dep is removed, and the db is reindexed, it is added
through the dependent, but until now it incorrectly listed the spec as
'installed'.
There was also some questionable behavior in the db when the same spec
was added multiple times, it would always be marked installed.
* Always reserve path
* Only add installed spec's prefixes to install prefixes set
* Improve warning, and ensure ensure only ensures
* test: reindex with every file system remnant removed except for the old index; it should give a database with nothing installed, including records with installed==False,external==False,ref_count==0,explicit=True, and these should be removable from the database
* stacks: add regression tests for matrix expansion
* Use constrain semantics to construct spec lists for stacks
* Fix semantics for constraining an anonymous spec. Add tests
* Add sticky variants
* Add unit tests for sticky variants
* Add documentation for sticky variants
* Revert "Revert 19736 because conflicts are avoided by clingo by default (#26721)"
This reverts commit 33ef7d57c1.
* Add stickiness to "allow-unsupported-compiler"
`spack license update-copyright-year` was updating license headers but not the MIT
license file. Make it do that and add a test.
Also simplify the way we bump the latest copyright year so that we only need to
update it in one place.
* Use pip to bootstrap pip
* Bootstrap wheel from source
* Update PythonPackage to install using pip
* Update several packages
* Add wheel as base class dep
* Build phase no longer exists
* Add py-poetry package, fix py-flit-core bootstrapping
* Fix isort build
* Clean up many more packages
* Remove unused import
* Fix unit tests
* Don't directly run setup.py
* Typo fix
* Remove unused imports
* Fix issues caught by CI
* Remove custom setup.py file handling
* Use PythonPackage for installing wheels
* Remove custom phases in PythonPackages
* Remove <phase>_args methods
* Remove unused import
* Fix various packages
* Try to test Python packages directly in CI
* Actually run the pipeline
* Fix more packages
* Fix mappings, fix packages
* Fix dep version
* Work around bug in concretizer
* Various concretization fixes
* Fix gitlab yaml, packages
* Fix typo in gitlab yaml
* Skip more packages that fail to concretize
* Fix? jupyter ecosystem concretization issues
* Solve Jupyter concretization issues
* Prevent duplicate entries in PYTHONPATH
* Skip fenics-dolfinx
* Build fewer Python packages
* Fix missing npm dep
* Specify image
* More package fixes
* Add backends for every from-source package
* Fix version arg
* Remove GitLab CI stuff, add py-installer package
* Remove test deps, re-add install_options
* Function declaration syntax fix
* More build fixes
* Update spack create template
* Update PythonPackage documentation
* Fix documentation build
* Fix unit tests
* Remove pip flag added only in newer pip
* flux: add explicit dependency on jsonschema
* Update packages that have been added since this was branched off of develop
* Move Python 2 deprecation to a separate PR
* py-neurolab: add build dep on py-setuptools
* Use wheels for pip/wheel
* Allow use of pre-installed pip for external Python
* pip -> python -m pip
* Use python -m pip for all packages
* Fix py-wrapt
* Add both platlib and purelib to PYTHONPATH
* py-pyyaml: setuptools is needed for all versions
* py-pyyaml: link flags aren't needed
* Appease spack audit packages
* Some build backend is required for all versions, distutils -> setuptools
* Correctly handle different setup.py filename
* Use wheels for py-tomli to avoid circular dep on py-flit-core
* Fix busco installation procedure
* Clarify things in spack create template
* Test other Python build backends
* Undo changes to busco
* Various fixes
* Don't test other backends
When `spack compiler list` is run without being restricted to a
particular scope, and no compilers are found, say that none are
available, and hint that the use should run spack compiler find to
auto detect compilers.
* Improve docs
* Check if stdin is a tty
* add a test
Many packages implement logic at the class level to handle complex dependencies and
conflicts. Others have started using `with when("@1.0"):` blocks since we added that
capability. The loops and other control logic can cause some pure directive logic not to
be removed by our package hashing logic -- and in many cases that's a lot of code that
will cause unnecessary rebuilds.
This commit changes the unparser so that it will descend into these blocks. Specifically:
1. Descend into loops, if statements, and with blocks at the class level.
2. Don't look inside function definitions (in or outside a class).
3. Don't look at nested class definitions (they don't have directives)
4. Add logic to *remove* empty loops/with blocks/if statements if all directives
in them were removed.
This allows our package hash to ignore a lot of pure metadata that it was not ignoring
before, and makes it less sensitive.
In addition, we add `maintainers` and `tags` to the list of metadata attributes that
Spack should remove from packages when constructing canonoical source for a package
hash.
- [x] Make unparser handle if/for/while/with at class level.
- [x] Add tests for control logic removal.
- [x] Add a test to ensure that all packages are not only unparseable, but also
that their canonical source is still compilable. This is a test for
our control logic removal.
- [x] Add another unparse test package that has complex logic.
These are the unit tests from astunparse, converted to pytest, with a few backports from
upstream cpython. These should hopefully keep `unparser.py` well covered as we change it.
We can't tell `print(a, b, c)` and `print((a, b, c))` apart -- both of these expressions
generate different ASTs in Python 2 and Python 3. However, we can decide that we don't
care. This commit treats both of them the same when `py_ver_consistent` is set with
`unparse()`.
This means that the package hash won't notice changes from printing a tuple to printing
multiple values, but we don't care, because this is extremely unlikely to affect the build.
More than likely this is just an error message for the user of the package.
- [x] treat `print(a, b, c)` and `print((a, b, c))` the same in py2 and py3
- [x] add another package parsing test -- legion -- that exercises this feature
To make it easier to see how package hashes change and how they are computed, add two
commands:
* `spack pkg source <spec>`: dumps source code for a package to the terminal
* `spack pkg source --canonical <spec>`: dumps canonicalized source code for a
package to the terminal. It strips comments, directives, and known-unused
multimethods from the package. It is used to generate package hashes.
* `spack pkg hash <spec>`: This gives the package hash for a particular spec.
It is generated from the canonical source code for the spec.
- [x] `add spack pkg source` and `spack pkg hash`
- [x] add tests
- [x] fix bug in multimethod resolution with boolean `@when` values
Co-authored-by: Greg Becker <becker33@llnl.gov>
We are planning to switch to using full hashes for Spack specs, which means that the
package hash will be included in the deployment descriptor. This means we need a more
robust package hash than simply dumping the `repr` of the AST.
The AST repr that we previously used for package content is unreliable because it can
vary between python versions (Python's AST actually changes fairly frequently).
- [x] change `package_hash`, `package_ast`, and `canonical_source` to accept a string for
alternate source instead of a filename.
- [x] consolidate package hash tests in `test/util/package_hash.py`.
- [x] remove old `package_content` method.
- [x] make `package_hash` do what `canonical_source_hash` was doing before.
- [x] modify `content_hash` in `package.py` to use the new `package_hash` function.
Co-authored-by: Danny McClanahan <1305167+cosmicexplorer@users.noreply.github.com>
Our package hash is supposed to be consistent from python version to python version.
Test this by adding some known unparse inputs and ensuring that they always have the
same canonical hash. This test relies on the fact that we run Spack's unit tests
across many python versions. We can't compute for several python versions within the
same test run so we precompute the hashes and check them in CI.
Package hashing was not properly handling multimethods. In particular, it was removing
any functions that had decorators from the output, so we'd miss things like
`@run_after("install")`, etc.
There were also problems with handling multiple `@when`'s in a single file, and with
handling `@when` functions that *had* to be evaluated dynamically.
- [x] Rework static `@when` resolution for package hash
- [x] Ensure that functions with decorators are not removed from output
- [x] Add tests for many different @when scenarios (multiple @when's,
combining with other decorators, default/no default, etc.)
Co-authored-by: Danny McClanahan <1305167+cosmicexplorer@users.noreply.github.com>
Previously we used `directives.__all__` to get directive names, but it wasn't
quite right -- it included `DirectiveMeta`, etc. It's not wrong, but it's also
not the clearest way to do this.
- [x] Refactor `@directive` to track names in `directive_names` global
- [x] Rename `_directive_names` to `_directive_dict_names` in `DirectiveMeta`
- [x] Add a test for `RemoveDirectives`
Co-authored-by: Danny McClanahan <1305167+cosmicexplorer@users.noreply.github.com>
Some packages use top-level unassigned strings instead of comments, either just after a
docstring on in the body somewhere else. Ignore those strings becasue they have no
effect on package behavior.
- [x] adjust RemoveDocstrings to remove all free-standing strings.
- [x] move tests for util/package_hash.py to test/util/package_hash.py
Co-authored-by: Danny McClanahan <1305167+cosmicexplorer@users.noreply.github.com>
Python 2 and 3 represent string literals differently in the AST. Python 2 requires '\x'
literals, and Python 3 source is always unicode, and allows unicode to be written
directly. These also unparse differently by default.
- [x] modify unparser to write both out the way `repr` would in Python 2 when
`py_ver_consistent` is provided.
Backport operator precedence algorithm from here:
397b96f6d7
This eliminates unnecessary parentheses from our unparsed output and makes Spack's unparser
consistent with the one in upstream Python 3.9+, with one exception.
Our parser normalizes argument order when `py_ver_consistent` is set, so that star arguments
in function calls come last. We have to do this because Python 2's AST doesn't have information
about their actual order.
If we ever support only Python 3.9 and higher, we can easily switch over to `ast.unparse`, as
the unparsing is consistent except for this detail (modulo future changes to `ast.unparse`)
Previously, there were differences in the unparsed code for Python 2.7 and for 3.5-3.10.
This makes unparsed code the same across these Python versions by:
1. Ensuring there are no spaces between unary operators and
their operands.
2. Ensuring that *args and **kwargs are always the last arguments,
regardless of the python version.
3. Always unparsing print as a function.
4. Not putting an extra comma after Python 2 class definitions.
Without these changes, the same source can generate different code for different
Python versions, depending on subtle AST differences.
One place where single source will generate an inconsistent AST is with
multi-argument print statements, e.g.:
```
print("foo", "bar", "baz")
```
In Python 2, this prints a tuple; in Python 3, it is the print function with
multiple arguments. Use `from __future__ import print_function` to avoid
this inconsistency.
Add `astunparse` as `spack_astunparse`. This library unparses Python ASTs and we're
adding it under our own name so that we can make modifications to it.
Ultimately this will be used to make `package_hash` consistent across Python versions.
* Python: set default config_vars
* Add missing commas
* dso_suffix not present for some reason
* Remove use of default_site_packages_dir
* Use config_vars during bootstrapping too
* Catch more errors
* Fix unit tests
* Catch more errors
* Update docstring
This reports the kernel version (vs. the distro version) on Linux and
returns a valid Version (stripping characters like '+' which may be
present for custom-built kernels).
Add a new check to `spack audit` to scan and verify that version constraints may be satisfied
Modifications:
- [x] Add a new check to `spack audit` to scan and verify that version constraints may be satisfied by some version declared in the built-in repository
- [x] Fix issues found by CI
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This command pokes the environment, Python interpreter
and bootstrap store to check if dependencies needed by
Spack are available.
If any are missing, it shows a comprehensible message.
* locks: allow locks to work under high contention
This is a bug found by Harshitha Menon.
The `lock=None` line shouldn't be a release but should be
```
return (lock_type, None)
```
to inform the caller it couldn't get the lock type requested without
disturbing the existing lock object in the database. There were also a
couple of bugs due to taking write locks at the beginning without any
checking or release, and not releasing read locks before requeueing.
This version no longer gives me read upgrade to write errors, even
running 200 instances on one box.
* Change lock in check_deps_status to read, release if not installed,
not sure why this was ever write, but read definitely is more
appropriate here, and the read lock is only held out of the scope if
the package is installed.
* Release read lock before requeueing to reduce chance of livelock, the
timeout that caused the original issue now happens in roughly 3 of 200
workers instead of 199 on average.
With this commit:
```
$ spack env activate --temp
$ spack install zlib
==> All of the packages are already installed
==> Updating view at /tmp/spack-faiirgmt/.spack-env/view
$ spack install zlib
==> All of the packages are already installed
```
Before this PR:
```
$ spack env activate --temp
$ spack install zlib
==> All of the packages are already installed
$ spack install zlib
==> All of the packages are already installed
```
No view was generated
This commit introduces the command
spack module tcl setdefault <package>
similar to the one already available for lmod
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
When running `spack install --log-format junit|cdash ...`, install
errors were ignored. This made spack continue building dependents of
failed install, ignoring `--fail-fast`, and exit 0 at the end.
* locks: allow locks to work under high contention
This is a bug found by Harshitha Menon.
The `lock=None` line shouldn't be a release but should be
```
return (lock_type, None)
```
to inform the caller it couldn't get the lock type requested without
disturbing the existing lock object in the database. There were also a
couple of bugs due to taking write locks at the beginning without any
checking or release, and not releasing read locks before requeueing.
This version no longer gives me read upgrade to write errors, even
running 200 instances on one box.
* Change lock in check_deps_status to read, release if not installed,
not sure why this was ever write, but read definitely is more
appropriate here, and the read lock is only held out of the scope if
the package is installed.
* Release read lock before requeueing to reduce chance of livelock, the
timeout that caused the original issue now happens in roughly 3 of 200
workers instead of 199 on average.
Fixes#27652
Ensure that mirror's to_dict function returns a syaml_dict object for all code
paths.
Switch to using the .get function for accessing the potential information from
the S3 mirror objects. If the key is not there, it will gracefully return
None instead of failing with a KeyError
Additionally, check that the connection object is a dictionary before trying
to "get" from it.
Add a test for the capturing of the new S3 information.
With this commit:
```
$ spack env activate --temp
$ spack install zlib
==> All of the packages are already installed
==> Updating view at /tmp/spack-faiirgmt/.spack-env/view
$ spack install zlib
==> All of the packages are already installed
```
Before this PR:
```
$ spack env activate --temp
$ spack install zlib
==> All of the packages are already installed
$ spack install zlib
==> All of the packages are already installed
```
No view was generated
Updates to installer.py did not account for spack monitor, so as currently implemented
there are three cases of failure that spack monitor will not account for. To fix this we add additional
hooks, including an on cancel and also do a custom action on concretization fail.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
The latest version of `jsonschema` fails if we're not specific about which schema draft
specification we're using. Update all of them to use the latest one (draft-07).
Our `jsonschema` external won't support Python 3.10, so we need to upgrade it.
It currently generates this warning:
lib/spack/external/jsonschema/compat.py:6: DeprecationWarning: Using or importing the ABCs
from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and
in 3.10 it will stop working
This upgrades `jsonschema` to 3.2.0, the latest version with support for Python 2.7. The next
version after this (4.0.0) drops support for 2.7 and 3.6, so we'll have to wait to upgrade to it.
Dependencies have been added in prior commits.
spack monitor now requires authentication as each build must be associated
with a user, so it does not make sense to allow the --monitor-no-auth flag
and this commit will remove it
This commit introduces the command
spack module tcl setdefault <package>
similar to the one already available for lmod
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
This PR also slightly changes the behavior in ci_rebuild().
We now still attempt to submit `spack install` results to CDash
even if the initial registration failed due to connection issues.
This commit follows in the spirit of #24299. We do not want `spack install`
to exit with a non-zero status when something goes wrong while attempting to
report results to CDash.
This PR is meant to move code with "business logic" from `spack.cmd.buildcache` to appropriate core modules[^1].
Modifications:
- [x] Add `spack.binary_distribution.push` to create a binary package from a spec and push it to a mirror
- [x] Add `spack.binary_distribution.install_root_node` to install only the root node of a concrete spec from a buildcache (may check the sha256 sum if it is passed in as input)
- [x] Add `spack.binary_distribution.install_single_spec` to install a single concrete spec from a buildcache
- [x] Add `spack.binary_distribution.download_single_spec` to download a single concrete spec from a buildcache to a local destination
- [x] Add `Spec.from_specfile` that construct a spec given the path of a JSON or YAML spec file
- [x] Removed logic from `spack.cmd.buildcache`
- [x] Removed calls to `spack.cmd.buildcache` in `spack.bootstrap`
- [x] Deprecate `spack buildcache copy` with a message that says it will be removed in v0.19.0
[^1]: The rationale is that commands should be lightweight wrappers of the core API, since that helps with both testing and scripting (easier mocking and no need to invoke `SpackCommand`s in a script).
After this PR an error in a single package while detecting
external software won't abort the entire procedure.
The error is reported to screen as a warning.
Remove a try/catch for an error with no handling. If the affected
code doesn't execute successfully, then the associated variable
is undefined and another (more-obscure) error occurs shortly after.
Remove a custom bootstrapping procedure to
use spack.bootstrap instead
Modifications:
* Reference count the bootstrap context manager
* Avoid SpackCommand to make the bootstrapping
procedure more transparent
* Put back requirement on patchelf being in PATH for unit tests
* Add an e2e test to check bootstrapping patchelf
I think this test should be removed, but when it stays, it should at
least follow the symlink, cause it fails for me if I let spack build
patchelf and have a symlink in a view.
Modifications:
- [x] Removed `centos:6` unit test, adjusted vermin checks
- [x] Removed backport of `collections.OrderedDict`
- [x] Removed backport of `functools.total_ordering`
- [x] Removed Python 2.6 specific skip markers in unit tests
- [x] Fixed a few minor Python 2.6 related TODOs in code
Updating the vendored dependencies will be done in separate PRs
* Make CUDA and ROCm architecture conditional
fixes#14337
The variant to specify which architecture to use
for CUDA and ROCm are now conditional on +cuda and
+rocm respectively.
* cp2k: make all CUDA related variants conditional on +cuda
* Add connection specification to mirror creation
This allows each mirror to contain information about the credentials
used to access it.
Update command and tests based on comments
Switch to only "long form" flags for the s3 connection information.
Use the "any" function instead of checking for an empty list when looking
for s3 connection information.
Split test to use the access token separately from the access id and key.
Use long flag form in test.
Add endpoint_url to available S3 options.
Extend the special parameters for an S3 mirror to accept the
endpoint_url parameter.
Add a test.
* Add connection information per URL not per mirror
Expand the mirror-based connection information to be per-URL.
This will allow a user to specify different S3 connection information
for both the fetch and the push URLs.
Add a parameter for "profile", another way of storing the id/secret pair.
* Switch from "access_profile" to "profile"
Remove the "get_executable" function from the
spack.bootstrap module. Now "flake8", "isort",
"mypy" and "black" will use the same
bootstrapping method as GnuPG.
Currently Spack vendors `pytest` at a version which is three major
versions behind the latest (3.2.5 vs. 6.2.4). We do that since v3.2.5
is the latest version supporting Python 2.6. Remaining so much
behind the currently supported versions though might introduce
some incompatibilities and is surely a technical debt.
This PR modifies Spack to:
- Use the vendored `pytest@3.2.5` only as a fallback solution,
if the Python interpreter used for Spack doesn't provide a newer one
- Be able to parse `pytest --collect-only` in all the different output
formats from v3.2.5 to v6.2.4 and use it consistently for `spack unit-test --list-*`
- Updating the unit tests in Github Actions to use a more recent `pytest` version
This type of error is skipped:
make[1]: *** [Makefile:222: /tmp/user/spack-stage/.../spack-src/usr/lib/julia/libopenblas64_.so.so] Error 1
but it's useful to have it, especially when a package sets a variable
incorrectly in makefiles
Intel mpi comes with an installation of libfabric (which it needs as a
dependency). It can use other implementations of libfabric at runtime
though, so if you install a package that depends on `mpi` and
`libfabric`, you can specify `intel-mpi+external-libfabric` and ensure
that the Spack-built instance is used (both by `intel-mpi` and the
root).
Apply analogous change to intel-oneapi-mpi.
When running `spack install --log-format junit|cdash ...`, install
errors were ignored. This made spack continue building dependents of
failed install, ignoring `--fail-fast`, and exit 0 at the end.
* Python tests: allow importing weirdly-named modules
e.g. with dashes in name
* SIP tests: allow importing weirdly-named modules
* Skip modules with invalid names
* Changes from review
* Update from review
* Update from review
* Cleanup
* Prevent additional properties to be in the answer set when reusing specs
fixes#27237
The mechanism to reuse concrete specs relies on imposing
the set of constraints stemming from the concrete spec
being reused.
We also need to prevent that other constraints get added
to this set.
See #25249 and https://github.com/spack/spack/pull/27159#issuecomment-958163679.
This adds `spack load --list` as an alias for `spack find --loaded`. The new command is
not as powerful as `spack find --loaded`, as you can't combine it with all the queries or
formats that `spack find` provides. However, it is more intuitively located in the command
structure in that it appears in the output of `spack load --help`.
The idea here is that people can use `spack load --list` for simple stuff but fall back to
`spack find --loaded` if they need more.
- add help to `spack load --list` that references `spack find`
- factor some parts of `spack find` out to be called from `spack load`
- add shell tests
- update docs
Co-authored-by: Peter Josef Scheibel <scheibel1@llnl.gov>
Co-authored-by: Richarda Butler <39577672+RikkiButler20@users.noreply.github.com>
Reformulate variant rules so that we minimize both
1. The number of non-default values being used
2. The number of default values not-being used
This is crucial for MV variants where we may have
more than one default value
In our tests, we use concrete specs generated from mock packages,
which *only* occur as inputs to the solver. This fixes two problems:
1. We weren't previously adding facts to encode the necessary
`depends_on()` relationships, and specs were unsatisfiable on
reachability.
2. Our hash lookup for reconstructing the DAG does not
consider that a hash may have come from the inputs.
Concrete specs that are already installed or that come from a buildcache
may have compilers and variant settings that we do not recognize, but that
shouldn't prevent reuse (at least not until we have a more detailed compiler
model).
- [x] make sure compiler and variant consistency rules only apply to
built specs
- [x] don't validate concrete specs on input, either -- they're concrete
and we shouldn't apply today's rules to yesterday's build
In switching to hash facts for concrete specs, we lost the transitive facts
from dependencies. This was fine for solves, because they were implied by
the imposed constraints from every hash. However, for `spack diff`, we want
to see what the hashes mean, so we need another mode for `spec_clauses()` to
show that.
This adds a `expand_hashes` argument to `spec_clauses()` that allows us to
output *both* the hashes and their implications on dependencies. We use
this mode in `spack diff`.
- [x] Get rid of forgotten maximize directive.
- [x] Simplify variant handling
- [x] Fix bug in treatment of defaults on externals (don't count
non-default variants on externals against them)
Variants in concrete specs are "always" correct -- or at least we assume
them to be b/c they were concretized before. Their variants need not match
the current version of the package.
Multi-valued variants previously maximized default values to handle
cases where the default contained two values, e.g.:
variant("foo", default="bar,baz")
This is because previously we were minimizing non-default values, and
`foo=bar`, `foo=baz`, and `foo=bar,baz` all had the same score, as
none of them had any "non-default" values.
This commit changes the approach and considers a non-default value
to be either a value set to something not default *or* the absence
of a default value from the set value. This allows multi- and
single-valued variants to be handled the same way, with the same
minimization criterion. It alse means that the "best" value for every
optimization criterion is now zero, which allows us to make useful
assumptions about the optimization criteria.
Minimizing builds is tricky. We want a minimizing criterion because
we want to reuse the avaialble installs, but we also want things that
have to be built to stick to *default preferences* from the package
and from the user. We therefore treat built specs differently and
apply a different set of optimization criteria to them. Spack's *first*
priority is to reuse what it can, but if it builds something, the built
specs will respect defaults and preferences.
This is implemented by bumping the priority of optimization criteria
for built specs -- so that they take precedence over the otherwise
topmost-priority criterion to reuse what is installed.
The scheme relies on all of our optimization criteria being minimizations.
That is, we need the case where all specs are reused to be better than
any built spec could be. Basically, if nothing is built, all the build
criteria are zero (the best possible) and the number of built packages
dominates. If something *has* to be built, it must be strictly worse
than full reuse, because:
1. it increases the number of built specs
2. it must have either zero or some positive number for all criteria
Our optimziation criteria effectively sum into two buckets at once to
accomplish this. We use a `build_priority()` number to shift the
priority of optimization criteria for built specs higher.
The constraints in the `spack diff` test were very specific and assumed
a lot about the structure of what was being diffed. Relax them a bit to
make them more resilient to changes.
Make the first minimization conditional on whether `--reuse` is enabled in the solve.
If `--reuse` is not enabled, there will be nothing in the set to minimize and the
objective function (for this criterion) will be 0 for every answer set.
Many of the integrity constraints in the concretizer are there to restrict how solves are done, but
they ignore that past solves may have had different initial conditions. For example, for things
we're building, we want the allowed variants to be restricted to those currently in Spack packages,
but if we are reusing a concrete spec, we need to be flexible about names that may have existed in
old packages.
Similarly, restrictions around compatibility of OS's, compiler versions, compiler OS support, etc.
are really only about what is supported by the *current* set of compilers/build tools known to
Spack, not about what we may get from concrete specs.
- [x] restrict certain integrity constraints to only apply to packages that we need to build, and
omit concrete specs from consideration.
The OS logic in the concretizer is still the way it was in the first version.
Defaults are implemented in a fairly inflexible way using straight logic. Most
of the other sections have been reworked to leave these kinds of decisions to
optimization. This commit does that for OS's as well.
As with targets, we optimize for target matches. We also try to optimize for
OS matches between nodes. Additionally, this commit adds the notion of
"OS compatibility" where we allow for builds to depend on binaries for certain
other OS's. e.g, for macos, a bigsur build can depend on an already installed
(concrete) catalina build. One cool thing about this is that we can declare
additional compatible OS's later, e.g. CentOS and RHEL.
If we don't rename Spack will fail with:
```
ImportError: cannot bootstrap the "clingo" Python module from spec "clingo-bootstrap@spack+python %gcc target=x86_64" due to the following failures:
'spack-install' raised ValueError: Invalid config scope: 'bootstrap'. Must be one of odict_keys(['_builtin', 'defaults', 'defaults/cray', 'bootstrap/cray', 'disable_modules', 'overrides-0'])
Please run `spack -d spec zlib` for more verbose error messages
```
in case bootstrapping from binaries fails and we are
falling back to bootstrapping from sources.
A common question from users has been how to model variants
that are new in new versions of a package, or variants that are
dependent on other variants. Our stock answer so far has been
an unsatisfying combination of "just have it do nothing in the old
version" and "tell Spack it conflicts".
This PR enables conditional variants, on any spec condition. The
syntax is straightforward, and matches that of previous features.
* GnuPG: allow bootstrapping from buildcache and sources
* Add a test to bootstrap GnuPG from binaries
* Disable bootstrapping in tests
* Add e2e test to bootstrap GnuPG from sources on Ubuntu
* Add e2e test to bootstrap GnuPG on macOS
This PR adds error message sentinels to the clingo solve, attached to each of the rules that could fail a solve. The unsat core is then restricted to these messages, which makes the minimization problem tractable. Errors that can only be generated by a bug in the logic program or generating code are prefaced with "Internal error" to make clear to users that something has gone wrong on the Spack side of things.
* minimize unsat cores manually
* only errors messages are choices/assumptions for performance
* pre-check for unreachable nodes
* update tests for new error message
* make clingo concretization errors show up in cdash reports fully
* clingo: make import of clingo.ast parsing routines robust to clingo version
Older `clingo` has `parse_string`; newer `clingo` has `parse_files`. Make the
code work wtih both.
* make AST access functions backward-compatible with clingo 5.4.0
Clingo AST API has changed since 5.4.0; make some functions to help us
handle both versions of the AST.
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
After #26608 I got a report about missing rpaths when building a
downstream package independently using a spack-installed toolchain
(@tmdelellis). This occurred because the spack-installed libraries were
being linked into the downstream app, but the rpaths were not being
manually added. Prior to #26608 autotools-installed libs would retain
their hard-coded path and would thus propagate their link information
into the downstream library on mac.
We could solve this problem *if* the mac linker (ld) respected
`LD_RUN_PATH` like it does on GNU systems, i.e. adding `rpath` entries
to each item in the environment variable. However on mac we would have
to manually add rpaths either using spack's compiler wrapper scripts or
manually (e.g. using `CMAKE_BUILD_RPATH` and pointing to the libraries of
all the autotools-installed spack libraries).
The easier and safer thing to do for now is to simply stop changing the
dylib IDs.
The `--generic` argument allows printing the best generic target for the
current machine. This can be quite handy when wanting to find the
generic architecture to use when building a shared software stack for
multiple machines.
This PR adds a "spack tags" command to output package tags or
(available) packages with those tags. It also ensures each package
is listed in the tag cache ONLY ONCE per tag.
- [x] Allow dding enumerated types and types whose default value is forbidden by the schema
- [x] Add a test for using enumerated types in the tests for `spack config add`
- [x] Make `config add` tests use the `mutable_config` fixture so they do not
affect other tests
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
If you don't format `spack.yaml` correctly, `spack config edit` still fails and
you have to edit your `spack.yaml` manually.
- [x] Add some code to `_main()` to defer `ConfigFormatError` when loading the
environment, until we know what command is being run.
- [x] Make `spack config edit` use `SPACK_ENV` instead of the config scope
object to find `spack.yaml`, so it can work even if the environment is bad.
Co-authored-by: scheibelp <scheibel1@llnl.gov>
`spack config get <section>` was erroneously returning just the `spack.yaml`
for the environment.
It should return the combined configuration for that section (including
anything from `spack.yaml`), even in an environment.
- [x] reorder conditions in `cmd/config.py` to fix
`spack --debug config edit` was not working properly -- it would not do show a
stack trace for configuration errors.
- [x] Rework `_main()` and add some notes for maintainers on where things need
to go for configuration to work properly.
- [x] Move config setup to *after* command-line parsing is done.
Co-authored-by: scheibelp <scheibel1@llnl.gov>
`main()` has grown, and in some cases code that can generate errors has gotten
outside the top-level try/catch in there. This means that simple errors like
config issues give you large stack traces, which shouldn't happen without
`--debug`.
- [x] Split `main()` into `main()` for the top-level error handling and
`_main()` with all logic.
There were some loose ends left in ##26735 that cause errors when
using `SPACK_DISABLE_LOCAL_CONFIG`.
- [x] Fix hard-coded `~/.spack` references in `install_test.py` and `monitor.py`
Also, if `SPACK_DISABLE_LOCAL_CONFIG` is used, there is the issue that
`$user_config_path`, when used in configuration files, makes no sense,
because there is no user config scope.
Since we already have `$user_cache_path` in configuration files, and since there
really shouldn't be *any* data stored in a configuration scope (which is what
you'd configure in `config.yaml`/`bootstrap.yaml`/etc., this just removes
`$user_config_path`.
There will *always* be a `$user_cache_path`, as Spack needs to write files, but
we shouldn't rely on the existence of a particular configuration scope in the
Spack code, as scopes are configurable, both in number and location.
- [x] Remove `$user_config_path` substitution.
- [x] Fix reference to `$user_config_path` in `etc/spack/deaults/bootstrap.yaml`
to refer to `$user_cache_path`, which is where it was intended to be.
* Deactivate previous env before activating new one
Currently on develop you can run `spack env activate` multiple times to switch
between environments, but they leave traces, even though Spack only supports
one active environment at a time.
Currently:
```console
$ spack env create a
$ spack env create b
$ spack env activate -p a
[a] $ spack env activate -p b
[b] [a] $ spack env activate -p b
[a] [b] [a] $ spack env activate -p a
[a] [b] [c] $ echo $MANPATH | tr ":" "\n"
/path/to/environments/a/.spack-env/view/share/man
/path/to/environments/a/.spack-env/view/man
/path/to/environments/b/.spack-env/view/share/man
/path/to/environments/b/.spack-env/view/man
```
This PR fixes that:
```console
$ spack env activate -p a
[a] $ spack env activate -p b
[b] $ spack env activate -p a
[a] $ echo $MANPATH | tr ":" "\n"
/path/to/environments/a/.spack-env/view/share/man
/path/to/environments/a/.spack-env/view/man
```
* Drastically improve YamlFilesystemView file removal via batching
The `remove_file` routine has to check if the file is owned by multiple packages, so it doesn't
remove necessary files. This is done by the `get_all_specs` routine, which walks the entire
package tree. With large numbers of packages on shared file systems, this can take seconds
per file tree traversal, which adds up extremely quickly. For example, a single deactivate
of a largish python package in our software stack on GPFS took approximately 40 minutes.
This patch simply replaces `remove_file` with a batch `remove_files` routine. This routine
removes a list of files rather than a single file, requiring only one traversal per batch. In
practice this means a package can be removed in seconds time, rather than potentially hours,
essentially a ~100x speedup (ignoring initial deactivation logic, which takes about 3 minutes
in our test setup).
* Fix sbang hook for non-writable files
PR #26793 seems to have broken the sbang hook for files with missing
write permissions. Installing perl now breaks with the following error:
```
==> [2021-10-28-12:09:26.832759] Error: PermissionError: [Errno 13] Permission denied: '$SPACK/opt/spack/linux-fedora34-zen2/gcc-11.2.1/perl-5.34.0-afuweplnhphcojcowsc2mb5ngncmczk4/bin/cpanm'
```
Temporarily add write permissions to the original file so it can be
overwritten with the patched one.
And test that file permissions are preserved in sbang even for non-writable files
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
When relocating a binary distribution, Spack only checks files to see
if they are a link that needs to be relocated. Directories can be
such links as well, however, and need to undergo the same checks
and potential relocation.
`spack list` tests are not using mock packages for some reason, and many
are marked as potentially slow. This isn't really necessary; we don't need
6,000 packages to test the command.
- [x] update tests to use `mock_packages` fixture
- [x] remove `maybeslow` annotations
Currently Spack reads full files containing shebangs to memory as
strings, meaning Spack would have to guess their encoding. Currently
Spack has a fixed guess of UTF-8.
This is unnecessary, since e.g. the Linux kernel does not assume an
encoding on paths at all, it's just bytes and some delimiters on the
byte level.
This commit does the following:
1. Shebangs are treated as bytes, so that e.g. latin1 encoded files do
not throw UnicodeEncoding errors, and adds a test for this.
2. No more bytes than necessary are read to memory, we only have to read
until the first newline, and from there on we an copy the file byte by
bytes instead of decoding and re-encoding text.
3. We cap the number of bytes read to 4096, if no newline is found
before that, we don't attempt to patch it.
4. Add support for luajit too.
This should make Spack both more efficient and usable for non-UTF8
files.
Spack's `system` and `user` scopes provide ways for administrators and
users to set global defaults for all Spack instances, but for use cases
where one wants a clean Spack installation, these scopes can be undesirable.
For example, users may want to opt out of global system configuration, or
they may want to ignore their own home directory settings when running in
a continuous integration environment.
Spack also, by default, keeps various caches and user data in `~/.spack`,
but users may want to override these locations.
Spack provides three environment variables that allow you to override or
opt out of configuration locations:
* `SPACK_USER_CONFIG_PATH`: Override the path to use for the
`user` (`~/.spack`) scope.
* `SPACK_SYSTEM_CONFIG_PATH`: Override the path to use for the
`system` (`/etc/spack`) scope.
* `SPACK_DISABLE_LOCAL_CONFIG`: set this environment variable to completely
disable *both* the system and user configuration directories. Spack will
only consider its own defaults and `site` configuration locations.
And one that allows you to move the default cache location:
* `SPACK_USER_CACHE_PATH`: Override the default path to use for user data
(misc_cache, tests, reports, etc.)
With these settings, if you want to isolate Spack in a CI environment, you can do this:
export SPACK_DISABLE_LOCAL_CONFIG=true
export SPACK_USER_CACHE_PATH=/tmp/spack
This is a stop-gap approach until we have figured out how to deal with
the system and user config scopes more generally, as there are plans to
potentially / eventually get rid of them.
**User config**
Spack is a bit of a pain when you have:
- a shared $HOME folder across different systems.
- multiple Spack versions on the same system.
**System config**
- On shared systems with a versioned programming environment / toolkit,
system administrators want to provide config for each version (e.g.
21.09, 21.10) of the programming environment, and the user Spack
instance should be able to pick this up without a steep learning
curve.
- On shared systems the user should be able to opt out of the
hard-coded config scope in /etc/spack, since it may be incompatible
with their particular instance. Currently Spack can only opt out of all
config scopes through overrides with `"config:":`, `"packages:":`, but that
also drops the defaults config, which would have to be repeated, which
is undesirable, especially the lengthy packages.yaml.
An example use case is: having config in this folder:
```
/path/to/programming/environment/{version}/{compilers,packages}.yaml
```
and have `module load spack-system-config` set the variable
```
SPACK_SYSTEM_CONFIG_PATH=/path/to/programming/environment/{version}
```
where the user no longer has to worry about what `{version}` they are
on.
**Continuous integration**
Finally, there is the use case of continuous integration, which may
clone an arbitrary Spack version, which optimally should not pick up
system or user config from the previous run (like may happen in
classical bare metal non-containerized filesystem side effect ridden
jenkins pipelines). In fact this is very similar to how spack itself
tries to avoid picking up system dependencies during builds...
**But environments solve this?**
- You could do `include`s in environment files to get similar behavior
to the spack_system_config_path example, but environments require you
to:
1) require paths to individual config files, not directories.
2) fail if the listed config file does not exist
- They allow you to override config scopes, but this is generally too
rigurous, as it requires you to repeat the default config, in
particular packages.yaml, and just defies the point of layered config.
Co-authored-by: Tom Scogland <tscogland@llnl.gov>
Co-authored-by: Tim Fuller <tjfulle@sandia.gov>
Co-authored-by: Steve Leak <sleak@lbl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Any spec satisfying a default will be symlinked to `default`
If multiple specs have modulefiles in the same directory and satisfy
configured module defaults, then whichever was written last will be
default.
This PR permits to specify the `url` and `ref` of the Spack instance used in a container recipe simply by expanding the YAML schema as outlined in #20442:
```yaml
container:
images:
os: amazonlinux:2
spack:
ref: develop
resolve_sha: true
```
The `resolve_sha` option, if true, verifies the `ref` by cloning the Spack repository in a temporary directory and transforming any tag or branch name to a commit sha. When this new ability is leveraged an additional "bootstrap" stage is added, which builds an image with Spack setup and ready to install software. The Spack repository to be used can be customized with the `url` keyword under `spack`.
Modifications:
- [x] Permit to pin the version of Spack, either by branch or tag or sha
- [x] Added a few new OSes (centos:8, amazonlinux:2, ubuntu:20.04, alpine:3, cuda:11.2.1)
- [x] Permit to print the bootstrap image as a standalone
- [x] Add documentation on the new part of the schema
- [x] Add unit tests for different use cases
1. Currently it prints not just the spec name, but the dependencies +
their variants + their compilers + their architectures + ...
2. It's clear from the context what spec the message applies to, so,
let's not print the spec at all.
These three rules in `concretize.lp` are overly complex:
```prolog
:- not provider(Package, Virtual),
provides_virtual(Package, Virtual),
virtual_node(Virtual).
```
```prolog
:- provides_virtual(Package, V1), provides_virtual(Package, V2), V1 != V2,
provider(Package, V1), not provider(Package, V2),
virtual_node(V1), virtual_node(V2).
```
```prolog
provider(Package, Virtual) :- root(Package), provides_virtual(Package, Virtual).
```
and they can be simplified to just:
```prolog
provider(Package, Virtual) :- node(Package), provides_virtual(Package, Virtual).
```
- [x] simplify virtual rules to just one implication
- [x] rename `provides_virtual` to `virtual_condition_holds`
fixes#26866
This semantics fits with the way Spack currently treats providers of
virtual dependencies. It needs to be revisited when #15569 is reworked
with a new syntax.
* py-vermin: add latest version 1.3.1
* Exclude line from Vermin since version is already being checked for
Vermin 1.3.1 finds that `encoding` kwarg of builtin `open()` requires Python 3+.
The OS should only interpret shebangs, if a file is executable.
Thus, there should be no need to modify files where no execute bit is set.
This solves issues that are e.g. encountered while packaging software as
COVISE (https://github.com/hlrs-vis/covise), which includes example data
in Tecplot format. The sbang post-install hook is applied to every installed
file that starts with the two characters #!, but this fails on the binary Tecplot
files, as they happen to start with #!TDV. Decoding them with UTF-8 fails
and an exception is thrown during post_install.
Co-authored-by: Martin Aumüller <aumuell@reserv.at>
This commit contains changes to support Google Cloud Storage
buckets as mirrors, meant for hosting Spack build-caches. This
feature is beneficial for folks that are running infrastructure on
Google Cloud Platform. On public cloud systems, resources are
ephemeral and in many cases, installing compilers, MPI flavors,
and user packages from scratch takes up considerable time.
Giving users the ability to host a Spack mirror that can store build
caches in GCS buckets offers a clean solution for reducing
application rebuilds for Google Cloud infrastructure.
Co-authored-by: Joe Schoonover <joe@fluidnumerics.com>
* Update cray architecture detection for milan
Update the cray architecture module table with x86-milan -> zen3
Make cray architecture more robust to back off from frontend
architecture to a recent ancestor if necessary. This should make
future cray updates less paingful for users.
Co-authored-by: Gregory Becker <becker33.llnl.gov>
Co-authored-by: Todd Gamblin <gamblin2@llnl.gov>
1. Don't use 16 digits of precision for the seconds, round to 2 digits after the comma
2. Don't print if we don't concretize (i.e. `spack concretize` without `-f` doesn't have to tell me it did nothing in `0.00` seconds)
* Speed-up environment concretization with a process pool
We can exploit the fact that the environment is concretized
separately and use a pool of processes to concretize it.
* Add module spack.util.parallel
Module includes `pool` and `parallel_map` abstractions,
along with implementation details for both.
* Add a new hash type to pass specs across processes
* Add tty msg with concretization time
We use POSIX `patch` to apply patches to files when building, but
`patch` by default prompts the user when it looks like a patch
has already been applied. This means that:
1. If a patch lands in upstream and we don't disable it
in a package, the build will start failing.
2. `spack develop` builds (which keep the stage around) will
fail the second time you try to use them.
To avoid that, we can run `patch` with `-N` (also called
`--forward`, but the long option is not in POSIX). `-N` causes
`patch` to just ignore patches that have already been applied.
This *almost* makes `patch` idempotent, except that it returns 1
when it detects already applied patches with `-N`, so we have to
look at the output of the command to see if it's safe to ignore
the error.
- [x] Remove non-POSIX `-s` option from `patch` call
- [x] Add `-N` option to `patch`
- [x] Ignore error status when `patch` returns 1 due to `-N`
- [x] Add tests for applying a patch twice and applying a bad patch
- [x] Tweak `spack.util.executable` so that it saves the error that
*would have been* raised with `fail_on_error=True`. This lets
us easily re-raise it.
Co-authored-by: Greg Becker <becker33@llnl.gov>
* relocate: call install_name_tool less
* zstd: fix race condition
Multiple times on my mac, trying to install in parallel led to failures
from multiple tasks trying to simultaneously create `$PREFIX/lib`.
* PackageMeta: simplify callback flush
* Relocate: use spack.platforms instead of platform
* Relocate: code improvements
* fix zstd
* Automatically fix rpaths for packages on macOS
* Only change library IDs when the path is already in the rpath
This restores the hardcoded library path for GCC.
* Delete nonexistent rpaths and add more testing
* Relocate: Allow @executable_path and @loader_path
* downgrade_docutils_version
* invalid version
* Update requirements.txt
* Improve spelling and shorten the reference link
* Update spack.yaml
* update version requirement
* update version to maximum of 0.16
Co-authored-by: bernhardkaindl <43588962+bernhardkaindl@users.noreply.github.com>
Currently Spack keeps track of the origin in the code of any
modification to the environment variables. This is very slow
and enabled unconditionally even in code paths where the
origin of the modification is never queried.
The only place where we inspect the origins of environment
modifications is before we start a build, If there's an override
of the type `e.set(...)` after incremental changes like
`e.append_path(..)`, which is a "suspicious" change.
This is very rare though.
If an override like this ever happens, it might mean a package is
broken. If that leads to build errors, we can just ask the user to run
`spack -d install ...` and check the warnings issued by Spack to find
the origins of the problem.
It can be frustrating to successfully run `spack test run --alias <name>` only to find you cannot get the results because you already use `<name>` in some previous stand-alone test execution. This PR prevents that from happening.
Using the Spec.constrain method doesn't work since it might
trigger a repository lookup which could break our directives
and triggers a circular import error.
To fix that we introduce a function to merge abstract anonymous
specs, based only on package names, which does not perform any
lookup in the repository.
The buildcache is now extracted in a temporary folder within the current store,
moved to its final place and relocated.
"spack clean -s" has been extended to also clean the temporary extraction directory.
Add hardlinks with absolute paths for libraries in the corge, garply and quux packages
to detect incorrect handling of hardlinks in tests.
The `find` command was missing for the examples forcing colorized output. Without this (or another suitable) command, spack produces output that is not using any color. Thus, without the `find` command one does not see any difference between forced colorized and non-colorized output.
when deployed on kubernetes, the server sends back permanent redirect responses.
This is elegantly handled by the requests library, but not urllib that we have
to use here, so I have to manually handle it by parsing the exception to
get the Location header, and then retrying the request there.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
The ASP-based solver maximizes the number of values in multi-valued
variants (if other higher order constraints are met), to avoid cases
where only a subset of the values that have been specified on the
command line or imposed by another constraint are selected.
Here we swap the priority of this optimization target with the
selection of the default providers, to avoid unexpected results
like the one in #26598
Seems like https://bugs.python.org/issue29699 is relevant. Better to
just ignore errors when removing them tmpdir. The OS will remove it
anyways.
Errors are happening randomly from tests that are using this fixture.
TL;DR: there are matching groups trying to match 1 or more occurrences of
something. We don't use the matching group. Therefore it's sufficient to test
for 1 occurrence. This reduce quadratic complexity to linear time.
---
When parsing logs of an mpich build, I'm getting a 4 minute (!!) wait
with 16 threads for regexes to run:
```
In [1]: %time p.parse("mpich.log")
Wall time: 4min 14s
```
That's really unacceptably slow...
After some digging, it seems a few regexes tend to have `O(n^2)` scaling
where `n` is the string / log line length. I don't think they *necessarily*
should scale like that, but it seems that way. The common pattern is this
```
([^:]+): error
```
which matches `: error` literally, and then one or more non-colons before that. So
for a log line like this:
```
abcdefghijklmnopqrstuvwxyz: error etc etc
```
Any of these are potential group matches when using `search` in Python:
```
abcdefghijklmnopqrstuvwxyz
bcdefghijklmnopqrstuvwxyz
cdefghijklmnopqrstuvwxyz
⋮
yz
z
```
but clearly the capture group should return the longest match.
My hypothesis is that Python has a very bad implementation of `search`
that somehow considers all of these, even though it can be implemented
in linear time by scanning for `: error` first, and then greedily expanding
the longest possible `[^:]+` match to the left. If Python indeed considers
all possible matches, then with `n` matches of length `1 .. n` you
see the `O(n^2)` slowness (i verified this by replacing + with {1,k}
and doubling `k`, it doubles the execution time indeed).
This PR fixes this by removing the `+`, so effectively changing the
O(n^2) into a O(n) worst case.
The reason we are fine with dropping `+` is that we don't use the
capture group anywhere, so, we just ensure `:: error` is not a match
but `x: error` is.
After going from O(n^2) to O(n), the 15MB mpich build log is parsed
in `1.288s`, so about 200x faster.
Just to be sure I've also updated `^CMake Error.*:` to `^CMake Error`,
so that it does not match with all the possible `:`'s in the line.
Another option is to use `.*?` there to make it quit scanning as soon as
possible, but what line that starts with `CMake Error` that does not have
a colon is really a false positive...
Installing packages with a lot of dependencies does not have an easy way
of judging the current progress (apart from running `spack spec -I pkg`
in another terminal). This change allows Spack to update the terminal's
title with status information, including its current progress as well as
information about the current and total number of packages.
- Do not store the full list of environment variables in
<prefix>/.spack/spack-build-env.txt because it may contain user secrets.
- Only store environment variable modifications upon installation.
- Variables like PATH may still contain user and system paths to make
spack-build-env.txt sourceable. Variables containing paths are
modified through prepending/appending, and if we don't apply these
to the current environment variable, we end up with statements like
`export PATH=/path/to/spack/bin` with system paths missing, meaning
no system binaries are in the path, which is a bad user experience.
- Do write the full environment to spack-build-env.txt in the staging dir,
but ensure it is readonly for the current user, to make it a bit safer
on shared systems.
Creates an environment in a temporary directory and activates it, which
is useful for a quick ephemeral environment:
```
$ spack env activate -p --temp
[spack-1a203lyg] $ spack add zlib
==> Adding zlib to environment /tmp/spack-1a203lyg
==> Updating view at /tmp/spack-1a203lyg/.spack-env/view
```
The DB should be what is trusted for certain operations.
If it is not present when read we should assume the
corresponding store is empty, rather than trying a
write operation during a read.
* Add a unit test
* Document what needs to be there in tests
When a symlink to a license file exists but is broken, the license symlink post-install hook fails
because os.path.exists() checks the existence of the target not the symlink itself.
os.path.lexists() is the proper function to use.
Environments push/pop scopes upon activation. If some lazily
evaluated value depending on the current configuration was
computed and cached before the scopes are pushed / popped
there will be an inconsistency in the current state.
This PR fixes the issue for stores, but it would be better
to move away from global state.
The `spack.architecture` module contains an `Arch` class that is very similar to `spack.spec.ArchSpec` but points to platform, operating system and target objects rather than "names". There's a TODO in the class since 2016:
abb0f6e27c/lib/spack/spack/architecture.py (L70-L75)
and this PR basically addresses that. Since there are just a few places where the `Arch` class was used, here we query the relevant platform objects where they are needed directly from `spack.platforms`. This permits to clean the code from vestigial logic.
Modifications:
- [x] Remove the `spack.architecture` module and replace its use by `spack.platforms`
- [x] Remove unneeded tests
* Use gnuconfig package for config file replacement for RISC-V.
This extends the changes in #26035 to handle RISC-V. Before this change,
many packages fail to configure on riscv64 due to config.guess being too
old to know about RISC-V. This is seen out of the box when clingo fails
to build from source due to pkgconfig failing to configure, throwing
error: "configure: error: cannot guess build type; you must specify one".
* Add riscv64 architecture
* Update vendored archspec from upstream project.
These archspec updates include changes needed to support riscv64.
* Update archspec's __init__.py to reflect the commit hash of archspec being used.
Cherry-picked from #25564 so this is standalone.
With this PR we can activate an environment in Spack itself, without computing changes to environment variables only necessary for "shell aware" env activation.
1. Activating an environment:
```python
spack.environment.activate(Environment(xyz)) -> None
```
this basically just sets `_active_environment` and modifies some config scopes.
2. Activating an environment **and** getting environment variable modifications for the shell:
```python
spack.environment.shell.activate(Environment(xyz)) -> EnvironmentModifications
```
This should make it easier/faster to do unit tests and scripting with spack, without the cli interface.
* Isolate bootstrap configuration from user configuration
* Search for build dependencies automatically if bootstrapping from sources
The bootstrapping logic will search for build dependencies
automatically if bootstrapping anything form sources. Any
external spec, if found, is written in a scope that is specific
to bootstrapping.
* Don't clean the bootstrap store with "spack clean -a"
* Copy bootstrap.yaml and config.yaml in the bootstrap area
- [x] Our wrapper error messages are sometimes hard to differentiate from other build
output, so prefix all errors from `die()` with '[spack cc] ERROR:'
- [x] The error we raise when running, say, `fc` without a Fortran compiler was not
clear enough. Clarify the message and the comment.
This converts everything in cc to POSIX sh, except for the parts currently
handled with bash arrays. Tests are still passing.
This version tries to be as straightforward as possible. Specifically, most conversions
are kept simple -- convert ifs to ifs, handle indirect expansion the way we do in
`setup-env.sh`, only mess with the logic in `cc`, and don't mess with the python code at
all.
The big refactor is for arrays. We can't rely on bash's nice arrays and be ignorant of
separators anymore. So:
1. To avoid complicated separator logic, there are three types of lists. They are:
* `$lsep`-separated lists, which end with `_list`. `lsep` is customizable, but we
picked `^G` (alarm bell) for `$lsep` because it's ASCII and it's unlikely that it
would actually appear in any arguments. If we need to get fancier (and I will lose
faith in the world if we do) then we could consider XON or XOFF.
* `:`-separated directory lists, which end with `_dirs`, `_DIRS`, `PATH`, or `PATHS`
* Whitespace-separated lists (like flags), which can have any other name.
Whitespace and colon-separated lists come with the territory with PATHs from env
vars and lists of flags. `^G` separated lists are what we use for most internal
variables, b/c it's more likely to work.
2. To avoid subshells, use a bunch of functions that do dirty `eval` stuff instead. This
adds 3 functions to deal with lists:
* `append LISTNAME ELEMENT [SEP]` will put `ELEMENT` at the end of the list called
`LISTNAME`. You can optionally say what separator you expect to use. Note that we
are taking advantage of everything being global and passing lists by name.
* `prepend LISTNAME ELEMENT [SEP]` like append, but puts `ELEMENT` at the start of
`LISTNAME`
* `extend LISTNAME1 LISTNAME2 [PREFIX]` appends everything in LISTNAME2 to
LISTNAME1, and optionally prepends `PREFIX` to every element (this is useful for
things like `-I`, `-isystem `, etc.
* `preextend LISTNAME1 LISTNAME2 [PREFIX]` prepends everything in LISTNAME2 to
LISTNAME1 in order, and optionally prepends `PREFIX` to every element.
The routines determine the separator for each argument by its name, so we don't have to
pass around separators everywhere. Amazingly, as long as you do not expand variables'
values within an `eval` environment, you can do all this and still preserve quoting.
When iterating over lists, the user of this API still has to set and unset `IFS`
properly.
We ended up having to ignore shellcheck SC2034 (unused variable), because using evals
all over the place means that shellcheck doesn't notice that our list variables are
actually used.
So far this is looking pretty good. I took the most complex unit test I could find
(which runs a sample link line) and ran the same command line 200 times in a shell
script. Times are roughly as follows:
For this invocation:
```console
$ bash -c 'time (for i in `seq 1 200`; do ~/test_cc.sh > /dev/null; done)'
```
I get the following performance numbers (the listed shells are what I put in `cc`'s
shebang):
**Original**
* Old version of `cc` with arrays and `bash v3.2.57` (macOS builtin): `4.462s` (`.022s` / call)
* Old version of `cc` with arrays and `bash v5.1.8` (Homebrew): `3.267s` (`.016s` / call)
**Using many subshells (#26408)**
* with `bash v3.2.57`: `25.302s` (`.127s` / call)
* with `bash v5.1.8`: `27.801s` (`.139s` / call)
* with `dash`: `15.302s` (`.077s` / call)
This version didn't seem to work with zsh.
**This PR (no subshells)**
* with `bash v3.2.57`: `4.973s` (`.025s` / call)
* with `bash v5.1.8`: `4.984s` (`.025s` / call)
* with `zsh`: `2.995s` (`.015s` / call)
* with `dash`: `1.890s` (`.0095s` / call)
Dash, with the new posix design, is easily the winner.
So there are several interesting things to note here:
1. Running the posix version in `bash` is slower than using `bash` arrays. That is to be
expected because it's doing a bunch of string processing where it likely did not have
to before, at least in `bash`.
2. `zsh`, at least on macOS, is significantly faster than the ancient `bash` they ship
with the system. Using `zsh` with the new version also makes the posix wrappers
faster than `develop`. So it's worth preferring `zsh` if we have it. I suppose we
should also try this with newer `bash` on Linux.
3. `bash v5.1.8` seems to be significantly faster than the old system `bash v3.2.57` for
arrays. For straight POSIX stuff, it's a little slower. It did not seem to matter
whether `--posix` was used.
4. `dash` is way faster than `bash` or `zsh`, so the real payoff just comes from being
able to use it. I am not sure if that is mostly startup time, but it's significant.
`dash` is ~2.4x faster than the original `bash` with arrays.
So, doing a lot of string stuff is slower than arrays, but converting to posix seems
worth it to be able to exploit `dash`.
- [x] Convert all but array-related portions to sh
- [x] Fix basic shellcheck issues.
- [x] Convert arrays to use a few convenience functions: `append` and `extend`
- [x] Get `cc` tests passing.
- [x] Add `cc` tests where needed passing.
- [x] Benchmarking.
Co-authored-by: Tom Scogland <scogland1@llnl.gov>
Co-authored-by: Danny McClanahan <1305167+cosmicexplorer@users.noreply.github.com>
When using modules for compiler (and/or external package), if a
package's `setup_[dependent_]build_environment` sets `PYTHONHOME`, it
can influence the python subprocess executed to gather module
information.
The error seen was:
```
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)
```
But the actual hidden error happened in the `python -c 'import
json...'` subprocess, which made it return an empty string as json:
```
ModuleNotFoundError: No module named 'encodings'
```
This fix uses `python -E` to ignore `PYTHONHOME` and
`PYTHONPATH`. Should be safe here because the python subprocess code
only use packages built-in python.
The python subprocess in `environment.py` was also patched to be safe
and consistent.
* Remove redundant preserve environment code in build environment
* Remove fix for a bug in a module
See https://github.com/spack/spack/issues/3153#issuecomment-280460041,
this shouldn't be part of core spack.
* Don't module unload cray-libsci on all platforms
Spack has logic to preserve an installation prefix when it is being
overwritten: if the new install fails, the old files are restored.
This PR adds error handling for when this backup restoration fails
(i.e. the new install fails, and then some unexpected error prevents
restoration from the backup).
* Remove vestigial code to be compatible with Spack v0.9.X
* ArchSpec: reworked __repr__ to be more adherent to common Python idioms
* ArchSpec: simplified __init__.py and copy()
The logic to perform detection of already installed
packages has been extracted from cmd/external.py
and put into the spack.detection package.
In this way it can be reused programmatically for
other purposes, like bootstrapping.
The new implementation accounts for cases where the
executables are placed in a subdirectory within <prefix>/bin
* Use gnuconfig package for config file replacement
Currently the autotools build system tries to pick up config.sub and
config.guess files from the system (in /usr/share) on arm and power.
This is introduces an implicit system dependency which we can avoid by
distributing config.guess and config.sub files in a separate package,
such as the new `gnuconfig` package which is very lightweight/text only
(unlike automake where we previously pulled these files from as a
backup). This PR adds `gnuconfig` as an unconditional build dependency
for arm and power archs.
In case the user needs a system version of config.sub and config.guess,
they are free to mark `gnuconfig` as an external package with the prefix
pointing to the directory containing the config files:
```yaml
gnuconfig:
externals:
- spec: gnuconfig@master
prefix: /tmp/tmp.ooBlkyAKdw/lol
buildable: false
```
Apart from that, this PR gives some better instructions for users when
replacing config files goes wrong.
* Mock needs this package too now, because autotools adds a depends_on
* Add documentation
* Make patch_config_files a prop, fix the docs, add integrations tests
* Make macOS happy
- Match failed autotest tests show the word "FAILED" near the end
- Match "FAIL: ", "FATAL: ", "failed ", "Failed test" of other suites
- autotest " ok"$ means the test passed, independend of text before.
- autoconf messages showing missing tools are fatal later, show them.
* autotoolspackage.rst: No depends_on('m4') with depends_on('autoconf')
- Remove `m4` from the example depends_on() lines for the autoreconf phase.
- Change the branch used as example from develop to master as it is
far more common in the packages of spack's builtin repo.
- Fix the wrong info that libtoolize and aclocal are run explicitly
in the autoreconf phase by default. autoreconf calls these internally
as needed, thus autotools.py also does not call them directly.
- Add that autoreconf() also adds -I<aclocal-prefix>/share/aclocal.
- Add an example how to set autoreconf_extra_args.
- Add an example of a custom autoreconf phase for running autogen.sh.
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
This commit shows a template for cut-and-paste into the package to fix it:
```py
==> fast-global-file-status: Executing phase: 'autoreconf'
==> Error: RuntimeError: Cannot generate configure: missing dependencies autoconf, automake, libtool.
Please add the following lines to the package:
depends_on('autoconf', type='build', when='@master')
depends_on('automake', type='build', when='@master')
depends_on('libtool', type='build', when='@master')
Update the version (when='@master') as needed.
```
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
clean_environment(): Unset three more environment variables:
MAKEFLAGS: Affects make, can eg indirectly inhibit enabling parallel build
DISPLAY: Tests of GUI widget libraries might try to connect to an X server
TERM: Could make testsuites attempt to color their output
fixes#25992
Currently the bootstrapping process may need a compiler.
When bootstrapping from sources the need is obvious, while
when bootstrapping from binaries it's currently needed in
case patchelf is not on the system (since it will be then
bootstrapped from sources).
Before this PR we were searching for compilers as the
first operation, in case they were not declared in
the configuration. This fails in case we start
bootstrapping from within an environment.
The fix is to defer the search until we have swapped
configuration.
While debugging #24508, I noticed that we call `basename` in `cc`. The
same can be achieved by using Bash's parameter expansion, saving one
external process per call.
Parameter expansion cannot replace basename for directories in some
cases, but is guaranteed to work for executables.
Git 2.24 introduced a feature flag for repositories with many files, see:
https://github.blog/2019-11-03-highlights-from-git-2-24/#feature-macros
Since Spack's Git repository contains roughly 8,500 files, it can be
worthwhile to enable this, especially on slow file systems such as NFS:
```
$ hyperfine --warmup 3 'cd spack-default; git status' 'cd spack-manyfiles; git status'
Benchmark #1: cd spack-default; git status
Time (mean ± σ): 3.388 s ± 0.095 s [User: 256.2 ms, System: 625.8 ms]
Range (min … max): 3.168 s … 3.535 s 10 runs
Benchmark #2: cd spack-manyfiles; git status
Time (mean ± σ): 168.7 ms ± 10.9 ms [User: 98.6 ms, System: 126.1 ms]
Range (min … max): 144.8 ms … 188.0 ms 19 runs
Summary
'cd spack-manyfiles; git status' ran
20.09 ± 1.42 times faster than 'cd spack-default; git status'
```
Modifications:
- [x] Change `defaults/config.yaml`
- [x] Add a fix for bootstrapping patchelf from sources if `compilers.yaml` is empty
- [x] Make `SPACK_TEST_SOLVER=clingo` the default for unit-tests
- [x] Fix package failures in the e4s pipeline
Caveats:
1. CentOS 6 still uses the original concretizer as it can't connect to the buildcache due to issues with `ssl` (bootstrapping from sources requires a C++14 capable compiler)
1. I had to update the image tag for GitlabCI in e699f14.
1. libtool v2.4.2 has been deprecated and other packages received some update
This will allow a user to (from anywhere a Spec is parsed including both name and version) refer to a git commit in lieu of
a package version, and be able to make comparisons with releases in the history based on commits (or with other commits). We do this by way of:
- Adding a property, is_commit, to a version, meaning I can always check if a version is a commit and then change some action.
- Adding an attribute to the Version object which can lookup commits from a git repo and find the last known version before that commit, and the distance
- Construct new Version comparators, which are tuples. For normal versions, they are unchanged. For commits with a previous version x.y.z, d commits away, the comparator is (x, y, z, '', d). For commits with no previous version, the comparator is ('', d) where d is the distance from the first commit in the repo.
- Metadata on git commits is cached in the misc_cache, for quick lookup later.
- Git repos are cached as bare repos in `~/.spack/git_repos`
- In both caches, git repo urls are turned into file paths within the cache
If a commit cannot be found in the cached git repo, we fetch from the repo. If a commit is found in the cached metadata, we do not recompare to newly downloaded tags (assuming repo structure does not change). The cached metadata may be thrown out by using the `spack clean -m` option if you know the repo structure has changed in a way that invalidates existing entries. Future work will include automatic updates.
# Finding previous versions
Spack will search the repo for any tags that match the string of a version given by the `version` directive. Spack will also search for any tags that match `v + string` for any version string. Beyond that, Spack will search for tags that match a SEMVER regex (i.e., tags of the form x.y.z) and interpret those tags as valid versions as well. Future work will increase the breadth of tags understood by Spack
For each tag, Spack queries git to determine whether the tag is an ancestor of the commit in question or not. Spack then sorts the tags that are ancestors of the commit by commit-distance in the repo, and takes the nearest ancestor. The version represented by that tag is listed as the previous version for the commit.
Not all commits will find a previous version, depending on the package workflow. Future work may enable more tangential relationships between commits and versions to be discovered, but many commits in real world git repos require human knowledge to associate with a most recent previous version. Future work will also allow packages to specify commit/tag/version relationships manually for such situations.
# Version comparisons.
The empty string is a valid component of a Spack version tuple, and is in fact the lowest-valued component. It cannot be generated as part of any valid version. These two characteristics make it perfect for delineating previous versions from distances. For any version x.y.z, (x, y, z, '', _) will be less than any "real" version beginning x.y.z. This ensures that no distance from a release will cause the commit to be interpreted as "greater than" a version which is not an ancestor of it.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This PR coincides with tiny changes to spack to support spack monitor using the new spec
the corresponding spack monitor PR is at https://github.com/spack/spack-monitor/pull/31.
Since there are no changes to the database we can actually update the current server
fairly easily, so either someone can test locally or we can just update and then
test from that (and update as needed).
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
#22845 revealed a long-standing bug that had never been triggered before, because the
hashing algorithm had been stable for multiple years while the bug was in production. The
bug was that when reading a concretized environment, Spack did not properly read in the
build hashes associated with the specs in the environment. Those hashes were recomputed
(and as long as we didn't change the algorithm, were recomputed identically). Spack's
policy, though, is never to recompute a hash. Once something is installed, we respect its
metadata hash forever -- even if internally Spack changes the hashing method. Put
differently, once something is concretized, it has a concrete hash, and that's it -- forever.
When we changed the hashing algorithm for performance in #22845 we exposed the bug.
This PR fixes the bug at its source, but properly reading in the cached build hash attributes
associated with the specs. I've also renamed some variables in the Environment class
methods to make a mistake of this sort more difficult to make in the future.
* ensure environment build hashes are never recomputed
* add comment clarifying reattachment of env build hashes
* bump lockfile version and include specfile version in env meta
* Fix unit-test for v1 to v2 conversion
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* Refactor platform etc. to avoid circular dependencies
All the base classes in spack.architecture have been
moved to the corresponding specialized subpackages,
e.g. Platform is now defined within spack.platforms.
This resolves a circular dependency where spack.architecture
was both:
- Defining the base classes for spack.platforms, etc.
- Collecting derived classes from spack.platforms, etc.
Now it dopes only the latter.
* Move a few platform related functions to "spack.platforms"
* Removed spack.architecture.sys_type()
* Fixup for docs
* Rename Python modules according to review
Currently as part of installing a package, we lock a prefix, check if
it exists, and create it if not; the logic for creating the prefix
included a check for the existence of that prefix (and raised an
exception if it did), which was redundant.
This also includes removal of tests which were not verifying
anything (they pass with or without the modifications in this PR).
Modifications:
- Export platforms from spack.platforms directly, so that client modules don't have to import submodules
- Use only plain imports in test/architecture.py
- Parametrized test in test/architecture.py and put most of the setup/teardown in fixtures
This is a major rework of Spack's core core `spec.yaml` metadata format. It moves from `spec.yaml` to `spec.json` for speed, and it changes the format in several ways. Specifically:
1. The spec format now has a `_meta` section with a version (now set to version `2`). This will simplify major changes like this one in the future.
2. The node list in spec dictionaries is no longer keyed by name. Instead, it is a list of records with no required key. The name, hash, etc. are fields in the dictionary records like any other.
3. Dependencies can be keyed by any hash (`hash`, `full_hash`, `build_hash`).
4. `build_spec` provenance from #20262 is included in the spec format. This means that, for spliced specs, we preserve the *full* provenance of how to build, and we can reproduce a spliced spec from the original builds that produced it.
**NOTE**: Because we have switched the spec format, this PR changes Spack's hashing algorithm. This means that after this commit, Spack will think a lot of things need rebuilds.
There are two major benefits this PR provides:
* The switch to JSON format speeds up Spack significantly, as Python's builtin JSON implementation is orders of magnitude faster than YAML.
* The new Spec format will soon allow us to represent DAGs with potentially multiple versions of the same dependency -- e.g., for build dependencies or for compilers-as-dependencies. This PR lays the necessary groundwork for those features.
The old `spec.yaml` format continues to be supported, but is now considered a legacy format, and Spack will opportunistically convert these to the new `spec.json` format.
This modification accounts for:
1. Bootstrapping from sources using system, non-standard Python
2. Using later an ABI compatible standard Python interpreter
* tests: make `spack url [stats|summary]` work on mock packages
Mock packages have historically had mock hashes, but this means they're also invalid
as far as Spack's hash detection is concerned.
- [x] convert all hashes in mock package to md5 or sha256
- [x] ensure that all mock packages have a URL
- [x] ignore some special cases with multiple VCS fetchers
* url stats: add `--show-issues` option
`spack url stats` tells us how many URLs are using what protocol, type of checksum,
etc., but it previously did not tell us which packages and URLs had the issues. This
adds a `--show-issues` option to show URLs with insecure (`http`) URLs or `md5` hashes
(which are now deprecated by NIST).
Fixes removal of SPACK_ENV_PATH from PATH in the presence of trailing
slashes in the elements of PATH:
The compiler wrapper has to ensure that it is not called nested like
it would happen when gcc's collect2 uses PATH to call the linker ld,
or else the compilation fails.
To prevent nested calls, the compiler wrapper removes the elements
of SPACK_ENV_PATH from PATH.
Sadly, the autotest framework appends a slash to each element
of PATH when adding AUTOTEST_PATH to the PATH for the tests,
and some tests like those of GNU bison run cc inside the test.
Thus, ensure that PATH cleanup works even with trailing slashes.
This fixes the autotest suite of bison, compiling hundreds of
bison-generated test cases in a autotest-generated testsuite.
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
This PR will add a new audit, specifically for spack package homepage urls (and eventually
other kinds I suspect) to see if there is an http address that can be changed to https.
Usage is as follows:
```bash
$ spack audit packages-https <package>
```
And in list view:
```bash
$ spack audit list
generic:
Generic checks relying on global variables
configs:
Sanity checks on compilers.yaml
Sanity checks on packages.yaml
packages:
Sanity checks on specs used in directives
packages-https:
Sanity checks on https checks of package urls, etc.
```
I think it would be unwise to include with packages, because when run for all, since we do requests it takes a long time. I also like the idea of more well scoped checks - likely there will be other addresses for http/https within a package that we eventually check. For now, there are two error cases - one is when an https url is tried but there is some SSL error (or other error that means we cannot update to https):
```bash
$ spack audit packages-https zoltan
PKG-HTTPS-DIRECTIVES: 1 issue found
1. Error with attempting https for "zoltan":
<urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: Hostname mismatch, certificate is not valid for 'www.cs.sandia.gov'. (_ssl.c:1125)>
```
This is either not fixable, or could be fixed with a change to the url or (better) contacting the site owners to ask about some certificate or similar.
The second case is when there is an http that needs to be https, which is a huge issue now, but hopefully not after this spack PR.
```bash
$ spack audit packages-https xman
Package "xman" uses http but has a valid https endpoint.
```
And then when a package is fixed:
```bash
$ spack audit packages-https zlib
PKG-HTTPS-DIRECTIVES: 0 issues found.
```
And that's mostly it. :)
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
* Add a __reduce__ method to Spec
fixes#23892
The recursion limit seems to be due to the default
way in which a Spec is serialized, following all
the attributes. It's still not clear to me why this
is related to being in an environment, but in any
case we already have methods to serialize Specs to
disk in JSON and YAML format. Here we use them to
pickle a Spec instance too.
* Downgrade to build-hash
Hopefully nothing will change the package in
between serializing the spec and sending it
to the child process.
* Add support for Python 2
* Make sure PackageInstaller does not remove the just-restored
install dir after failure in spack install --overwrite
* Remove cryptic error message and rethrow actual error
The gcc compiler can be configured to use `ld.gold` by default. It will
then call `ld.gold` explicitly when linking. When so, spack need to have
a ld.gold wrapper in PATH to inject rpaths link flags etc...
Also I wouldn't be surprised to see some package calling `ld.gold`
directly.
As for ld.gold, the argument could be made that we want to support any
package that could call ld.lld.
* Add a __reduce__ method to SpecBuildInterface
This class was confusing pickle when being serialized,
due to its scary nature of being an object that disguise
as another type.
* Add more MacOS tests, switch them to clingo
* Fix condition syntax
* Remove Python v3.6 and v3.9 with macOS
* Conditionally remove 'context' from kwargs in _urlopen
Previously, 'context' is purged from kwargs in _urlopen to
conform to varying support for 'context' in different versions
of urllib. This fix tries to use 'context', and then removes
it if an exception is thrown and tries again.
* Specify error type in try statement in _urlopen
Specify TypeError when checking if 'context' is in kwargs
for _urlopen. Also, if try fails, check that 'context' is
in the error message before removing from kwargs.
This is a direct followup to #13557 which caches additional attributes that were added in #24095 that are expensive to compute. I had to reopen#25556 in another PR to invalidate the GitLab CI cache, but see #25556 for prior discussion.
### Before
```console
$ time spack env activate .
real 2m13.037s
user 1m25.584s
sys 0m43.654s
$ time spack env view regenerate
==> Updating view at /Users/Adam/.spack/.spack-env/view
real 16m3.541s
user 10m28.892s
sys 4m57.816s
$ time spack env deactivate
real 2m30.974s
user 1m38.090s
sys 0m49.781s
```
### After
```console
$ time spack env activate .
real 0m8.937s
user 0m7.323s
sys 0m1.074s
$ time spack env view regenerate
==> Updating view at /Users/Adam/.spack/.spack-env/view
real 2m22.024s
user 1m44.739s
sys 0m30.717s
$ time spack env deactivate
real 0m10.398s
user 0m8.414s
sys 0m1.630s
```
Fixes#25555Fixes#25541
* Speedup environment activation, part 2
* Only query distutils a single time
* Fix KeyError bug
* Make vermin happy
* Manual memoize
* Add comment on cross-compiling
* Use platform-specific include directory
* Fix multiple bugs
* Fix python_inc discrepancy
* Fix import tests
* Set pubkey trust to ultimate during `gpg trust`
Tries to solve the same problem as #24760 without surpressing stderr
from gpg commands.
This PR makes every imported key trusted in the gpg database.
Note: I've outlined
[here](https://github.com/spack/spack/pull/24760#issuecomment-883183175)
that gpg's trust model makes sense, since how can we trust a random
public key we download from a binary cache?
* Fix test
Fixes#25603
This commit adds a new context manager to temporarily
deactivate active environments. This context manager
is used when setting up bootstrapping configuration to
make sure that the current environment is not affected
by operations on the bootstrap store.
* Preserve exit code 1 if nothing is found
* Use context manager for the environment
This commit adds a regression test for version selection
with preferences in `packages.yaml`. Before PR 25585 we
used negative weights in a minimization to select the
optimal version. This may lead to situations where a
dependency may make the version score of dependents
"better" if it is preferred in packages.yaml.
PackageInstaller and Package.installed disagree over what it means
for a package to be installed: PackageInstaller believes it should be
enough for a database entry to exist, whereas Package.installed
requires a database entry & a prefix directory.
This leads to the following niche issue:
* a develop spec in an environment is successfully installed
* then somehow its install prefix is removed (e.g. through a bug fixed
in #25583)
* you modify the sources and reinstall the environment
1. spack checks pkg.installed and realizes the develop spec is NOT
installed, therefore it doesn't need to have 'overwrite: true'
2. the installer gets the build task and checks the database and
realizes the spec IS installed, hence it doesn't have to install it.
3. the develop spec is not rebuilt.
The solution is to make PackageInstaller and pkg.installed agree over
what it means to be installed, and this PR does that by dropping the
prefix directory check from pkg.installed, so that it only checks the
database.
As a result, spack will create a build task with overwrite: true for
the develop spec, and the installer in fact handles overwrite requests
fine even if the install prefix doesn't exist (it just does a normal
install).
see #25563
When we have a concrete environment and we ask to install a
concrete spec from a file, currently Spack returns a list of
specs that are all the one that match the argument DAG hash.
Instead we want to compare build hashes, which also account
for build-only dependencies.
#25303 filtered padding from build output, but it's still there in binary install/relocate output,
so our CI logs are still quite long and frequently hit the limit.
- [x] add context handler from #25303 to buildcache installation as well
This allows you to run `spack graph --installed` from within an environment and get a dot graph of
its concrete specs.
- [x] make `spack graph -i` environment-aware
- [x] add code to the generated dot graph to ensure roots have min rank (i.e., they're all at the
top or left of the DAG)
Bootstrapping clingo on macOS on `develop` gives errors like this:
```
==> Error: RuntimeError: Unable to locate python command in /System/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/bin
/Users/gamblin2/Workspace/spack/var/spack/repos/builtin/packages/python/package.py:662, in command:
659 return Executable(path)
660 else:
661 msg = 'Unable to locate {0} command in {1}'
>> 662 raise RuntimeError(msg.format(self.name, self.prefix.bin))
```
On macOS, `python` is laid out differently. In particular, `sys.executable` is here:
```console
Python 2.7.16 (default, May 8 2021, 11:48:02)
[GCC Apple LLVM 12.0.5 (clang-1205.0.19.59.6) [+internal-os, ptrauth-isa=deploy on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.executable
'/System/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/MacOS/Python'
```
Based on that, you'd think that
`/System/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents` would be
where you'd look for a `bin` directory, but you (and Spack) would be wrong:
```console
$ ls /System/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/
Info.plist MacOS/ PkgInfo Resources/ _CodeSignature/ version.plist
```
You need to look in `sys.exec_prefix`
```
>>> sys.exec_prefix
'/System/Library/Frameworks/Python.framework/Versions/2.7'
```
Which looks much more like a standard prefix, with understandable `bin`, `lib`, and `include`
directories:
```console
$ ls /System/Library/Frameworks/Python.framework/Versions/2.7
Extras/ Mac/ Resources/ bin/ lib/
Headers@ Python* _CodeSignature/ include/
$ ls -l /System/Library/Frameworks/Python.framework/Versions/2.7/bin/python
lrwxr-xr-x 1 root wheel 7B Jan 1 2020 /System/Library/Frameworks/Python.framework/Versions/2.7/bin/python@ -> python2
```
- [x] change `bootstrap.py` to use the `sys.exec_prefix` as the external prefix, instead of just
getting the parent directory of the executable.
This adds lockfile tracking to Spack's lock mechanism, so that we ensure that there
is only one open file descriptor per inode.
The `fcntl` locks that Spack uses are associated with an inode and a process.
This is convenient, because if a process exits, it releases its locks.
Unfortunately, this also means that if you close a file, *all* locks associated
with that file's inode are released, regardless of whether the process has any
other open file descriptors on it.
Because of this, we need to track open lock files so that we only close them when
a process no longer needs them. We do this by tracking each lockfile by its
inode and process id. This has several nice properties:
1. Tracking by pid ensures that, if we fork, we don't inadvertently track the parent
process's lockfiles. `fcntl` locks are not inherited across forks, so we'll
just track new lockfiles in the child.
2. Tracking by inode ensures that referencs are counted per inode, and that we don't
inadvertently close a file whose inode still has open locks.
3. Tracking by both pid and inode ensures that we only open lockfiles the minimum
number of times necessary for the locks we have.
Note: as mentioned elsewhere, these locks aren't thread safe -- they're designed to
work in Python and assume the GIL.
Tasks:
- [x] Introduce an `OpenFileTracker` class to track open file descriptors by inode.
- [x] Reference-count open file descriptors and only close them if they're no longer
needed (this avoids inadvertently releasing locks that should not be released).
This commit rework version facts so that:
1. All the information on versions is collected
before emitting the facts
2. The same kind of atom is emitted for versions
stemming from different origins (package.py
vs. packages.yaml)
In the end all the possible versions for a given
package are totally ordered and they are given
different and increasing weights staring from zero.
This refactor allow us to avoid using negative
weights, which in some configurations may make
parent node score "better" and lead to unexpected
"optimal" results.
Once PR binary graduation is deployed, the shared PR mirror will
contain binaries just built by a merged PR, before the subsequent
develop pipeline has had time to finish. Using the shared PR mirror
as a source of binaries will reduce the number of times we have to
rebuild the same full hash.
* Refactor active environment getters
- Make `spack.environment.active_environment` a trivial getter for the active
environment, replacing `spack.environment.get_env` when the arguments are
not needed
- New method `spack.cmd.require_active_environment(cmd_name)` for
commands that require an environment (rather than abusing
get_env/active_environment)
- Clean up calling code to call spack.environment.active_environment or
spack.cmd.require_active_environment as appropriate
- Remove the `-e` parsing from `active_environment`, because `main.py` is
responsible for processing `-e` and already activates the environment.
- Move `spack.environment.find_environment` to
`spack.cmd.find_environment`, to avoid having spack.environment aware
of argparse.
- Refactor `spack install` command so argument parsing is all handled in the
command, no argparse in spack.environment or spack.installer
- Update documentation
* Python 2: toplevel import errors only with 'as ev'
In two files, `import spack.environment as ev` leads to errors
These errors are not well understood ("'module' object has no attribute
'environment'"). All other files standardize on the above syntax.
* Bootstrap clingo from binaries
* Move information on clingo binaries to a JSON file
* Add support to bootstrap on Cray
Bootstrapping on Cray requires, at the moment, to
swap the platform when looking for binaries - due
to #22800.
* Add SHA256 verification for bootstrapped software
Use sha256 verification for binaries necessary to bootstrap
the concretizer and gpg for signature verification
* patchelf: use Spec._old_concretize() to bootstrap
As noted in #24450 we may happen to need the
concretizer when bootstrapping clingo. In that case
only the old concretizer is available.
* Add a schema for bootstrapping methods
Two fields have been added to bootstrap.yaml:
"sources" which lists the methods available for
bootstrapping software
"trusted" which records if a source is trusted or not
A subcommand has been added to "spack bootstrap" to list
the sources currently available.
* Methods used for bootstrapping are configurable from bootstrap:sources
The function that tries to ensure a given Python module
is importable now tries bootstrapping methods in the same
order as they are defined in `bootstrap.yaml`
* Permit to trust/untrust bootstrapping methods
* Add binary tests for MacOS, Ubuntu
* Add documentation
* Add a note on bash
Spack is internally using a patched version of `argparse` mainly to backport Python 3 functionality
into Python 2. This PR makes it such that for the supported Python 3 versions we use `argparse`
from the standard Python library. This PR has been extracted from #25371 where it was needed
to be able to use recent versions of `pytest`.
* Fixed formatting issues when using a pristine argparse.py
* Fix error message for Python 3.X when missing positional arguments
* Account for the change of API in Python 3.7
* Layout multi-valued args into columns in error messages
* Seamless transition in develop if argparse.pyc is in external
* Be more defensive in case we can't remove the file.
Add link type to spack.yaml format
Add tests to verify link behavior is correct for installed files
for all three view types
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
The commands have been deprecated in #7098, and have
been failing with an error message since then.
Cleaning the code since it is unlikely that somebody
is still using them.
Preferred providers had a non-zero weight because in an earlier formulation of the logic program that was needed to prefer external providers over default providers. With the current formulation for externals this is not needed anymore, so we can give a weight of zero to both default choices and providers that are externals. _Using zero ensures that we don't introduce any drift towards having less providers, which was happening when minimizing positive weights_.
Modifications:
- [x] Default weight for providers starts at 0 (instead of 10, needed before to prefer externals)
- [x] Rules to compute the `provider_weight` have been refactored. There are multiple possible weights for a given `Virtual`. Only one gets selected by the solver (the one that minimizes the objective function).
- [x] `provider_weight` are now accounting for each different `Virtual`. Before there was a single weight per provider, even if the package was providing multiple virtuals.
* Give preferred providers a weight of zero
Preferred providers had a non-zero weight because in an earlier
formulation of the logic program that was needed to prefer
external providers over default providers.
With the current formulation for externals this is not needed anymore,
so we can give a weight of zero to default choices. Using zero
ensures that we don't introduce any drift towards having
less providers, which was happening when minimizing positive weights.
* Simplify how we compute weights for providers
Rewrite rules so that specific events (i.e. being
an external) unlock the possibility to use certain
weights. The weight being considered is then selected
by the minimization process to be the one that gives
the best score.
* Allow providers to have different weights for different virtuals
Before this change we didn't differentiate providers based on
the virtual they provide, which meant that packages providing
more than one virtual had nonetheless a single weight.
With this change there will be a weight per virtual.
This is both a bugfix and a generalization of #25168. In #25168, we attempted to filter padding
*just* from the debug output of `spack.util.executable.Executable` objects. It turns out we got it
wrong -- filtering the command line string instead of the arg list resulted in output like this:
```
==> [2021-08-05-21:34:19.918576] ["'", '/', 'b', 'i', 'n', '/', 't', 'a', 'r', "'", ' ', "'", '-', 'o', 'x', 'f', "'", ' ', "'", '/', 't', 'm', 'p', '/', 'r', 'o', 'o', 't', '/', 's', 'p', 'a', 'c', 'k', '-', 's', 't', 'a', 'g', 'e', '/', 's', 'p', 'a', 'c', 'k', '-', 's', 't', 'a', 'g', 'e', '-', 'p', 'a', 't', 'c', 'h', 'e', 'l', 'f', '-', '0', '.', '1', '3', '-', 'w', 'p', 'h', 'p', 't', 'l', 'h', 'w', 'u', 's', 'e', 'i', 'a', '4', 'k', 'p', 'g', 'y', 'd', 'q', 'l', 'l', 'i', '2', '4', 'q', 'b', '5', '5', 'q', 'u', '4', '/', 'p', 'a', 't', 'c', 'h', 'e', 'l', 'f', '-', '0', '.', '1', '3', '.', 't', 'a', 'r', '.', 'b', 'z', '2', "'"]
```
Additionally, plenty of builds output padded paths in other plcaes -- e.g., not just command
arguments, but in other `tty` messages via `llnl.util.filesystem` and other places. `Executable`
isn't really the right place for this.
This PR reverts the changes to `Executable` and moves the filtering into `llnl.util.tty`. There is
now a context manager there that you can use to install a filter for all output.
`spack.installer.build_process()` now uses this context manager to make `tty` do path filtering
when padding is enabled.
- [x] revert filtering in `Executable`
- [x] add ability for `tty` to filter output
- [x] install output filter in `build_process()`
- [x] tests
`compare_specs()` had a `colorful` keyword argument, but everything else in
spack uses `color` for this.
- [x] rename the argument
- [x] make the default follow spack's `--color=always/never/auto` setting
Add a workflow to test bootstrapping clingo on
different platforms so that we can detect changes
that break it.
Compute `site_packages_dir` in `bootstrap.py` as it was
before #24095, until we figure a better way to override
that attribute.
Long, padded install paths can get to be very long in the verbose install
output. This has to be filtered out by the Executable class, as it
generates these debug messages.
- [x] add ability to filter paths from Executable output.
- [x] add a context manager that can enable path filtering
- [x] make `build_process` in `installer.py`
This should hopefully allow us to see most of the build output in
Gitlab pipeline builds again.
`build_process` has been around a long time but it's become a very large,
unwieldy method. It's hard to work with because it has a lot of local
variables that need to persist across all of the code.
- [x] To address this, convert it its own `BuildInfoProcess` class.
- [x] Start breaking the method apart by factoring out the main
installation logic into its own function.
When context managers are used to save and restore values, we need to remember
to use try/finally around the yield in case an exception is thrown. Otherwise,
the cleanup will be skipped.
- Change config from the undocumented `use_curl: true/false` to `url_fetch_method: urllib/curl`.
- Documentation of `url_fetch_method` in `defaults/config.yaml`
- Default fetch option explicitly set to `urllib` for users who may not have curl on their system
To upgrade from `use_curl` to `url_fetch_method`, run `spack config update config`
The output order for `spack diff` is nondeterministic for larger diffs -- if you
ran it several times it will not put the fields in the spec in the same order on
successive invocations.
This makes a few fixes to `spack diff`:
- [x] Implement the change discussed in https://github.com/spack/spack/pull/22283#discussion_r598337448
to make `AspFunction` comparable in and of itself and to eliminate the need for `to_tuple()`
- [x] Sort the lists of diff properties so that the output is always in the same order.
- [x] Make the output for different fields the same as what we use in the solver. Previously, we
would use `Type(value)` for non-string values and `value` for strings. Now we just use
the value. So the output looks a little cleaner:
```
== Old ========================== == New ====================
@@ node_target @@ @@ node_target @@
- gdbm Target(x86_64) - gdbm x86_64
+ zlib Target(skylake) + zlib skylake
@@ variant_value @@ @@ variant_value @@
- ncurses symlinks bool(False) - ncurses symlinks False
+ zlib optimize bool(True) + zlib optimize True
@@ version @@ @@ version @@
- gdbm Version(1.18.1) - gdbm 1.18.1
+ zlib Version(1.2.11) + zlib 1.2.11
@@ node_os @@ @@ node_os @@
- gdbm catalina - gdbm catalina
+ zlib catalina + zlib catalina
```
I suppose if we want to use `repr()` in the output we could do that and could be
consistent but we don't do that elsewhere -- the types of things in Specs are
all stringifiable so the string and the name of the attribute (`version`, `node_os`,
etc.) are sufficient to know what they are.
When a spec fails to build on `develop`, instead of storing an empty file as the entry in the broken specs list, this change stores the full spec yaml as well as links to the failing pipeline and job.
A `spack diff` will take two specs, and then use the spack.solver.asp.SpackSolverSetup to generate
lists of facts about each (e.g., nodes, variants, etc.) and then take a set difference between the
two to show the user the differences.
Example output:
$ spack diff python@2.7.8 python@3.8.11
==> Warning: This interface is subject to change.
--- python@2.7.8/tsxdi6gl4lihp25qrm4d6nys3nypufbf
+++ python@3.8.11/yjtseru4nbpllbaxb46q7wfkyxbuvzxx
@@ variant_value @@
- python patches a8c52415a8b03c0e5f28b5d52ae498f7a7e602007db2b9554df28cd5685839b8
+ python patches 0d98e93189bc278fbc37a50ed7f183bd8aaf249a8e1670a465f0db6bb4f8cf87
@@ version @@
- openssl Version(1.0.2u)
+ openssl Version(1.1.1k)
- python Version(2.7.8)
+ python Version(3.8.11)
Currently this uses diff-like output but we will attempt to improve on this in the future.
One use case for `spack diff` is whenever a user has a disambiguate situation and cannot
remember how two different installs are different. The command can also output `--json` in
the case of a more analysis type use case where we want to save complete data with all
diffs and the intersection. However, the command is really more intended for a command
line use case, and we likely will have an analyzer more suited to saving data
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
* Catch ConnectionError from CDash reporter
Catch ConnectionError when attempting to upload the results of `spack install`
to CDash. This follows in the spirit of #24299. We do not want `spack install`
to exit with a non-zero status when something goes wrong while attempting to
report results to CDash.
* Catch HTTP Error 400 (Bad Request) in relate_cdash_builds()
`spack style` previously used a Travis CI variable to figure out
what the base branch of a PR was, and this was apparently also set
on `develop`. We switched to `GITHUB_BASE_REF` to support GitHub
Actions, but it looks like this is set to `""` in pushes to develop,
so `spack style` breaks there.
This PR does two things:
- [x] Remove `GITHUB_BASE_REF` knowledge from `spack style` entirely
- [x] Handle `GITHUB_BASE_REF` in style scripts instead, and explicitly
pass the base ref if it is present, but don't otherwise.
This makes `spack style` *not* dependent on the environment and fixes
handling of the base branch in the right place.
This adds a `--root` option so that `spack style` can check style for
a spack instance other than its own.
We also change the inner workings of `spack style` so that `--config FILE`
(and similar options for the various tools) options are used. This ensures
that when `spack style` runs, it always uses the config from the running spack,
and does *not* pick up configuration from the external root.
- [x] add `--root` option to `spack style`
- [x] add `--config` (or similar) option when invoking style tools
- [x] add a test that verifies we can check an external instance
Intel oneAPI installs maintain a lock file in XDG_RUNTIME_DIR,
which by default exists in /tmp (and is shared by all component
installs). This prevented multiple oneAPI components from being
installed in parallel. This commit sets XDG_RUNTIME_DIR to exist
within Spack's installation Stage, so allows multiple components
to be installed at the same time.
This uses our bootstrapping logic to automatically install dependencies for
`spack style`. Users should no longer have to pre-install all of the tools
(`isort`, `mypy`, `black`, `flake8`). The command will do it for them.
- [x] add logic to bootstrap specs with specific version requirements in `spack style`
- [x] remove style tools from CI requirements (to ensure we test bootstrapping)
- [x] rework dependencies for `mypy` and `py-typed-ast`
- `py-typed-ast` needs to be a link dependency
- it needs to be at 1.4.1 or higher to work with python 3.9
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
#24095 introduced a couple of bugs, which are fixed here:
1. The module path is computed incorrectly for bootstrapped clingo
2. We remove too many paths for `sys.path` in case of failures
Third-party Python libraries may be installed in one of several directories:
1. `lib/pythonX.Y/site-packages` for Spack-installed Python
2. `lib64/pythonX.Y/site-packages` for system Python on RHEL/CentOS/Fedora
3. `lib/pythonX/dist-packages` for system Python on Debian/Ubuntu
Previously, Spack packages were hard-coded to use the (1). Now, we query the Python installation itself and ask it which to use. Ever since #21446 this is how we've been determining where to install Python libraries anyway.
Note: there are still many packages that are hard-coded to use (1). I can change them in this PR, but I don't have the bandwidth to test all of them.
* Python: handle dist-packages and site-packages
* Query Python to find site-packages directory
* Add try-except statements for when distutils isn't installed
* Catch more errors
* Fix root directory used in import tests
* Rely on site_packages_dir property
* Permit to enable/disable bootstrapping and customize store location
This PR adds configuration handles to allow enabling
and disabling bootstrapping, and to customize the store
location.
* Move bootstrap related configuration into its own YAML file
* Add a bootstrap command to manage configuration
Spack allows users to set `padded_length` to pad out the installation path in
build farms so that any binaries created are more easily relocatable. The issue
with this is that the padding dominates installation output and makes it
difficult to see what is going on. The padding also causes logs to easily
exceed size limits for things like GitLab artifacts.
This PR fixes this by adding a filter in the logger daemon. If you use a
setting like this:
config:
install_tree:
padded_length: 512
Then lines like this in the output:
==> [2021-06-23-15:59:05.020387] './configure' '--prefix=/Users/gamblin2/padding-log-test/opt/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_placeholder__/__spack_path_pla/darwin-bigsur-skylake/apple-clang-12.0.5/zlib-1.2.11-74mwnxgn6nujehpyyalhwizwojwn5zga
will be replaced with the much more readable:
==> [2021-06-23-15:59:05.020387] './configure' '--prefix=/Users/gamblin2/padding-log-test/opt/[padded-to-512-chars]/darwin-bigsur-skylake/apple-clang-12.0.5/zlib-1.2.11-74mwnxgn6nujehpyyalhwizwojwn5zga
You can see that the padding has been replaced with `[padded-to-512-chars]` to
indicate the total number of characters in the padded prefix. Over a long log
file, this should save a lot of space and allow us to see error messages in
GitHub/GitLab log output.
The *actual* build logs still have full paths in them. Also lines that are
output by Spack and not by a package build are not filtered and will still
display the fully padded path. There aren't that many of these, so the change
should still help reduce file size and readability quite a bit.
015e29efe1 that introduced this section to the
documentation said “two” here instead of the actual count, three.
9f54cea5c5 then added a fourth, BLAS/LAPACK.
Rather than trying to keep this leading count in sync, this change just replaces
the wording with something more generic/stable.
* fix remaining flake8 errors
* imports: sort imports everywhere in Spack
We enabled import order checking in #23947, but fixing things manually drives
people crazy. This used `spack style --fix --all` from #24071 to automatically
sort everything in Spack so PR submitters won't have to deal with it.
This should go in after #24071, as it assumes we're using `isort`, not
`flake8-import-order` to order things. `isort` seems to be more flexible and
allows `llnl` mports to be in their own group before `spack` ones, so this
seems like a good switch.
`dateutil.parser` was an optional dependency for CVS tests. It was failing on macOS
beacuse the dateutil types were not being installed, and mypy was failing *even when the
CVS tests were skipped*. This seems like it was an oversight on macOS --
`types-dateutil-parser` was not installed there, though it was on Linux unit tests.
It takes 6 lines of YAML and some weird test-skipping logic to get `python-dateutil` and
`types-python-dateutil` installed in all the tests where we need them, but it only takes
4 lines of code to write the date parser we need for CVS, so I just did that instead.
Note that CVS date format can vary from system to system, but it seems like it's always
pretty similar for the parts we care about.
- [x] Replace dateutil.parser with a simpler date regex
- [x] Lose the dependency on `dateutil.parser`
Previous tests of `spack style` didn't really run the tools --
they just ensure that the commands worked enough to get coverage.
This adds several real tests and ensures that we hit the corner
cases in `spack style`. This also tests sucess as well as failure
cases.
This consolidates code across tools in `spack style` so that each
`run_<tool>` function can be called indirecty through a dictionary
of handlers, and os that checks like finding the executable for the
tool can be shared across commands.
- [x] rework `spack style` to use decorators to register tools
- [x] define tool order in one place in `spack style`
- [x] fix python 2/3 issues to Get `isort` checks working
- [x] make isort error regex more robust across versions
- [x] remove unused output option
- [x] change vestigial `TRAVIS_BRANCH` to `GITHUB_BASE_REF`
- [x] update completion
We should not fail the generate stage simply due to the presence of
a broken-spec somewhere in the DAG. Only fail if the known broken
spec needs to be rebuilt.
This PR adds a context manager that permit to group the common part of a `when=` argument and add that to the context:
```python
class Gcc(AutotoolsPackage):
with when('+nvptx'):
depends_on('cuda')
conflicts('@:6', msg='NVPTX only supported in gcc 7 and above')
conflicts('languages=ada')
conflicts('languages=brig')
conflicts('languages=go')
```
The above snippet is equivalent to:
```python
class Gcc(AutotoolsPackage):
depends_on('cuda', when='+nvptx')
conflicts('@:6', when='+nvptx', msg='NVPTX only supported in gcc 7 and above')
conflicts('languages=ada', when='+nvptx')
conflicts('languages=brig', when='+nvptx')
conflicts('languages=go', when='+nvptx')
```
which needs a repetition of the `when='+nvptx'` argument. The context manager might help improving readability and permits to group together directives related to the same semantic aspect (e.g. all the directives needed to model the behavior of `gcc` when `+nvptx` is active).
Modifications:
- [x] Added a `when` context manager to be used with package directives
- [x] Add unit tests and documentation for the new feature
- [x] Modified `cp2k` and `gcc` to show the use of the context manager
ci: only write to broken-specs list on SpackError
Only write to the broken-specs list when `spack install` raises a SpackError,
instead of writing to this list unnecessarily when infrastructure-related problems
prevent a develop job from completing successfully.
If two Specs have the same hash (and prefix) but are not equal, Spack
originally had logic to detect this and raise an error (since both
cannot be installed in the same place). Recently this has eroded and
the check no-longer works; moreover, when defining projections (which
may truncate the hash or other distinguishing properties from the
prefix) Spack was also failing to detect collisions (in both of these
cases, Spack would overwrite the old prefix with the new Spec).
This PR maintains a list of all "taken" prefixes: if a hash is not
registered (i.e. recorded as installed in the database) but the prefix
is occupied, that is a collision. This can detect collisions created
by defining projections (specifically when they omit the hash).
The PR does not detect collisions where specs have the same hash
(and prefix) but are not equal.
Prior to any Spack build, Spack modifies PATH etc. to help the build
find the dependencies it needs. It also allows any package to define
custom environment modifications (and furthermore a package can
specify environment modifications to apply when it is used as a
dependency). If an external package defines custom environment
modifications that alter PATH, and the external package is in a merged
or system prefix, then that prefix could "override" the Spack-built
packages.
This commit reorders environment modifications so that PrependPath
actions which expose Spack-built packages override PrependPath actions
for custom environment modifications of external packages.
In more detail, the original order of environment modifications is:
* Modules
* Compiler flag variables
* PATH, CMAKE_PREFIX_PATH, and PKG_CONFIG_PATH for dependencies
* Custom package.py modifications in the following order:
* dependencies
* root
This commit changes the order:
* Modules
* Compiler flag variables
* For each external dependency
* PATH, CMAKE_PREFIX_PATH, and PKG_CONFIG_PATH modifications
* Custom modifications
* For each Spack-built dependency
* PATH, CMAKE_PREFIX_PATH, and PKG_CONFIG_PATH modifications
* Custom modifications
Spack pipelines need to take specific actions internally that depend
on whether the pipeline is being run on a PR to spack or a merge to
the develop branch. Pipelines can also run in other repositories,
which represents other possible use cases than just the two mentioned
above. This PR creates a "SPACK_PIPELINE_TYPE" gitlab variable which
is propagated to rebuild jobs, and is also used internally to determine
which pipeline-specific tasks to run.
One goal of the PR is fix an issue where rebuild jobs which failed on
develop pipelines did not properly report the broken full hash to the
"broken-specs-url".
* Add Externally Findable section to info command
* Use comma delimited detection attributes in addition to boolean value
* Unit test externally detectable part of spack info
* Force the Python interpreter with an env variable
This commit forces the Python interpreter with an
environment variable, to ensure that the Python set
by the "setup-python" action is the one being used.
Due to the policy adopted by Spack to prefer python3
over python we may end up picking a Python 3.X
interpreter where Python 2.7 was meant to be used.
* Revert "Update conftest.py (#24473)"
This reverts commit 477c8ce820.
* Make python-dateutil a soft dependency for unit tests
Before #23212 people could clone spack and run
```
spack unit-tests
```
while now this is not possible, since python-dateutil is
a required but not vendored dependency. This change makes
it not a hard requirement, i.e. it will be used if found
in the current interpreter.
* Workaround mypy complaint
This commit fixes a subtle bug that may occur when
a package is a "possible_provider" of a virtual but
no "provides_virtual" can be deduced. In that case
the cardinality constraint on "provides_virtual"
may arbitrarily assign a package the role of provider
even if the constraints for it to be one are not fulfilled.
The fix reworks the logic around three concepts:
- "possible_provider": a package may provide a virtual if some constraints are met
- "provides_virtual": a package meet the constraints to provide a virtual
- "provider": a package selected to provide a virtual
Spack packages can now fetch versions from CVS repositories. Note
this fetch mechanism is unsafe unless using :extssh:. Most public
CVS repositories use an insecure protocol implemented as part of CVS.
Here we are adding an install_times.json into the spack install metadata folder.
We record a total, global time, along with the times for each phase. The type
of phase or install start / end is included (e.g., build or fail)
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Add a new "spack audit" command. This command can check for issues
with configuration or with packages and is intended to help a
user debug a failed Spack build.
In some cases the reported issues are always errors but are too
costly to check for (e.g. packages that specify missing variants on
dependencies). In other cases the issues may be legitimate but
uncommon usage of Spack and we want to be sure the user intended the
behavior (e.g. duplicate compiler definitions).
Audits are grouped by theme, and for now the two themes are packages
and configuration. For example you can run all available audits
on packages with "spack audit packages". It is intended that in
the future users will be able to define their own audits.
The package audits are good candidates for running in package_sanity
(i.e. they could catch bugs in user-submitted packages before they
are merged) but that is left for a later PR.
This should get us most of the way there to support using monitor during a spack container build, for both Singularity and Docker. Some quick notes:
### Docker
Docker works by way of BUILDKIT and being able to specify --secret. What this means is that you can prefix a line with a mount of type secret as follows:
```bash
# Install the software, remove unnecessary deps
RUN --mount=type=secret,id=su --mount=type=secret,id=st cd /opt/spack-environment && spack env activate . && export SPACKMON_USER=$(cat /run/secrets/su) && export SPACKMON_TOKEN=$(cat /run/secrets/st) && spack install --monitor --fail-fast && spack gc -y
```
Where the id for one or more secrets corresponds to the file mounted at `/run/secrets/<name>`. So, for example, to build this container with su (spackmon user) and sv (spackmon token) defined I would export them on my host and do:
```bash
$ DOCKER_BUILDKIT=1 docker build --network="host" --secret id=st,env=SPACKMON_TOKEN --secret id=su,env=SPACKMON_USER -t spack/container .
```
And when we add `env` to the secret definition that tells the build to look for the secret with id "st" in the environment variable `SPACKMON_TOKEN` for example.
If the user is building locally with a local spack monitor, we also need to set the `--network` to be the host, otherwise you can't connect to it (a la isolation of course.)
## Singularity
Singularity doesn't have as nice an ability to clearly specify secrets, so (hoping this eventually gets implemented) what I'm doing now is providing the user instructions to write the credentials to a file, add it to the container to source, and remove when done.
## Tags
Note that the tags PR https://github.com/spack/spack/pull/23712 will need to be merged before `--monitor-tags` will actually work because I'm checking for the attribute (that doesn't exist yet):
```bash
"tags": getattr(args, "monitor_tags", None)
```
So when that PR is merged to update the argument group, it will work here, and I can either update the PR here to not check if the attribute is there (it will be) or open another one in the case this PR is already merged.
Finally, I added a bunch of documetation for how to use monitor with containerize. I say "mostly working" because I can't do a full test run with this new version until the container base is built with the updated spack (the request to the monitor server for an env install was missing so I had to add it here).
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
When running executables from build dependencies, we want to avoid that
`LD_PRELOAD` and `DYLD_INSERT_LIBRARIES` any of their shared libs build
by spack with system libraries.
this will first support uploads for spack monitor, and eventually could be
used for other kinds of spack uploads
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
* extending example for buildcaches
I was attempting to create a local build cache from a directory, and I found the
docs for both buildcaches and mirrors, but did not connect the docs that the
url variable could be the local filesystem variable. I am extending the docs for
buildcaches with an example of creating and interacting with one on the filesystem
because I suspect other users will run into this need and possibly not find what
they are looking for.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
* adding as follows to spack mirror list
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
It is currently kind of confusing to the reader to distinguish spack buildcache install
and spack install, and it is not clear how to use a build cache once a mirror is added.
Hopefully this little big of description can help (and I hope I got it right!)
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Use the 'version_yearlike' attribute instead of 'version' to
check if the SPACK_COMPILER_EXTRA_RPATHS should be set to include
the built-in 'libfabrics'.
When using the bare 'version', the comparison is wrong when
building with 'intel-parallel-studio', which has the version
format '<edition>.YYYY.Nupdate', due to the leading '<edition>'.
Extracting specs for the result of a solve has been factored
as a method into the asp.Result class. The method account for
virtual specs being passed as initial requests.
Minimizing compiler mismatches in the DAG and preferring newer
versions of packages are now higher priority than trying to use as
many default values as possible in multi-valued variants.
Since the module roots were removed from the config file,
`--print-shell-vars` cannot find the module roots anymore. Fix it by
using the new `root_path` function. Moreover, the roots for lmod and
modules seems to have been flipped by accident.
The VALID_VERSION regex didn't check that the version string was
completely valid, only that a prefix of it was. This version ensures
the entire string represents a valid version.
This makes a few related changes.
1. Make the SEGMENT_REGEX identify *which* arm it matches by what groups
are populated, including whether it's a string or int component or a
separator all at once.
2. Use the updated regex to parse the input once with a findall rather
than twice, once with findall and once with split, since the version
components and separators can be distinguished by their group status.
3. Rather than "convert to int, on exception stay string," if the int
group is set then convert to int, if not then construct an instance
of the VersionStrComponent class
4. VersionStrComponent now implements all of the special string
comparison logic as part of its __lt__ and __eq__ methods to deal
with infinity versions and also overloads comparison with integers.
5. Version now uses direct tuple comparison since it has no per-element
special logic outside the VersionStrComponent class.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Passing absolute paths from pipeline generate job to downstream rebuild jobs
causes problems when the CI_PROJECT_DIR is not the same for the generate and
rebuild jobs. This has happened, for example, when gitlab checks out the
project into a runner-specific directory and different runners are chosen
for the generate and rebuild jobs.
* ensure that the stage root exists for `spack stage -p <PATH>`
* add test to verify `spack stage -p <PATH>` works!
* move out shared tmp staging path setup to a fixture to fix the test
* Simplified the spack.util.gpg implementation
All the classes defined in this Python module,
which were previously used to construct singleton
instances, have been removed in favor of four
global variables. These variables are initialized
lazily, like before.
The API of the module has been unchanged for the
most part. A few tests have been modified to use
the new global names.
For me the buildcache force overwrite option does not work. It tries to
delete a file, but errors with a key error, apparently because the
leading / has to be removed.
* util.tty.log: read up to 100 lines if ready
Rework to read up to 100 lines from the captured stdin as long as data
is ready to be read immediately. Adds a helper function to poll with
`select` for ready data. This showed a roughly 5-10x perf improvement
for high-rate writes through the logger with relatively short lines.
* util.tty.log: Defer flushes to end of ready reads
Rather than flush per line, flush per set of reads. Since this is a
non-blocking loop, the total perceived wait is short.
* util.tty.log: only scan each line once, usually
Rather than always find all control characters then substitute them all,
use `subn` to count the number of control characters replaced. Only if
control characters exist find out what they are. This could be made
truly single pass with sub with a function, but it's a more intrusive
change and this got 99%ish of the performance improvement (roughly
another 2x in some cases).
* util.tty.log: remove check for `readable`
Python < 3 does not support a readable check on streams, should not be
necessary here since we control the only use and it's explicitly a
stream to be read.
This PR allows users to `--export`, `--export-secret`, or both to export GPG keys
from Spack. The docs are updated that include a warning that this usually does not
need to be done.
This addresses an issue brought up in slack, and also represented in #14721.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Currently, module configurations are inconsistent because modulefiles are generated with the configs for the active environment, but are shared among all environments (and spack outside any environment).
This PR fixes that by allowing Spack environments (or other spack config scopes) to define additional sets of modules to generate. Each set of modules can enable either lmod or tcl modules, and contains all of the previously available module configuration. The user defines the name of each module set -- the set configured in Spack by default is named "default", and is the one returned by module manipulation commands in the absence of user intervention.
As part of this change, the module roots configuration moved from the config section to inside each module configuration.
Additionally, it adds a feature that the modulefiles for an environment can be configured to be relative to an environment view rather than the underlying prefix. This will not be enabled by default, as it should only be enabled within an environment and for non-default views constructed with separate projections per-spec.
### Overview
The goal of this PR is to make gitlab pipeline builds (especially build failures) more reproducible outside of the pipeline environment. The two key changes here which aim to improve reproducibility are:
1. Produce a `spack.lock` during pipeline generation which is passed to child jobs via artifacts. This concretized environment is used both by generated child jobs as well as uploaded as an artifact to be used when reproducing the build locally.
2. In the `spack ci rebuild` command, if a spec needs to be rebuilt from source, do this by generating and running an `install.sh` shell script which is then also uploaded as a job artifact to be run during local reproduction.
To make it easier to take advantage of improved build reproducibility, this PR also adds a new subcommand, `spack ci reproduce-build`, which, given a url to job artifacts:
- fetches and unzips the job artifacts to a local directory
- looks for the generated pipeline yaml and parses it to find details about the job to reproduce
- attempts to provide a copy of the same version of spack used in the ci build
- if the ci build used a docker image, the command prints a `docker run` command you can run to get an interactive shell for reproducing the build
#### Some highlights
One consequence of this change will be much smaller pipeline yaml files. By encoding the concrete environment in a `spack.lock` and passing to child jobs via artifacts, we will no longer need to encode the concrete root of each spec and write it into the job variables, greatly reducing the size of the generated pipeline yaml.
Additionally `spack ci rebuild` output (stdout/stderr) is no longer internally redirected to a log file, so job output will appear directly in the gitlab job trace. With debug logging turned on, this often results in log files getting truncated because they exceed the maximum amount of log output gitlab allows. If this is a problem, you still have the option to `tee` command output to a file in the within the artifacts directory, as now each generated job exposes a `user_data` directory as an artifact, which you can fill with whatever you want in your custom job scripts.
There are some changes to be aware of in how pipelines should be set up after this PR:
#### Pipeline generation
Because the pipeline generation job now writes a `spack.lock` artifact to be consumed by generated downstream jobs, `spack ci generate` takes a new option `--artifacts-root`, inside which it creates a `concrete_env` directory to place the lockfile. This artifacts root directory is also where the `user_data` directory will live, in case you want to generate any custom artifacts. If you do not provide `--artifacts-root`, the default is for it to create a `jobs_scratch_dir` within your `CI_PROJECT_DIR` (a gitlab predefined environment variable) or whatever is your current working directory if that variable isn't set. Here's the diff of the PR testing `.gitlab-ci.yml` taking advantage of the new option:
```
$ git diff develop..pipelines-reproducible-builds share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
diff --git a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
index 579d7b56f3..0247803a30 100644
--- a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
+++ b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
@@ -28,10 +28,11 @@ default:
- cd share/spack/gitlab/cloud_pipelines/stacks/${SPACK_CI_STACK_NAME}
- spack env activate --without-view .
- spack ci generate --check-index-only
+ --artifacts-root "${CI_PROJECT_DIR}/jobs_scratch_dir"
--output-file "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
artifacts:
paths:
- - "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
+ - "${CI_PROJECT_DIR}/jobs_scratch_dir"
tags: ["spack", "public", "medium", "x86_64"]
interruptible: true
```
Notice how we replaced the specific pointer to the generated pipeline file with its containing folder, the same folder we passed as `--artifacts-root`. This way anything in that directory (the generated pipeline yaml, as well as the concrete environment directory containing the `spack.lock`) will be uploaded as an artifact and available to the downstream jobs.
#### Rebuild jobs
Rebuild jobs now must activate the concrete environment created by `spack ci generate` and provided via artifacts. When the pipeline is generated, a directory called `concrete_environment` is created within the artifacts root directory, and this is where the `spack.lock` file is written to be passed to the generated rebuild jobs. The artifacts root directory can be specified using the `--artifacts-root` option to `spack ci generate`, otherwise, it is assumed to be `$CI_PROJECT_DIR`. The directory containing the concrete environment files (`spack.yaml` and `spack.lock`) is then passed to generated child jobs via the `SPACK_CONCRETE_ENV_DIR` variable in the generated pipeline yaml file.
When you don't provide custom `script` sections in your `mappings` within the `gitlab-ci` section of your `spack.yaml`, the default behavior of rebuild jobs is now to change into `SPACK_CONCRETE_ENV_DIR` and activate that environment. If you do provide custom rebuild scripts in your `spack.yaml`, be aware those scripts should do the same thing: assume `SPACK_CONCRETE_ENV_DIR` contains the concretized environment to activate. No other changes to existing custom rebuild scripts should be required as a result of this PR.
As mentioned above, one key change made in this PR is the generation of the `install.sh` script by the rebuild jobs, as that same script is both run by the CI rebuild job as well as exported as an artifact to aid in subsequent attempts to reproduce the build outside of CI. The generated `install.sh` script contains only a single `spack install` command with arguments computed by `spack ci rebuild`. If the install fails, the job trace in gitlab will contain instructions on how to reproduce the build locally:
```
To reproduce this build locally, run:
spack ci reproduce-build https://gitlab.next.spack.io/api/v4/projects/7/jobs/240607/artifacts [--working-dir <dir>]
If this project does not have public pipelines, you will need to first:
export GITLAB_PRIVATE_TOKEN=<generated_token>
... then follow the printed instructions.
```
When run locally, the `spack ci reproduce-build` command shown above will download and process the job artifacts from gitlab, then print out instructions you can copy-paste to run a local reproducer of the CI job.
This PR includes a few other changes to the way pipelines work, see the documentation on pipelines for more details.
This PR erelies on
~- [ ] #23194 to be able to refer to uninstalled specs by DAG hash~
EDIT: that is going to take longer to come to fruition, so for now, we will continue to install specs represented by a concrete `spec.yaml` file on disk.
- [x] #22657 to support install a single spec already present in the active, concrete environment
- [x] add `in_buildcache` field to DB records to indicate what parts of an index,
which includes roots and dependencies, are in the buildcache.
- [x] add `mark()` method to DB for setting values on single nodes of the DAG.
I would like to be able to export (and save and then load programatically)
spack blame metadata, so this commit adds a spack blame --json argument,
along with developer docs for it
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
This work will come in two phases. The first here is to allow saving of a local result
with spack monitor, and the second will add a spack monitor command so the user can
do spack monitor upload.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Currently if one package does `depends_on('pkg default_library=shared')`
and another does `depends_on('pkg default_library=both')`, you'd get a
concretization error.
With this PR one package can do `depends_on('pkg default_library=shared')`
and another depends_on('default_library=static'), and it would concretize to
`pkg default_library=shared,static`
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Bash has a builtin `fc` that will override the compiler if you use "fc",
so it's better to use the full spack-supplied compiler path.
Additionally, the filter regex in the docs was wrong: it replaced the
entire assignment operation with the RHS.
* Modification to R environment
This PR modifies how the R environmnet is presented, and fixes
installing the standalone Rmath library.
- The Rmath build and install methods are combined into one
- Set parallel=False when installing Rmath
- remove the run environment that set up variables for libraries and
headers that are not really needed, and pollute the environment.
* Add setup_run_environment back
- Add back the setup_run_environment with LD_LIBRARY_PATH and
PKG_CONFIG_PATH.
- Adjust documentation to reflect the current code.
Spack uses curl to fetch URL resources. For locally-stored resources
it uses curl's file protocol; when using this protocol, curl expects
that the URL encoding conforms to RFC 3986 (which reserves characters
like '?' and '=' for special use).
We were not performing this encoding, and found a resource where
curl was interpreting this in an unfavorable way (succeeding, but
producing an empty file). This commit properly encodes URLs when
using curl's file protocol.
This error did not likely come up before because in most contexts
Spack was either fetching via http or it was using URLs without
offending characters (for example, the sha-based URLs in mirrors
never contain these characters).
Spack doesn't require users to manually index their repos; it reindexes the indexes automatically when things change. To determine when to do this, it has to `stat()` all package files in each repository to make sure that indexes up to date with packages. We currently index virtual providers, patches by sha256, and tags on packages.
When this was originally implemented, we ran the checker all the time, at startup, but that was slow (see #7587). But we didn't go far enough -- it still consults the checker and does all the stat operations just to see if a package exists (`Repo.exists()`). That might've been a wash in 2018, but as the number of packages has grown, it's gotten slower -- checking 5k packages is expensive and users see this for small operations. It's a win now to make `Repo.exists()` check files directly.
**Fix:**
This PR does a number of things to speed up `spack load`, `spack info`, and other commands:
- [x] Make `Repo.exists()` check files directly again with `os.path.exists()` (this is the big one)
- [x] Refactor `Spec.satisfies()` so that a checking for virtual packages only happens if needed
(avoids some calls to exists())
- [x] Avoid calling `Repo.exists(spec)` in `Repo.get()`. `Repo.get()` will ultimately try to load
a `package.py` file anyway; we can let the failure to load it indicate that the package doesn't
exist, and avoid another call to exists().
- [x] Fix up some comments in spec parsing
- [x] Call `UnknownPackageError` more consistently in `repo.py`
- [x] `analyze` isn't commonly used; move it to long help
(`spack -H` vs `spack -h`). Give it its own section.
- [x] make it clear from `spack -h` that `spack module` can generate
module files
- [x] shorten help for `spack style`
Currently, module configurations are inconsistent because modulefiles are generated with the configs for the active environment, but are shared among all environments (and spack outside any environment).
This PR fixes that by allowing Spack environments (or other spack config scopes) to define additional sets of modules to generate. Each set of modules can enable either lmod or tcl modules, and contains all of the previously available module configuration. The user defines the name of each module set -- the set configured in Spack by default is named "default", and is the one returned by module manipulation commands in the absence of user intervention.
As part of this change, the module roots configuration moved from the `config` section to inside each module configuration.
Additionally, it adds a feature that the modulefiles for an environment can be configured to be relative to an environment view rather than the underlying prefix. This will not be enabled by default, as it should only be enabled within an environment and for non-default views constructed with separate projections per-spec.
TODO:
- [x] code changes to support multiple module sets
- [x] code changes to support modules relative to a view
- [x] Tests for multiple module configurations
- [x] Tests for modules relative to a view
- [x] Backwards compatibility for module roots from config section
- [x] Backwards compatibility for default module set without the name specified
- [x] Tests for backwards compatibility
The implementation for __str__ has been simplified to traverse the spec directly,
and doesn't call anymore the flat_dependencies method. Dead code has been
removed.
For configure (e.g. for hdf5) to pass, this option needs to be pulled out when invoked in ccld mode.
I thought it had fixed the issue but I still saw it after that. After some digging, my guess is that I was able
to get hdf5 to build with ifort instead of ifx. Lot of overlapping changes occurring at the time, as it were.
There are still outstanding issues building hdf5 with ifx, and Intel is looking into what appears to be a
compiler bug, but this manifests during build and is likely a separate issue.
I have verified that the making the edit in 'ccld' mode removes the -loopopt=0 and enables hdf5 to pass
configure. It should be fine to make the edit in 'ld' mode as well, but I have not tested that and didn't
include an -or- condition for it.
Currently, environment views blink out of existence during the view regeneration, and are slowly built back up to their new and improved state. This is not good if other processes attempt to access the view -- they can see it in an inconsistent state.
This PR fixes makes environment view updates atomic. This requires a level of indirection (via symlink, similar to nix or guix) from the view root to the underlying implementation on the filesystem.
Now, an environment view at `/path/to/foo` is a symlink to `/path/to/._foo/<hash>`, where `<hash>` is a hash of the contents of the view. We construct the view in its content-keyed hash directory, create a new symlink to this directory, and atomically replace the symlink with one to the new view.
This PR has a couple of other benefits:
* It future-proofs environment views so that we can implement rollback.
* It ensures that we don't leave users in an inconsistent state if building a new view fails for some reason.
For background:
* there is no atomic operation in posix that allows for a non-empty directory to be replaced.
* There is an atomic `renameat2` in the linux kernel starting in version 3.15, but many filesystems don't support the system call, including NFS3 and NFS4, which makes it a poor implementation choice for an HPC tool, so we use the symlink approach that others tools like nix and guix have used successfully.
fixes#22351
The ASP-based solver now accounts for the presence
in the DAG of deprecated versions and tries to minimize
their number at highest priority.
Variants explicitly set in an abstract root spec are considered
as defaults for the package they refer to, and they override
what is in packages.yaml and in package.py. This is relevant
only for multi-valued variants, where a constraint may extend
an already default value.
The code for guessing cpu archtype based on craype modules names got confused,
at least on LLNL RZ prototype systems. In particular a (L) or (D) at the end of a craype-x86-xxx or other
cpu architecture module was geting the logic confused.
With this patch, any white space + remaining characters in the moduel name are removed.
Signed-off-by: Howard Pritchard <howardp@lanl.gov>
There have been a lot of questions and some confusion recently surrounding Spack installation test capabilities so this PR is intended to clean up and refine the documentation for "Checking an installation".
It aims to better distinguish between checks that are performed during an installation (i.e., build-time tests) and those that can be done days and weeks after the software has been installed (i.e., install (or smoke) tests).
When we first merged the ASP-based solver, unit-tests
were run in a Docker container with root permissions
and that was preventing a few tests to succeed.
Since some time though, clingo is tested as a regular
user within Github Actions VMs, so we should start to
run checks again.
In an active concretize environment, support installing one or more
cli specs only if they are already present in the environment. The
`--no-add` option is the default for root specs, but optional for
dependency specs. I.e. if you `spack install <depspec>` in an
environment, the dependency-only spec `depspec` will be added as a
root of the environment before being installed. In addition,
`spack install --no-add <spec>` fails if it does not find an
unambiguous match for `spec`.
Like compilers targets now try to minimize
mismatches, instead of maximizing matches.
Deduction of mismatches is reworked to be
the opposite of a match, since computing
that is faster.
The ASP-based solver can natively manage cases where more than one root spec is given, and is able to concretize all the roots together (ensuring one spec per package at most).
Modifications:
- [x] When concretising together an environment the ASP-based solver calls directly its `solve` method rather than constructing a temporary fake root package.
The loading protocol mandates that the the module we are going
to import needs to be already in sys.modules before its code is
executed, so to prevent unbounded recursions and multiple loading.
Loading a module from file exits early if the module is already
in sys.modules
When installing OneAPI packages as root (e.g. in a container), the
installer places cache files in /var/intel/installercache that
interfere with future Spack installs. This ensures that when
running an installation as a root user that this is removed.
The function we coded in Spack to load Python modules with arbitrary
names from a file seem to have issues with local imports. For
loading hooks though it is unnecessary to use such functions, since
we don't care to bind a custom name to a module nor we have to load
it from an unknown location.
This PR thus modifies spack.hook in the following ways:
- Use __import__ instead of spack.util.imp.load_source (this
addresses #20005)
- Sync module docstring with all the hooks we have
- Avoid using memoization in a module function
- Marked with a leading underscore all the names that are supposed
to stay local
This is as much a question as it is a minor fine-tuning of the docs. I've been known to add things to an environment by editing the `spack.yaml` file directly. When I read the previous version of this sentence, I was afraid that `spack add` was actually doing *two* things, modifying the `spack.yaml` and updating something else that defined the roots of the Environment. A bit of experimentation suggests that editing the `spack.yaml` file is sufficient to change the roots.
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
fixes#22786
Trying to get optimization flags for a specific target from
a compiler may trigger warnings. In the context of constructing
facts for the ASP-based solver we don't want to show these
warnings to the user, so here we simply ignore them.
This isn't a significant issue, but I noticed that the docstring incorrectly references "tty.fail" and I wanted to quickly fix it to reflect the correct command, tty.die. I also wanted to fix the docstrings to not be large clumps, to what @tgamblin suggested after I wrote this - having one line at the top that is a quick summary, and more verbose after that.
This provides initial support for [spack monitor](https://github.com/spack/spack-monitor), a web application that stores information and analysis about Spack installations. Spack can now contact a monitor server and upload analysis -- even after a build is already done.
Specifically, this adds:
- [x] monitor options for `spack install`
- [x] `spack analyze` command
- [x] hook architecture for analyzers
- [x] separate build logs (in addition to the existing combined log)
- [x] docs for spack analyze
- [x] reworked developer docs, with hook docs
- [x] analyzers for:
- [x] config args
- [x] environment variables
- [x] installed files
- [x] libabigail
There is a lot more information in the docs contained in this PR, so consult those for full details on this feature.
Additional tests will be added in a future PR.
In debug mode, processes taking an exclusive lock write out their node name to
the lock file. We were using `getfqdn()` for this, but it seems to produce
inconsistent results when used from within some github actions containers.
We get this error because getfqdn() seems to return a short name in one place
and a fully qualified name in another:
```
File "/home/runner/work/spack/spack/lib/spack/spack/test/llnl/util/lock.py", line 1211, in p1
assert lock.host == self.host
AssertionError: assert 'fv-az290-764....cloudapp.net' == 'fv-az290-764'
- fv-az290-764.internal.cloudapp.net
+ fv-az290-764
!!!!!!!!!!!!!!!!!!!! Interrupted: stopping after 1 failures !!!!!!!!!!!!!!!!!!!!
== 1 failed, 2547 passed, 7 skipped, 22 xfailed, 2 xpassed in 1238.67 seconds ==
```
This seems to stem from https://bugs.python.org/issue5004.
We don't really need to get a fully qualified hostname for debugging, so use
`gethostname()` because its results are more consistent. This seems to fix the
issue.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
* Clarify stub compiler definition in compilers.yaml
* Update explanation of why stub compiler definition is needed
* Add note about required module definition when using Spack-installed
intel-parallel-studio as intel-compiler
* Add suggestion about updating package config preferences based on
choice of variants when installing intel-parallel-studio to avoid
reinstallation
We remove system paths from search variables like PATH and
from -L options because they may contain many packages and
could interfere with Spack-built packages. External packages
may be installed to prefixes that are not actually system paths
but are still "merged" in the sense that many other packages are
installed there. To avoid conflicts, this PR places all external
packages at the end of search paths.
We set LC_ALL=C to encourage a build process to generate ASCII
output (so our logger daemon can decode it). Most packages
respect this but it appears that intel-oneapi-compilers does
not in some cases (see #22813). This reads the output of the build
process as UTF-8, which still works if the build process respects
LC_ALL=C but also works if the process generates UTF-8 output.
For Python >= 3.7 all files are opened with UTF-8 encoding by
default. Python 2 does not support the encoding argument on
'open', so to support Python 2 the files would have to be
opened in byte mode and explicitly decoded (as a side note,
this would be the only way to handle other encodings without
being informed of them in advance).
* bugfix: fix representation of null in spack_yaml output
Nulls were previously printed differently by `spack config blame config`
and `spack config get config`. Fix this in the `spack_yaml` dumpers.
* bugfix: `spack config blame` should print all lines of config
`spack config blame` was not printing all lines of configuration because
there were no annotations for empty lines in the YAML dump output. Fix
this by removing empty lines.
- Use debugoptimized as default build type, just like RelWithDebInfo for cmake
- Do not strip by default, and add a default_library variant which conveniently support both shared and static
By default, clingo doesn't show any optimization criteria (maximized or
minimized sums) if the set they aggregate is empty. Per the clingo
mailing list, we can get around that by adding, e.g.:
```
#minimize{ 0@2 : #true }.
```
for the 2nd criterion. This forces clingo to print out the criterion but
does not affect the optimization.
This PR adds directives as above for all of our optimization criteria, as
well as facts with descriptions of each criterion,like this:
```
opt_criterion(2, "number of non-default variants")
```
We use facts in `concretize.lp` rather than hard-coding these in `asp.py`
so that the names can be maintained in the same place as the other
optimization criteria.
The now-displayed weights and the names are used to display optimization
output like this:
```console
(spackle):solver> spack solve --show opt zlib
==> Best of 0 answers.
==> Optimization Criteria:
Priority Criterion Value
1 version weight 0
2 number of non-default variants (roots) 0
3 multi-valued variants + preferred providers for roots 0
4 number of non-default variants (non-roots) 0
5 number of non-default providers (non-roots) 0
6 count of non-root multi-valued variants 0
7 compiler matches + number of nodes 1
8 version badness 0
9 non-preferred compilers 0
10 target matches 0
11 non-preferred targets 0
zlib@1.2.11%apple-clang@12.0.0+optimize+pic+shared arch=darwin-catalina-skylake
```
Note that this is all hidden behind a `--show opt` option to `spack
solve`. Optimization weights are no longer shown by default, but you can
at least inspect them and more easily understand what is going on.
- [x] always show optimization criteria in `clingo` output
- [x] add `opt_criterion()` facts for all optimizationc criteria
- [x] make display of opt criteria optional in `spack solve`
- [x] rework how optimization criteria are displayed, and add a `--show opt`
optiong to `spack solve`
CachedCMakePackage is a CMakePackage subclass for using CMake initial
cache. This feature of CMake allows packages to increase reproducibility,
especially between spack builds and manual builds. It also allows
packages to sidestep certain parsing bugs in extremely long cmake
commands, and to avoid system limits on the length of the command line.
Co-authored by: Chris White <white238@llnl.gov>
In the face of two consecutive spaces in the command line, the compiler wrapper would skip all remaining arguments, causing problems building py-scipy with Intel compiler. This PR solves the problem.
* Fixed compiler wrapper in the face of extra spaces between arguments
Co-authored-by: Elizabeth Fischer <elizabeth.fischer@alaska.edu>
Original commit message:
This feature of CMake allows packages to increase reproducibility, especially between
Spack- and manual builds. It also allows packages to sidestep certain parsing bugs in
extremely long ``cmake`` commands, and to avoid system limits on the length of the
command line.
Adding:
Co-authored by: Chris White <white238@llnl.gov>
This reverts commit c4f0a3cf6c.
CachedCMakePackage is a specialized class for packages built using CMake initial cache.
This feature of CMake allows packages to increase reproducibility, especially between
Spack- and manual builds. It also allows packages to sidestep certain parsing bugs in
extremely long ``cmake`` commands, and to avoid system limits on the length of the
command line.
Autoconf before 2.70 will erroneously pass ifx's -loopopt argument to the
linker, requiring all packages to use autoconf 2.70 or newer to use ifx.
This is a hotfix enabling ifx to be used in Spack. Instead of bothering
to upgrade autoconf for every package, we'll just strip out the
problematic flag if we're in `ld` mode.
- [x] Add a conditional to the `cc` wrapper to skip `-loopopt` in `ld`
mode. This can probably be generalized in the future to strip more
things (e.g., via an environment variable we can constrol from
Spack) but it's good enough for now.
- [x] Add a test ensuring that `-loopopt` arguments are stripped in link
mode, but not in compile mode.
Since `lazy_lexicographic_ordering` handles `None` comparison for us, we
don't need to adjust the spec comparators to return empty strings or
other type-specific empty types. We can just leverage the None-awareness
of `lazy_lexicographic_ordering`.
- [x] remove "or ''" from `_cmp_iter` in `Spec`
- [x] remove setting of `self.namespace` to `''` in `MockPackage`
We have been using the `@llnl.util.lang.key_ordering` decorator for specs
and most of their components. This leverages the fact that in Python,
tuple comparison is lexicographic. It allows you to implement a
`_cmp_key` method on your class, and have `__eq__`, `__lt__`, etc.
implemented automatically using that key. For example, you might use
tuple keys to implement comparison, e.g.:
```python
class Widget:
# author implements this
def _cmp_key(self):
return (
self.a,
self.b,
(self.c, self.d),
self.e
)
# operators are generated by @key_ordering
def __eq__(self, other):
return self._cmp_key() == other._cmp_key()
def __lt__(self):
return self._cmp_key() < other._cmp_key()
# etc.
```
The issue there for simple comparators is that we have to bulid the
tuples *and* we have to generate all the values in them up front. When
implementing comparisons for large data structures, this can be costly.
This PR replaces `@key_ordering` with a new decorator,
`@lazy_lexicographic_ordering`. Lazy lexicographic comparison maps the
tuple comparison shown above to generator functions. Instead of comparing
based on pre-constructed tuple keys, users of this decorator can compare
using elements from a generator. So, you'd write:
```python
@lazy_lexicographic_ordering
class Widget:
def _cmp_iter(self):
yield a
yield b
def cd_fun():
yield c
yield d
yield cd_fun
yield e
# operators are added by decorator (but are a bit more complex)
There are no tuples that have to be pre-constructed, and the generator
does not have to complete. Instead of tuples, we simply make functions
that lazily yield what would've been in the tuple. If a yielded value is
a `callable`, the comparison functions will call it and recursively
compar it. The comparator just walks the data structure like you'd expect
it to.
The ``@lazy_lexicographic_ordering`` decorator handles the details of
implementing comparison operators, and the ``Widget`` implementor only
has to worry about writing ``_cmp_iter``, and making sure the elements in
it are also comparable.
Using this PR shaves another 1.5 sec off the runtime of `spack buildcache
list`, and it also speeds up Spec comparison by about 30%. The runtime
improvement comes mostly from *not* calling `hash()` `_cmp_iter()`.
* Make -j flag less exceptional
The -j flag in spack behaves differently from make, ctest, ninja, etc,
because it caps the number of jobs to an arbitrary number 16.
Spack will behave like other tools if `spack install` uses a reasonable
default, and `spack install -j <num>` *overrides* that default.
This will be particularly useful for Spack usage outside of a traditional
HPC context and for HPC centers that encourage users to compile on
login nodes with many cores instead of on compute nodes, which has
become increasingly common as individual nodes have more cores.
This maintains the existing default value of min(num_cpus, 16). However,
as it is right now, Spack does a poor job at determining the number of
cpus on linux, since it doesn't take cgroups into account. This is
particularly problematic when using distributed builds with slurm. This PR
also introduces `spack.util.cpus.cpus_available()` to consolidate
knowledge on determining the number of available cores, and improves
core detection for linux. This should also improve core detection for Docker/
Kubernetes, which also use cgroups.
This commit extends the API of the __call__ method of the
SpackCommand class to permit passing global arguments
like those interposed between the main "spack" command
and the subsequent subcommand.
The functionality is used to fix an issue where running
```spack -e . location -b some_package```
ends up printing the name of the environment instead of
the build directory of the package, because the location arg
parser also stores this value as `arg.env`.
fixes#22294
A combination of the swapping order for global variables and
the fact that most of them are lazily evaluated resulted in
custom install tree not being taken into account if clingo
had to be bootstrapped.
This commit fixes that particular issue, but a broader refactor
may be needed to ensure that similar situations won't affect us
in the future.
Remote buildcache indices need to be stored in a place that does not
require writing to the Spack prefix. Move them from the install_tree to
the misc_cache.
fixes#22565
This change enforces the uniqueness of the version_weight
atom per node(Package) in the DAG. It does so by applying
FTSE and adding an extra layer of indirection with the
possible_version_weight/2 atom.
Before this change it may have happened that for the same
node two different version_weight/2 were in the answer set,
each of which referred to a different spec with the same
version, and their weights would sum up.
This lead to unexpected result like preferring to build a
new version of an external if the external version was
older.
* Make stage use concrete specs from environment
Same as in https://github.com/spack/spack/pull/21642, the idea is that
we want to easily stage a package that fails to build in a complex
environment. Instead of making the user create a spec by hand (basically
transforming all the rules in the environment manifest into a spec,
defying the purpose of the environment...), use the provided spec as a
filter for the already concretized specs. This also speeds up things,
cause we don't have to reconcretize.
* clingo: modify recipe for bootstrapping
Modifications:
- clingo builds with shared Python only if ^python+shared
- avoid building the clingo app for bootstrapping
- don't link to libpython when bootstrapping
* Remove option that breaks on linux
* Give more hints for the current Python
* Disable CLINGO_BUILD_PY_SHARED for bootstrapping
* bootstrapping: try to detect the current python from std library
This is much faster than calling external executables
* Fix compatibility with Python 2.6
* Give hints on which compiler and OS to use when bootstrapping
This change hints which compiler to use for bootstrapping clingo
(either GCC or Apple Clang on MacOS). On Cray platforms it also
hints to build for the frontend system, where software is meant
to be installed.
* Use spec_for_current_python to constrain module requirement
* ASP-based solver: avoid adding values to variants when they're set
fixes#22533fixes#21911
Added a rule that prevents any value to slip in a variant when the
variant is set explicitly. This is relevant for multi-valued variants,
in particular for those that have disjoint sets of values.
* Ensure disjoint sets have a clear semantics for external packages
fixes#22547
SingleFileScope was not able to repopulate its cache before this
change. This was affecting the configuration seen by environments
using clingo bootstrapped from sources, since the bootstrapping
operation involved a few cache invalidation for config files.
This change accounts for platform specific configuration scopes,
like ~/.spack/linux, during bootstrapping. These scopes were
previously not accounted for and that was causing issues e.g.
when searching for compilers.
* Replace URL computation in base IntelOneApiPackage class with
defining URLs in component packages (this is expected to be
simpler for now)
* Add component_dir property that all oneAPI component packages must
define. This property names a directory that should exist after
installation completes (useful for making sure the install was
successful) and also defines the search location for the
component's environment update script.
* Add needed dependencies for components (e.g. intel-oneapi-dnn
requires intel-oneapi-tbb). The compilers provided by
intel-oneapi-compilers need some components under certain
circumstances (e.g. when enabling SYCL support) but these were
omitted since the libraries should only be linked when a
dependent package requests that feature
* Remove individual setup_run_environment implementations and use
IntelOneApiPackage superclass method which sources vars.sh
(located in a subdirectory of component_dir)
* Add documentation for IntelOneApiPackge build system
Co-authored-by: Vasily Danilin <vasily.danilin@yandex.ru>
* unit tests: mark slow tests as "maybeslow"
This commit also removes the "network" marker and
marks every "network" test as "maybeslow". Tests
marked as db are maintained, but they're not slow
anymore.
* GA: require style tests to pass before running unit-tests
* GA: make MacOS unit tests fail fast
* GA: move all unit tests into the same workflow, run style tests as a prerequisite
All the unit tests have been moved into the same workflow so that a single
run of the dorny/paths-filter action can be used to ask for coverage based
on the files that have been changed in a PR. The basic idea is that for PRs
that introduce only changes to packages coverage is not necessary, this
resulting in a faster execution of the tests.
Also, for package only PRs slow unit tests are skipped.
Finally, MacOS and linux unit tests are now conditional on style tests passing
meaning that e.g. we won't waste a MacOS worker if we know that the PR has
flake8 issues.
* Addressed review comments
* Skipping slow tests on MacOS for package only recipes
* QA: make tests on changes correct before merging
In most cases, we want condition_holds(ID) to imply any imposed
constraints associated with the ID. However, the dependency relationship
in Spack is special because it's "extra" conditional -- a dependency
*condition* may hold, but we have decided that externals will not have
dependencies, so we need a way to avoid having imposed constraints appear
for nodes that don't exist.
This introduces a new rule that says that constraints are imposed
*unless* we define `do_not_impose(ID)`. This allows rules like
dependencies, which rely on more than just spec conditions, to cancel
imposed constraints.
We add one special case for this: dependencies of externals.
We only consider test dependencies some of the time. Some packages are
*only* test dependencies. Spack's algorithm was previously generating
dependency conditions that could hold, *even* if there was no potential
dependency type.
- [x] change asp.py so that this can't happen -- we now only generate
dependency types for possible dependencies.
This builds on #20638 by unifying all the places in the concretizer where
things are conditional on specs. Previously, we duplicated a common spec
conditional pattern for dependencies, virtual providers, conflicts, and
externals. That was introduced in #20423 and refined in #20507, and
roughly looked as follows.
Given some directives in a package like:
```python
depends_on("foo@1.0+bar", when="@2.0+variant")
provides("mpi@2:", when="@1.9:")
```
We handled the `@2.0+variant` and `@1.9:` parts by generating generated
`dependency_condition()`, `required_dependency_condition()`, and
`imposed_dependency_condition()` facts to trigger rules like this:
```prolog
dependency_conditions_hold(ID, Parent, Dependency) :-
attr(Name, Arg1) : required_dependency_condition(ID, Name, Arg1);
attr(Name, Arg1, Arg2) : required_dependency_condition(ID, Name, Arg1, Arg2);
attr(Name, Arg1, Arg2, Arg3) : required_dependency_condition(ID, Name, Arg1, Arg2, Arg3);
dependency_condition(ID, Parent, Dependency);
node(Parent).
```
And we handled `foo@1.0+bar` and `mpi@2:` parts ("imposed constraints")
like this:
```prolog
attr(Name, Arg1, Arg2) :-
dependency_conditions_hold(ID, Package, Dependency),
imposed_dependency_condition(ID, Name, Arg1, Arg2).
attr(Name, Arg1, Arg2, Arg3) :-
dependency_conditions_hold(ID, Package, Dependency),
imposed_dependency_condition(ID, Name, Arg1, Arg2, Arg3).
```
These rules were repeated with different input predicates for
requirements (e.g., `required_dependency_condition`) and imposed
constraints (e.g., `imposed_dependency_condition`) throughout
`concretize.lp`. In #20638 it got to be a bit confusing, because we used
the same `dependency_condition_holds` predicate to impose constraints on
conditional dependencies and virtual providers. So, even though the
pattern was repeated, some of the conditional rules were conjoined in a
weird way.
Instead of repeating this pattern everywhere, we now have *one* set of
consolidated rules for conditions:
```prolog
condition_holds(ID) :-
condition(ID);
attr(Name, A1) : condition_requirement(ID, Name, A1);
attr(Name, A1, A2) : condition_requirement(ID, Name, A1, A2);
attr(Name, A1, A2, A3) : condition_requirement(ID, Name, A1, A2, A3).
attr(Name, A1) :- condition_holds(ID), imposed_constraint(ID, Name, A1).
attr(Name, A1, A2) :- condition_holds(ID), imposed_constraint(ID, Name, A1, A2).
attr(Name, A1, A2, A3) :- condition_holds(ID), imposed_constraint(ID, Name, A1, A2, A3).
```
this allows us to use `condition(ID)` and `condition_holds(ID)` to
encapsulate the conditional logic on specs in all the scenarios where we
need it. Instead of defining predicates for the requirements and imposed
constraints, we generate the condition inputs with generic facts, and
define predicates to associate the condition ID with a particular
scenario. So, now, the generated facts for a condition look like this:
```prolog
condition(121).
condition_requirement(121,"node","cairo").
condition_requirement(121,"variant_value","cairo","fc","True").
imposed_constraint(121,"version_satisfies","fontconfig","2.10.91:").
dependency_condition(121,"cairo","fontconfig").
dependency_type(121,"build").
dependency_type(121,"link").
```
The requirements and imposed constraints are generic, and we associate
them with their meaning via the id. Here, `dependency_condition(121,
"cairo", "fontconfig")` tells us that condition 121 has to do with the
dependency of `cairo` on `fontconfig`, and the conditional dependency
rules just become:
```prolog
dependency_holds(Package, Dependency, Type) :-
dependency_condition(ID, Package, Dependency),
dependency_type(ID, Type),
condition_holds(ID).
```
Dependencies, virtuals, conflicts, and externals all now use similar
patterns, and the logic for generating condition facts is common to all
of them on the python side, as well. The more specific routines like
`package_dependencies_rules` just call `self.condition(...)` to get an id
and generate requirements and imposed constraints, then they generate
their extra facts with the returned id, like this:
```python
def package_dependencies_rules(self, pkg, tests):
"""Translate 'depends_on' directives into ASP logic."""
for _, conditions in sorted(pkg.dependencies.items()):
for cond, dep in sorted(conditions.items()):
condition_id = self.condition(cond, dep.spec, pkg.name) # create a condition and get its id
self.gen.fact(fn.dependency_condition( # associate specifics about the dependency w/the id
condition_id, pkg.name, dep.spec.name
))
# etc.
```
- [x] unify generation and logic for conditions
- [x] use unified logic for dependencies
- [x] use unified logic for virtuals
- [x] use unified logic for conflicts
- [x] use unified logic for externals
LocalWords: concretizer mpi attr Arg concretize lp cairo fc fontconfig
LocalWords: virtuals def pkg cond dep fn refactor github py
* Rewrite relative dev_spec paths internally to absolute paths in case of relocation of the environment file
* Test relative paths for dev_path in environments
* Add a --keep-relative flag to spack env create
This ensures that relative paths of develop paths are not expanded to
absolute paths when initializing the environment in a different location
from the spack.yaml init file.
Currently, regardless of a spec being concrete or not, we validate its variants in `spec_clauses` (part of `SpackSolverSetup`).
This PR skips the check if the spec is concrete.
The reason we want to do this is so that the solver setup class (really, `spec_clauses`) can be used for cases when we just want the logic statements / facts (is that what they are called?) and we don't need to re-validate an already concrete spec. We can't change existing concrete specs, and we have to be able to handle them *even if they violate constraints in the current spack*. This happens in practice if we are doing the validation for a spec produced by a different spack install.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
This pull request will add the ability for a user to add a configuration argument on the fly, on the command line, e.g.,:
```bash
$ spack -c config:install_tree:root:/path/to/config.yaml -c packages:all:compiler:[gcc] list --help
```
The above command doesn't do anything (I'm just getting help for list) but you can imagine having another root of packages, and updating it on the fly for a command (something I'd like to do in the near future!)
I've moved the logic for config_add that used to be in spack/cmd/config.py into spack/config.py proper, and now both the main.py (where spack commands live) and spack/cmd/config.py use these functions. I only needed spack config add, so I didn't move the others. We can move the others if there are also needed in multiple places.
Was getting the following error:
```
$ spack test list
==> Error: issubclass() arg 1 must be a class
```
This PR adds a check in `has_test_method` (in case it is re-used elsewhere such as #22097) and ensures a class is passed to the method from `spack test list`.
This is a workaround for an issue with how "spack install" is invoked from within "spack ci rebuild". The fact that we don't get an exception or even the actual returncode when using the object returned by spack.util.executable.which('spack') to install the target spec means we get no indication of failures about the install command itself. Instead we rely on the subsequent buildcache creation failure to fail the job.
Unlike the other commands of the `R CMD` interface, the `INSTALL` command
will read `Renviron` files. This can potentially break builds of r-
packages, depending on what is set in the `Renviron` file. This PR adds
the `--vanilla` flag to ensure that neither `Rprofile` nor `Renviron` files
are read during Spack builds of r- packages.
This adds a `--path` option to `spack python` that shows the `python`
interpreter that Spack is using.
e.g.:
```console
$ spack python --path
/Users/gamblin2/src/spack/var/spack/environments/default/.spack-env/view/bin/python
```
This is useful for debugging, and we can ask users to run it to
understand what python Spack is picking up via preferences in `bin/spack`
and via the `SPACK_PYTHON` environment variable introduced in #21222.
`spack test list` will show you which *installed* packages can be tested
but it won't show you which packages have tests.
- [x] add `spack test list --all` to show which packages have test methods
- [x] update `has_test_method()` to handle package instances *and*
package classes.
* Improve R package creation
This PR adds the `list_url` attribute to CRAN R packages when using
`spack create`. It also adds the `git` attribute to R Bioconductor
packages upon creation.
* Switch over to using cran/bioc attributes
The cran/bioc entries are set to have the '=' line up with homepage
entry, but homepage does not need to exist in the package file. If it
does not, that could affect the alignment.
* Do not have to split bioc
* Edit R package documentation
Explain Bioconductor packages and add `cran` and `bioc` attributes.
* Update lib/spack/docs/build_systems/rpackage.rst
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* Update lib/spack/docs/build_systems/rpackage.rst
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* Simplify the cran attribute
The version can be faked so that the cran attribute is simply equal to
the CRAN package name.
* Edit the docs to reflect new `cran` attribute format
* Use the first element of self.versions() for url
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This allows users to use relative paths for mirrors and repos and other things that may be part of a Spack environment. There are two ways to do it.
1. Relative to the file
```yaml
spack:
repos:
- local_dir/my_repository
```
Which will refer to a repository like this in the directory where `spack.yaml` lives:
```
env/
spack.yaml <-- the config file above
local_dir/
my_repository/ <-- this repository
repo.yaml
packages/
```
2. Relative to the environment
```yaml
spack:
repos:
- $env/local_dir/my_repository
```
Both of these would refer to the same directory, but they differ for included files. For example, if you had this layout:
```
env/
spack.yaml
repository/
includes/
repos.yaml
repository/
```
And this `spack.yaml`:
```yaml
spack:
include: includes/repos.yaml
```
Then, these two `repos.yaml` files are functionally different:
```yaml
repos:
- $env/repository # refers to env/repository/ above
repos:
- repository # refers to env/includes/repository/ above
```
The $env variable will not be evaluated if there is no active environment. This generally means that it should not be used outside of an environment's spack.yaml file. However, if other aspects of your workflow guarantee that there is always an active environment, it may be used in other config scopes.
* Allow the bootstrapping of clingo from sources
Allow python builds with system python as external
for MacOS
* Ensure consistent configuration when bootstrapping clingo
This commit uses context managers to ensure we can
bootstrap clingo using a consistent configuration
regardless of the use case being managed.
* Github actions: test clingo with bootstrapping from sources
* Add command to inspect and clean the bootstrap store
Prevent users to set the install tree root to the bootstrap store
* clingo: documented how to bootstrap from sources
Co-authored-by: Gregory Becker <becker33@llnl.gov>
If a user creates a wrapper for the ifx binary called ifx_orig,
this causes the ifx --version command to produce:
$ ifx --version
ifx_orig (IFORT) 2021.1 Beta 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
The regex for ifx currently expects the output to begin with
"ifx (IFORT)..." so the wrapper would not be detected as ifx. This
PR removes the need for the static "ifx" string which allows wrappers
to be detected as ifx.
In general, the Intel compiler regexes do not include the invoked
executable name (i.e., ifort, icc, icx, etc.), so this is not
expected to cause any issues.
* make `spack fetch` work with environments
* previously: `spack fetch` required the explicit statement of
the specs to be fetched, even when in an environment
* now: if there is no spec(s) provided to `spack fetch` we check
if an environment is active and if yes we fetch all
uninstalled specs.
When using an external package with the old concretizer, all
dependencies of that external package were severed. This was not
performed bidirectionally though, so for an external package W with
a dependency on Z, if some other package Y depended on Z, Z could
still pull properties (e.g. compiler) from W since it was not
severed as a parent dependency.
This performs the severing bidirectionally, and adds tests to
confirm expected behavior when using config from DAG-adjacent
packages during concretization.
This allows for quickly configuring a spack install/env to use upstream packages by default. This is particularly important when upstreaming from a set of officially supported spack installs on a production cluster. By configuring such that package preferences match the upstream, you ensure maximal reuse of existing package installations.
Fixes for gitlab pipelines
* Remove accidentally retained testing branch name
* Generate pipeline w/out debug mode
* Make jobs interruptible for auto-cancel pending
* Work around concretization conflicts
* Support clingo when used with cffi
Clingo recently merged in a new Python module option based on cffi.
Compatibility with this module requires a few changes to spack - it does not automatically convert strings/ints/etc to Symbol and clingo.Symbol.string throws on failure.
manually convert str/int to clingo.Symbol types
catch stringify exceptions
add job for clingo-cffi to Spack CI
switch to potassco-vendored wheel for clingo-cffi CI
on_unsat argument when cffi
* Spec.splice feature
Construct a new spec with a dependency swapped out. Currently can only swap dependencies of the same name, and can only apply to concrete specs.
This feature is not yet attached to any install functionality, but will eventually allow us to "rewire" a package to depend on a different set of dependencies.
Docstring is reformatted for git below
Splices dependency "other" into this ("target") Spec, and return the result as a concrete Spec.
If transitive, then other and its dependencies will be extrapolated to a list of Specs and spliced in accordingly.
For example, let there exist a dependency graph as follows:
T
| \
Z<-H
In this example, Spec T depends on H and Z, and H also depends on Z.
Suppose, however, that we wish to use a differently-built H, known as H'. This function will splice in the new H' in one of two ways:
1. transitively, where H' depends on the Z' it was built with, and the new T* also directly depends on this new Z', or
2. intransitively, where the new T* and H' both depend on the original Z.
Since the Spec returned by this splicing function is no longer deployed the same way it was built, any such changes are tracked by setting the build_spec to point to the corresponding dependency from the original Spec.
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
If you install packages using spack install in an environment with
complex spec constraints, and the install fails, you may want to
test out the build using spack build-env; one issue (particularly
if you use concretize: together) is that it may be hard to pass
the appropriate spec that matches what the environment is
attempting to install.
This updates the build-env command to default to pulling a matching
spec from the environment rather than concretizing what the user
provides on the command line independently.
This makes a similar change to spack cd.
If the user-provided spec matches multiple specs in the environment,
then these commands will now report an error and display all
matching specs (to help the user specify).
Co-authored-by: Gregory Becker <becker33@llnl.gov>
* Improve error message for inconsistencies in package.py
Sometimes directives refer to variants that do not exist.
Make it such that:
1. The name of the variant
2. The name of the package which is supposed to have
such variant
3. The name of the package making this assumption
are all printed in the error message for easier debugging.
* Add unit tests
The signature for configure_args in the template for new
RPackage packages was incorrect (different than what is
defined and used in lib/spack/spack/build_systems/r.py)
See issue #21774
Keep spack.store.store and spack.store.db consistent in unit tests
* Remove calls to monkeypatch for spack.store.store and spack.store.db:
tests that used these called one or the other, which lead to
inconsistencies (the tests passed regardless but were fragile as a
result)
* Fixtures making use of monkeypatch with mock_store now use the
updated use_store function, which sets store.store and store.db
consistently
* subprocess_context.TestState now transfers the serializes and
restores spack.store.store (without the monkeypatch changes this
would have created inconsistencies)
Since signals are fundamentally racy, We can't bound the amount of time
that the `test_foreground_background_output` test will take to get to
'on', we can only observe that it transitions to 'on'. So instead of
using an arbitrary limit, just adjust the test to allow either 'on' or
'off' followed by 'on'.
This should eliminate the spurious errors we see in CI.
Follow-up to #17110
### Before
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/apple-clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
### After
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
`CC` and `SPACK_CC` were being set correctly, but `PATH` was using the name of the compiler `apple-clang` instead of `clang`. For most packages, since `CC` was set correctly, nothing broke. But for packages using `Makefiles` that set `CC` based on `which clang`, it was using the system compilers instead of the compiler wrappers. Discovered when working on `py-xgboost@0.90`.
An alternative fix would be to copy the symlinks in `env/clang` to `env/apple-clang`. Let me know if you think there's a better way to do this, or to test this.
* sbang pushed back to callers;
star moved to util.lang
* updated unit test
* sbang test moved; local tests pass
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
fixes#20736
Before this one line fix we were erroneously deducing
that dependency conditions hold even if a package
was external.
This may result in answer sets that contain imposed
conditions on a node without the node being present
in the DAG, hence #20736.
At some point in the past, the skip_patch argument was removed
from the call to package.do_install() this broke the --skip-patch
flag on the dev-build command.
fixes#20679
In this refactor we have a single cardinality rule on the
provider, which triggers a rule transforming a dependency
on a virtual package into a dependency on the provider of
the virtual.
Every other predicate in the concretizer uses a `_set` suffix to
implement user- or package-supplied settings, but compiler settings use a
`_hard` suffix for this. There's no difference in how they're used, so
make the names the same.
- [x] change `node_compiler_hard` to `node_compiler_set`
- [x] change `node_compiler_version_hard` to `node_compiler_version_set`
Previously, the concretizer handled version constraints by comparing all
pairs of constraints and ensuring they satisfied each other. This led to
INCONSISTENT ressults from clingo, due to ambiguous semantics like:
version_constraint_satisfies("mpi", ":1", ":3")
version_constraint_satisfies("mpi", ":3", ":1")
To get around this, we introduce possible (fake) versions for virtuals,
based on their constraints. Essentially, we add any Versions,
VersionRange endpoints, and all such Versions and endpoints from
VersionLists to the constraint. Virtuals will have one of these synthetic
versions "picked" by the solver. This also allows us to remove a special
case from handling of `version_satisfies/3` -- virtuals now work just
like regular packages.
This converts the virtual handling in the new concretizer from
already-ground rules to facts. This is the last thing that needs to be
refactored, and it converts the entire concretizer to just use facts.
The previous way of handling virtuals hinged on rules involving
`single_provider_for` facts that were tied to the virtual and a version
range. The new method uses the condition pattern we've been using for
dependencies, externals, and conflicts.
To handle virtuals as conditions, we impose constraints on "fake" virtual
specs in the logic program. i.e., `version_satisfies("mpi", "2.0:",
"2.0")` is legal whereas before we wouldn't have seen something like
this. Currently, constriants are only handled on versions -- we don't
handle variants or anything else yet, but they key change here is that we
*could*. For a long time, virtual handling in Spack has only dealt with
versions, and we'd like to be able to handle variants as well. We could
easily add an integrity constraint to handle variants like the one we use
for versions.
One issue with the implementation here is that virtual packages don't
actually declare possible versions like regular packages do. To get
around that, we implement an integrity constraint like this:
:- virtual_node(Virtual),
version_satisfies(Virtual, V1), version_satisfies(Virtual, V2),
not version_constraint_satisfies(Virtual, V1, V2).
This requires us to compare every version constraint to every other, both
in program generation and within the concretizer -- so there's a
potentially quadratic evaluation time on virtual constraints because we
don't have a real version to "anchor" things to. We just say that all the
constraints need to agree for the virtual constraint to hold.
We can investigate adding synthetic versions for virtuals in the future,
to speed this up.
This code in `SpecBuilder.build_specs()` introduced in #20203, can loop
seemingly interminably for very large specs:
```python
set([spec.root for spec in self._specs.values()])
```
It's deceptive, because it seems like there must be an issue with
`spec.root`, but that works fine. It's building the set afterwards that
takes forever, at least on `r-rminer`. Currently if you try running
`spack solve r-rminer`, it loops infinitely and spins up your fan.
The issue (I think) is that the spec is not yet complete when this is
run, and something is going wrong when constructing and comparing so many
values produced by `_cmp_key()`. We can investigate the efficiency of
`_cmp_key()` separately, but for now, the fix is:
```python
roots = [spec.root for spec in self._specs.values()]
roots = dict((id(r), r) for r in roots)
```
We know the specs in `self._specs` are distinct (they just came out of
the solver), so we can just use their `id()` to unique them here. This
gets rid of the infinite loop.
Environment yaml files should not have default values written to them.
To accomplish this, we change the validator to not add the default values to yaml. We rely on the code to set defaults for all values (and use defaulting getters like dict.get(key, default)).
Includes regression test.
This creates a set of packages which all use the same script to install
components of Intel oneAPI. This includes:
* An inheritable IntelOneApiPackage which knows how to invoke the
installation script based on which components are requested
* For components which include headers/libraries, an inheritable
IntelOneApiLibraryPackage is provided to locate them
* Individual packages for DAL, DNN, TBB, etc.
* A package for the Intel oneAPI compilers (icx/ifx). This also includes
icc/ifortran but these are not currently detected in this PR
We have to repeat all the spec attributes in a number of places in
`concretize.lp`, and Spack has a fair number of spec attributes. If we
instead add some rules up front that establish equivalencies like this:
```
node(Package) :- attr("node", Package).
attr("node", Package) :- node(Package).
version(Package, Version) :- attr("version", Package, Version).
attr("version", Package, Version) :- version(Package, Version).
```
We can rewrite most of the repetitive conditions with `attr` and repeat
only for each arity (there are only 3 arities for spec attributes so far)
as opposed to each spec attribute. This makes the logic easier to read
and the rules easier to follow.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Continuing to convert everything in `asp.py` into facts, make the
generation of ground rules for conditional dependencies use facts, and
move the semantics into `concretize.lp`.
This is probably the most complex logic in Spack, as dependencies can be
conditional on anything, and we need conditional ASP rules to accumulate
and map all the dependency conditions to spec attributes.
The logic looks complicated, but essentially it accumulates any
constraints associated with particular conditions into a fact associated
with the condition by id. Then, if *any* condition id's fact is True, we
trigger the dependency.
This simplifies the way `declared_dependency()` works -- the dependency
is now declared regardless of whether it is conditional, and the
conditions are handled by `dependency_condition()` facts.
There are currently no places where we do not want to traverse
dependencies in `spec_clauses()`, so simplify the logic by consolidating
`spec_traverse_clauses()` with `spec_clauses()`.
`version_satisfies/2` and `node_compiler_version_satisfies/3` are
generated but need `#defined` directives to avoid " info: atom does not
occur in any rule head:" warnings.
This PR addresses a number of issues related to compiler bootstrapping.
Specifically:
1. Collect compilers to be bootstrapped while queueing in installer
Compiler tasks currently have an incomplete list in their task.dependents,
making those packages fail to install as they think they have not all their
dependencies installed. This PR collects the dependents and sets them on
compiler tasks.
2. allow boostrapped compilers to back off target
Bootstrapped compilers may be built with a compiler that doesn't support
the target used by the rest of the spec. Allow them to build with less
aggressive target optimization settings.
3. Support for target ranges
Backing off the target necessitates computing target ranges, so make Spack
handle those properly. Notably, this adds an intersection method for target
ranges and fixes the way ranges are satisfied and constrained on Spec objects.
This PR also:
- adds testing
- improves concretizer handling of target ranges
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Currently, version range constraints, compiler version range constraints,
and target range constraints are implemented by generating ground rules
from `asp.py`, via `one_of_iff()`. The rules look like this:
```
version_satisfies("python", "2.6:") :- 1 { version("python", "2.4"); ... } 1.
1 { version("python", "2.4"); ... } 1. :- version_satisfies("python", "2.6:").
```
So, `version_satisfies(Package, Constraint)` is true if and only if the
package is assigned a version that satisfies the constraint. We
precompute the set of known versions that satisfy the constraint, and
generate the rule in `SpackSolverSetup`.
We shouldn't need to generate already-ground rules for this. Rather, we
should leave it to the grounder to do the grounding, and generate facts
so that the constraint semantics can be defined in `concretize.lp`.
We can replace rules like the ones above with facts like this:
```
version_satisfies("python", "2.6:", "2.4")
```
And ground them in `concretize.lp` with rules like this:
```
1 { version(Package, Version) : version_satisfies(Package, Constraint, Version) } 1
:- version_satisfies(Package, Constraint).
version_satisfies(Package, Constraint)
:- version(Package, Version), version_satisfies(Package, Constraint, Version).
```
The top rule is the same as before. It makes conditional dependencies and
other places where version constraints are used work properly. Note that
we do not need the cardinality constraint for the second rule -- we
already have rules saying there can be only one version assigned to a
package, so we can just infer from `version/2` `version_satisfies/3`.
This form is also safe for grounding -- If we used the original form we'd
have unsafe variables like `Constraint` and `Package` -- the original
form only really worked when specified as ground to begin with.
- [x] use facts instead of generating rules for package version constraints
- [x] use facts instead of generating rules for compiler version constraints
- [x] use facts instead of generating rules for target range constraints
- [x] remove `one_of_iff()` and `iff()` as they're no longer needed
I was keeping the old `clingo` driver code around in case we had to run
using the command line tool instad of through the Python interface.
So far, the command line is faster than running through Python, but I'm
working on fixing that. I found that if I do this:
```python
control = clingo.Control()
control.load("concretize.lp")
control.load("hdf5.lp") # code from spack solve --show asp hdf5
control.load("display.lp")
control.ground([("base", [])])
control.solve(...)
```
It's just as fast as the command line tool. So we can always generate the
code and load it manually if we need to -- we don't need two drivers for
clingo. Given that the python interface is also the only way to get unsat
cores, I think we pretty much have to use it.
So, I'm removing the old command line driver and other unused code. We
can dig it up again from the history if it is needed.
Track all the variant values mentioned when emitting constraints, validate them
and emit a fact that allows them as possible values.
This modification ensures that open-ended variants (variants accepting any string
or any integer) are projected to the finite set of values that are relevant for this
concretization.
Other parts of the concretizer code build up lists of things we can't
know without traversing all specs and packages, and they output these
list at the very end.
The code for this for variant values from spec literals was intertwined
with the code for traversing the input specs. This only covers the input
specs and misses variant values that might come from directives in
packages.
- [x] move ad-hoc value handling code into spec_clauses so we do it in
one place for CLI and packages
- [x] move handling of `variant_possible_value`, etc. into
`concretize.lp`, where we can automatically infer variant existence
more concisely.
- [x] simplify/clarify some of the code for variants in `spec_clauses()`
fixes#20055
Compiler with custom versions like gcc@foo are not currently
matched to the appropriate targets. This is because the
version of spec doesn't match the "real" version of the
compiler.
This PR replicates the strategy used in the original
concretizer to deal with that and tries to detect the real
version of compilers if the version in the spec returns no
results.
fixes#20040
Matching compilers among nodes has been prioritized
in #20020. Selection of default variants has been
tuned in #20182. With this setup there is no need
to have an ad-hoc rule for external packages. On
the contrary it should be removed to prefer having
default variant values over more external nodes in
the DAG.
refers #20040
Before this PR optimization rules would have selected default
providers at a higher priority than default variants. Here we
swap this priority and we consider variants that are forced by
any means (root spec or spec in depends_on clause) the same as
if they were with a default value.
This prevents the solver from avoiding expected configurations
just because they contain directives like:
depends_on('pkg+foo')
and `+foo` is not the default variant value for pkg.
fixes#19981
This commit adds support for target ranges in directives,
for instance:
conflicts('+foo', when='target=x86_64:,aarch64:')
If any target in a spec body is not a known target the
following clause will be emitted:
node_target_satisfies(Package, TargetConstraint)
when traversing the spec and a definition of
the clause will then be printed at the end similarly
to what is done for package and compiler versions.
fixes#20019
Before this modification having a newer version of a node came
at higher priority in the optimization than having matching
compilers. This could result in unexpected configurations for
packages with conflict directives on compilers of the type:
conflicts('%gcc@X.Y:', when='@:A.B')
where changing the compiler for just that node is preferred to
lower the node version to less than 'A.B'. Now the priority has
been switched so the solver will try to lower the version of the
nodes in question before changing their compiler.
refers #20079
Added docstrings to 'concretize' and 'concretized' to
document the format for tests.
Added tests for the activation of test dependencies.
refers #20040
This modification emits rules like:
provides_virtual("netlib-lapack","blas") :- variant_value("netlib-lapack","external-blas","False").
for packages that provide virtual dependencies conditionally instead
of a fact that doesn't account for the condition.
Follow-up to #17110
### Before
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/apple-clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
### After
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
`CC` and `SPACK_CC` were being set correctly, but `PATH` was using the name of the compiler `apple-clang` instead of `clang`. For most packages, since `CC` was set correctly, nothing broke. But for packages using `Makefiles` that set `CC` based on `which clang`, it was using the system compilers instead of the compiler wrappers. Discovered when working on `py-xgboost@0.90`.
An alternative fix would be to copy the symlinks in `env/clang` to `env/apple-clang`. Let me know if you think there's a better way to do this, or to test this.
The fixture was introduced in #19690 maybe accidentally.
It's not used in unit tests, and though it should be
mutable it seems an exact copy of it's immutable version.
Before this change, in pipeline environments where runners do not have access
to persistent shared file-system storage, the only way to pass buildcaches to
dependents in later stages was by using the "enable-artifacts-buildcache" flag
in the gitlab-ci section of the spack.yaml. This change supports a second
mechanism, named "temporary-storage-url-prefix", which can be provided instead
of the "enable-artifacts-buildcache" feature, but the two cannot be used at the
same time. If this prefix is provided (only "file://" and "s3://" urls are
supported), the gitlab "CI_PIPELINE_ID" will be appended to it to create a url
for a mirror where pipeline jobs will write buildcache entries for use by jobs
in subsequent stages. If this prefix is provided, a cleanup job will be
generated to run after all the rebuild jobs have finished that will delete the
contents of the temporary mirror. To support this behavior a new mirror
sub-command has been added: "spack mirror destroy" which can take either a
mirror name or url.
This change also fixes a bug in generation of "needs" list for each job. Each
jobs "needs" list is supposed to only contain direct dependencies for scheduling
purposes, unless "enable-artifacts-buildcache" is specified. Only in that case
are the needs lists supposed to contain all transitive dependencies. This
changes fixes a bug that caused the needs lists to always contain all transitive
dependencies, regardless of whether or not "enable-artifacts-buildcache" was
specified.
Pipelines: DAG pruning
During the pipeline generation staging process we check each spec against all configured mirrors to determine whether it is up to date on any of the mirrors. By default, and with the --prune-dag argument to "spack ci generate", any spec already up to date on at least one remote mirror is omitted from the generated pipeline. To generate jobs for up to date specs instead of omitting them, use the --no-prune-dag argument. To speed up the pipeline generation process, pass the --check-index-only argument. This will cause spack to check only remote buildcache indices and avoid directly fetching any spec.yaml files from mirrors. The drawback is that if the remote buildcache index is out of date, spec rebuild jobs may be scheduled unnecessarily.
This change removes the final-stage-rebuild-index block from gitlab-ci section of spack.yaml. Now rebuilding the buildcache index of the mirror specified in the spack.yaml is the default, unless "rebuild-index: False" is set. Spack assigns the generated rebuild-index job runner attributes from an optional new "service-job-attributes" block, which is also used as the source of runner attributes for another generated non-build job, a no-op job, which spack generates to avoid gitlab errors when DAG pruning results in empty pipelines.
The SPACK_PYTHON environment variable can be set to a python interpreter to be
used by the spack command. This allows the spack command itself to use a
consistent and separate interpreter from whatever python might be used for package
building.
Modifications:
- Make use of SpackCommand objects wherever possible
- Deduplicated code when possible
- Moved cleaning of mirrors to fixtures
- Ensure mock configuration has a clear initialization order
`query()` calls `datetime.datetime.fromtimestamp` regardless of whether a
date query is being done. Guard this with an if statement to avoid the
unnecessary work.
Constructing a spec from a name instead of setting name directly forces
from_node_dict to call Spec.parse(), which is slow. Avoid this by using a
zero-arg constructor and setting name directly.
This solves a few FIXMEs in conftest.py, where
we were manipulating globals and seeing side
effects prior to registering fixtures.
This commit solves the FIXMEs, but introduces
a performance regression on tests that may need
to be investigated
The method is now called "use_repositories" and
makes it clear in the docstring that it accepts
as arguments either Repo objects or paths.
Since there was some duplication between this
contextmanager and "use_repo" in the testing framework,
remove the latter and use spack.repo.use_repositories
across the entire code base.
Make a few adjustment to MockPackageMultiRepo, since it was
stating in the docstring that it was supposed to mock
spack.repo.Repo and was instead mocking spack.repo.RepoPath.
Some compilers, such as the NV compilers, do not recognize -isystem
dir when specified without a space.
Works: -isystem ../include
Does not work: -isystem../include
This PR updates the compiler wrapper to include the space with -isystem.
Environment views fail when the tmpdir used for view generation is
on a separate mount from the install_tree because the files cannot
by symlinked between the two. The fix is to use an alternative
tmpdir located alongside the view.
* Procedure to deprecate old versions of software
* Add documentation
* Fix bug in logic
* Update tab completion
* Deprecate legacy packages
* Deprecate old mxnet as well
* More explicit docs
This commit adds an option to the `external find`
command that allows it to search by tags. In this
way group of executables with common purposes can
be grouped under a single name and a simple command
can be used to detect all of them.
As an example introduce the 'build-tools' tag to
search for common development tools on a system
The "fact" method before was dealing with multiple facts
registered per call, which was used when we were emitting
grounded rules from knowledge of the problem instance.
Now that the encoding is changed we can simplify the method
to deal only with a single fact per call.
Sometimes we need to patch a file that is a dependency for some other
automatically generated file that comes in a release tarball. As a
result, make tries to regenerate the dependent file using additional
tools (e.g. help2man), which would not be needed otherwise.
In some cases, it's preferable to avoid that (e.g. see #21255). A way
to do that is to save the modification timestamps before patching and
restoring them afterwards. This PR introduces a context wrapper that
does that.
The first of my two upstream patches to mypy landed in the 0.800 tag that was released this morning, which lets us use module and package parameters with a .mypy.ini file that has a files key. This uses those parameters to check all of spack in style, but leaves the packages out for now since they are still very, very broken. If no package has been modified, the packages are not checked, but if one has they are. Includes some fixes for the log tests since they were not type checking.
Should also fix all failures related to "duplicate module named package" errors.
Hopefully the next drop of mypy will include my other patch so we can just specify the modules and packages in the config file to begin with, but for now we'll have to live with a bare mypy doing a check of the libs but not the packages.
* use module and package flags to check packages properly
* stop checking package files, use package flag for libs
The packages are not type checkable yet, need to finish out another PR
before they can be. The previous commit also didn't check the libraries
properly, this one does.
* sbang pushed back to callers;
star moved to util.lang
* updated unit test
* sbang test moved; local tests pass
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
fixes#20736
Before this one line fix we were erroneously deducing
that dependency conditions hold even if a package
was external.
This may result in answer sets that contain imposed
conditions on a node without the node being present
in the DAG, hence #20736.
At some point in the past, the skip_patch argument was removed
from the call to package.do_install() this broke the --skip-patch
flag on the dev-build command.
fixes#20679
In this refactor we have a single cardinality rule on the
provider, which triggers a rule transforming a dependency
on a virtual package into a dependency on the provider of
the virtual.
This adds a -i option to "spack python" which allows use of the
IPython interpreter; it can be used with "spack python -i ipython".
This assumes it is available in the Python instance used to run
Spack (i.e. that you can "import IPython").
Every other predicate in the concretizer uses a `_set` suffix to
implement user- or package-supplied settings, but compiler settings use a
`_hard` suffix for this. There's no difference in how they're used, so
make the names the same.
- [x] change `node_compiler_hard` to `node_compiler_set`
- [x] change `node_compiler_version_hard` to `node_compiler_version_set`
Previously, the concretizer handled version constraints by comparing all
pairs of constraints and ensuring they satisfied each other. This led to
INCONSISTENT ressults from clingo, due to ambiguous semantics like:
version_constraint_satisfies("mpi", ":1", ":3")
version_constraint_satisfies("mpi", ":3", ":1")
To get around this, we introduce possible (fake) versions for virtuals,
based on their constraints. Essentially, we add any Versions,
VersionRange endpoints, and all such Versions and endpoints from
VersionLists to the constraint. Virtuals will have one of these synthetic
versions "picked" by the solver. This also allows us to remove a special
case from handling of `version_satisfies/3` -- virtuals now work just
like regular packages.
This converts the virtual handling in the new concretizer from
already-ground rules to facts. This is the last thing that needs to be
refactored, and it converts the entire concretizer to just use facts.
The previous way of handling virtuals hinged on rules involving
`single_provider_for` facts that were tied to the virtual and a version
range. The new method uses the condition pattern we've been using for
dependencies, externals, and conflicts.
To handle virtuals as conditions, we impose constraints on "fake" virtual
specs in the logic program. i.e., `version_satisfies("mpi", "2.0:",
"2.0")` is legal whereas before we wouldn't have seen something like
this. Currently, constriants are only handled on versions -- we don't
handle variants or anything else yet, but they key change here is that we
*could*. For a long time, virtual handling in Spack has only dealt with
versions, and we'd like to be able to handle variants as well. We could
easily add an integrity constraint to handle variants like the one we use
for versions.
One issue with the implementation here is that virtual packages don't
actually declare possible versions like regular packages do. To get
around that, we implement an integrity constraint like this:
:- virtual_node(Virtual),
version_satisfies(Virtual, V1), version_satisfies(Virtual, V2),
not version_constraint_satisfies(Virtual, V1, V2).
This requires us to compare every version constraint to every other, both
in program generation and within the concretizer -- so there's a
potentially quadratic evaluation time on virtual constraints because we
don't have a real version to "anchor" things to. We just say that all the
constraints need to agree for the virtual constraint to hold.
We can investigate adding synthetic versions for virtuals in the future,
to speed this up.
This code in `SpecBuilder.build_specs()` introduced in #20203, can loop
seemingly interminably for very large specs:
```python
set([spec.root for spec in self._specs.values()])
```
It's deceptive, because it seems like there must be an issue with
`spec.root`, but that works fine. It's building the set afterwards that
takes forever, at least on `r-rminer`. Currently if you try running
`spack solve r-rminer`, it loops infinitely and spins up your fan.
The issue (I think) is that the spec is not yet complete when this is
run, and something is going wrong when constructing and comparing so many
values produced by `_cmp_key()`. We can investigate the efficiency of
`_cmp_key()` separately, but for now, the fix is:
```python
roots = [spec.root for spec in self._specs.values()]
roots = dict((id(r), r) for r in roots)
```
We know the specs in `self._specs` are distinct (they just came out of
the solver), so we can just use their `id()` to unique them here. This
gets rid of the infinite loop.
- [x] add `concretize.lp`, `spack.yaml`, etc. to licensed files
- [x] update all licensed files to say 2013-2021 using
`spack license update-copyright-year`
- [x] appease mypy with some additions to package.py that needed
for oneapi.py
This adds a new subcommand to `spack license` that automatically updates
the copyright year in files that should have a license header.
- [x] add `spack license update-copyright-year` command
- [x] add test
GCC looks for included files based on several env vars.
Remove C_INCLUDE_PATH, CPLUS_INCLUDE_PATH, and OBJC_INCLUDE_PATH
from the build environment to ensure it's clean and prevent
accidental clobbering.
Environment yaml files should not have default values written to them.
To accomplish this, we change the validator to not add the default values to yaml. We rely on the code to set defaults for all values (and use defaulting getters like dict.get(key, default)).
Includes regression test.
This creates a set of packages which all use the same script to install
components of Intel oneAPI. This includes:
* An inheritable IntelOneApiPackage which knows how to invoke the
installation script based on which components are requested
* For components which include headers/libraries, an inheritable
IntelOneApiLibraryPackage is provided to locate them
* Individual packages for DAL, DNN, TBB, etc.
* A package for the Intel oneAPI compilers (icx/ifx). This also includes
icc/ifortran but these are not currently detected in this PR
I lost my mind a bit after getting the completion stuff working and
decided to get Mypy working for spack as well. This adds a
`.mypy.ini` that checks all of the spack and llnl modules, though
not yet packages, and fixes all of the identified missing types and
type issues for the spack library.
In addition to these changes, this includes:
* rename `spack flake8` to `spack style`
Aliases flake8 to style, and just runs flake8 as before, but with
a warning. The style command runs both `flake8` and `mypy`,
in sequence. Added --no-<tool> options to turn off one or the
other, they are on by default. Fixed two issues caught by the tools.
* stub typing module for python2.x
We don't support typing in Spack for python 2.x. To allow 2.x to
support `import typing` and `from typing import ...` without a
try/except dance to support old versions, this adds a stub module
*just* for python 2.x. Doing it this way means we can only reliably
use all type hints in python3.7+, and mypi.ini has been updated to
reflect that.
* add non-default black check to spack style
This is a first step to requiring black. It doesn't enforce it by
default, but it will check it if requested. Currently enforcing the
line length of 79 since that's what flake8 requires, but it's a bit odd
for a black formatted project to be quite that narrow. All settings are
in the style command since spack has no pyproject.toml and I don't
want to add one until more discussion happens. Also re-format
`style.py` since it no longer passed the black style check
with the new length.
* use style check in github action
Update the style and docs action to use `spack style`, adding in mypy
and black to the action even if it isn't running black right now.
We have to repeat all the spec attributes in a number of places in
`concretize.lp`, and Spack has a fair number of spec attributes. If we
instead add some rules up front that establish equivalencies like this:
```
node(Package) :- attr("node", Package).
attr("node", Package) :- node(Package).
version(Package, Version) :- attr("version", Package, Version).
attr("version", Package, Version) :- version(Package, Version).
```
We can rewrite most of the repetitive conditions with `attr` and repeat
only for each arity (there are only 3 arities for spec attributes so far)
as opposed to each spec attribute. This makes the logic easier to read
and the rules easier to follow.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
This PR does three related things to try to improve developer tooling quality of life:
1. Adds new options to `.flake8` so it applies the rules of both `.flake8` and `.flake_package` based on paths in the repository.
2. Adds a re-factoring of the `spack flake8` logic into a flake8 plugin so using flake8 directly, or through editor or language server integration, only reports errors that `spack flake8` would.
3. Allows star import of `spack.pkgkit` in packages, since this is now the thing that needs to be imported for completion to work correctly in package files, it's nice to be able to do that.
I'm sorely tempted to sed over the whole repository and put `from spack.pkgkit import *` in every package, but at least being allowed to do it on a per-package basis helps.
As an example of what the result of this is:
```
~/Workspace/Projects/spack/spack develop* ⇣
❯ flake8 --format=pylint ./var/spack/repos/builtin/packages/kripke/package.py
./var/spack/repos/builtin/packages/kripke/package.py:6: [F403] 'from spack.pkgkit import *' used; unable to detect undefined names
./var/spack/repos/builtin/packages/kripke/package.py:25: [E501] line too long (88 > 79 characters)
~/Workspace/Projects/spack/spack refactor-flake8*
1 ❯ flake8 --format=spack ./var/spack/repos/builtin/packages/kripke/package.py
~/Workspace/Projects/spack/spack refactor-flake8*
❯ flake8 ./var/spack/repos/builtin/packages/kripke/package.py
```
* qa/flake8: update .flake8, spack formatter plugin
Adds:
* Modern flake8 settings for per-path/glob error ignores, allows
packages to use the same `.flake8` as the rest of spack
* A spack formatter plugin to flake8 that implements the behavior of
`spack flake8` for direct invocations. Makes integration with
developer tooling nicer, linting with flake8 reports only errors that
`spack flake8` would report. Using pyls and pyls-flake8, or any other
non-format-dependent flake8 integration, now works with spack's rules.
* qa/flake8: allow star import of spack.pkgkit
To get working completion of directives and spack components it's
necessary to import the contents of spack.pkgkit. At the moment doing
this makes flake8 displeased. For now, allow spack.pkgkit and spack
both, next step is to ban spack * and require spack.pkgkit *.
* first cut at refactoring spack flake8
This version still copies all of the files to be checked as befire, and
some other things that probably aren't necessary, but it relies on the
spack formatter plugin to implement the ignore logic.
* keep flake8 from rejecting itself
* remove separate packages flake8 config
* fix failures from too many files
I ran into this in the PR converting pkgkit to std. The solution in
that branch does not work in all cases as it turns out, and all the
workarounds I tried to use generated configs to get a single invocation
of flake8 with a filename optoion to work failed. It's an astonishingly
frustrating config option.
Regardless, this removes all temporary file creation from the command
and relies on the plugin instead. To work around the huge number of
files in spack and still allow the command to control what gets checked,
it scans files in batches of 100. This is a completely arbitrary number
but was chosen to be safely under common line-length limits. One
side-effect of this is that every 100 files the command will produce
output, rather than only at the end, which doesn't seem like a terrible
thing.
Continuing to convert everything in `asp.py` into facts, make the
generation of ground rules for conditional dependencies use facts, and
move the semantics into `concretize.lp`.
This is probably the most complex logic in Spack, as dependencies can be
conditional on anything, and we need conditional ASP rules to accumulate
and map all the dependency conditions to spec attributes.
The logic looks complicated, but essentially it accumulates any
constraints associated with particular conditions into a fact associated
with the condition by id. Then, if *any* condition id's fact is True, we
trigger the dependency.
This simplifies the way `declared_dependency()` works -- the dependency
is now declared regardless of whether it is conditional, and the
conditions are handled by `dependency_condition()` facts.
There are currently no places where we do not want to traverse
dependencies in `spec_clauses()`, so simplify the logic by consolidating
`spec_traverse_clauses()` with `spec_clauses()`.
`version_satisfies/2` and `node_compiler_version_satisfies/3` are
generated but need `#defined` directives to avoid " info: atom does not
occur in any rule head:" warnings.
This PR addresses a number of issues related to compiler bootstrapping.
Specifically:
1. Collect compilers to be bootstrapped while queueing in installer
Compiler tasks currently have an incomplete list in their task.dependents,
making those packages fail to install as they think they have not all their
dependencies installed. This PR collects the dependents and sets them on
compiler tasks.
2. allow boostrapped compilers to back off target
Bootstrapped compilers may be built with a compiler that doesn't support
the target used by the rest of the spec. Allow them to build with less
aggressive target optimization settings.
3. Support for target ranges
Backing off the target necessitates computing target ranges, so make Spack
handle those properly. Notably, this adds an intersection method for target
ranges and fixes the way ranges are satisfied and constrained on Spec objects.
This PR also:
- adds testing
- improves concretizer handling of target ranges
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Currently, version range constraints, compiler version range constraints,
and target range constraints are implemented by generating ground rules
from `asp.py`, via `one_of_iff()`. The rules look like this:
```
version_satisfies("python", "2.6:") :- 1 { version("python", "2.4"); ... } 1.
1 { version("python", "2.4"); ... } 1. :- version_satisfies("python", "2.6:").
```
So, `version_satisfies(Package, Constraint)` is true if and only if the
package is assigned a version that satisfies the constraint. We
precompute the set of known versions that satisfy the constraint, and
generate the rule in `SpackSolverSetup`.
We shouldn't need to generate already-ground rules for this. Rather, we
should leave it to the grounder to do the grounding, and generate facts
so that the constraint semantics can be defined in `concretize.lp`.
We can replace rules like the ones above with facts like this:
```
version_satisfies("python", "2.6:", "2.4")
```
And ground them in `concretize.lp` with rules like this:
```
1 { version(Package, Version) : version_satisfies(Package, Constraint, Version) } 1
:- version_satisfies(Package, Constraint).
version_satisfies(Package, Constraint)
:- version(Package, Version), version_satisfies(Package, Constraint, Version).
```
The top rule is the same as before. It makes conditional dependencies and
other places where version constraints are used work properly. Note that
we do not need the cardinality constraint for the second rule -- we
already have rules saying there can be only one version assigned to a
package, so we can just infer from `version/2` `version_satisfies/3`.
This form is also safe for grounding -- If we used the original form we'd
have unsafe variables like `Constraint` and `Package` -- the original
form only really worked when specified as ground to begin with.
- [x] use facts instead of generating rules for package version constraints
- [x] use facts instead of generating rules for compiler version constraints
- [x] use facts instead of generating rules for target range constraints
- [x] remove `one_of_iff()` and `iff()` as they're no longer needed
I was keeping the old `clingo` driver code around in case we had to run
using the command line tool instad of through the Python interface.
So far, the command line is faster than running through Python, but I'm
working on fixing that. I found that if I do this:
```python
control = clingo.Control()
control.load("concretize.lp")
control.load("hdf5.lp") # code from spack solve --show asp hdf5
control.load("display.lp")
control.ground([("base", [])])
control.solve(...)
```
It's just as fast as the command line tool. So we can always generate the
code and load it manually if we need to -- we don't need two drivers for
clingo. Given that the python interface is also the only way to get unsat
cores, I think we pretty much have to use it.
So, I'm removing the old command line driver and other unused code. We
can dig it up again from the history if it is needed.
This fixes a logging error observed on macOS 11.0.1 (Big Sur).
When performing a Spack install in debugging mode (e.g.
`spack -d install py-scipy`) Spack is supposed to write a log of
compiler wrapper command line invocations to the current working
directory.
Due to a regression error introduced by #18205, these files were
no-longer generated, and Spack was printing errors such as
"No such file or directory: None/." This is because the log file
directory gets set from `spack.main.spack_working_dir`, but that
variable is not set in the spawned process.
This PR ensures that the working directory (at the time of the
"spack install" invocation) is persisted to the subprocess.
Track all the variant values mentioned when emitting constraints, validate them
and emit a fact that allows them as possible values.
This modification ensures that open-ended variants (variants accepting any string
or any integer) are projected to the finite set of values that are relevant for this
concretization.
Other parts of the concretizer code build up lists of things we can't
know without traversing all specs and packages, and they output these
list at the very end.
The code for this for variant values from spec literals was intertwined
with the code for traversing the input specs. This only covers the input
specs and misses variant values that might come from directives in
packages.
- [x] move ad-hoc value handling code into spec_clauses so we do it in
one place for CLI and packages
- [x] move handling of `variant_possible_value`, etc. into
`concretize.lp`, where we can automatically infer variant existence
more concisely.
- [x] simplify/clarify some of the code for variants in `spec_clauses()`
* [cmd versions] add spack versions --new flag to only fetch new versions
format
[cmd versions] rename --latest to --newest and add --remote-only
[cmd versions] add tests for --remote-only and --new
format
[cmd versions] update shell tab completion
[cmd versions] remove test for --remote-only --new which gives empty output
[cmd versions] final rename
format
* add brillig mock package
* add test for spack versions --new
* [brillig] format
* [versions] increase test coverage
* Update lib/spack/spack/cmd/versions.py
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* Update lib/spack/spack/cmd/versions.py
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* allow install of build-deps from cache via --include-build-deps switch
* make clear that --include-build-deps is useful for CI pipeline troubleshooting
fixes#20055
Compiler with custom versions like gcc@foo are not currently
matched to the appropriate targets. This is because the
version of spec doesn't match the "real" version of the
compiler.
This PR replicates the strategy used in the original
concretizer to deal with that and tries to detect the real
version of compilers if the version in the spec returns no
results.
* AOCC-2.3.0 is now added to spack
Change-Id: I18fd9606e6fd9a288cc7dc6c6ead11ea17839a7c
* Added flag and version tests for AOCC-2.3.0
* Addressed review comments
Co-authored-by: vkallesh <Vijay-teekinavar.Kallesh@amd.com>
fixes#20040
Matching compilers among nodes has been prioritized
in #20020. Selection of default variants has been
tuned in #20182. With this setup there is no need
to have an ad-hoc rule for external packages. On
the contrary it should be removed to prefer having
default variant values over more external nodes in
the DAG.
refers #20040
Before this PR optimization rules would have selected default
providers at a higher priority than default variants. Here we
swap this priority and we consider variants that are forced by
any means (root spec or spec in depends_on clause) the same as
if they were with a default value.
This prevents the solver from avoiding expected configurations
just because they contain directives like:
depends_on('pkg+foo')
and `+foo` is not the default variant value for pkg.
fixes#19981
This commit adds support for target ranges in directives,
for instance:
conflicts('+foo', when='target=x86_64:,aarch64:')
If any target in a spec body is not a known target the
following clause will be emitted:
node_target_satisfies(Package, TargetConstraint)
when traversing the spec and a definition of
the clause will then be printed at the end similarly
to what is done for package and compiler versions.
fixes#20019
Before this modification having a newer version of a node came
at higher priority in the optimization than having matching
compilers. This could result in unexpected configurations for
packages with conflict directives on compilers of the type:
conflicts('%gcc@X.Y:', when='@:A.B')
where changing the compiler for just that node is preferred to
lower the node version to less than 'A.B'. Now the priority has
been switched so the solver will try to lower the version of the
nodes in question before changing their compiler.
refers #20079
Added docstrings to 'concretize' and 'concretized' to
document the format for tests.
Added tests for the activation of test dependencies.
refers #20040
This modification emits rules like:
provides_virtual("netlib-lapack","blas") :- variant_value("netlib-lapack","external-blas","False").
for packages that provide virtual dependencies conditionally instead
of a fact that doesn't account for the condition.
This PR fixes two problems with clang/llvm's version detection. clang's
version output looks like this:
```
clang version 11.0.0
Target: x86_64-unknown-linux-gnu
```
This caused clang's version to be misdetected as:
```
clang@11.0.0
Target:
```
This resulted in errors when trying to actually use it as a compiler.
When using `spack external find`, we couldn't determine the compiler
version, resulting in errors like this:
```
==> Warning: "llvm@11.0.0+clang+lld+lldb" has been detected on the system but will not be added to packages.yaml [reason=c compiler not found for llvm@11.0.0+clang+lld+lldb]
```
Changing the regex to only match until the end of the line fixes these
problems.
Fixes: #19473
This adds a new `mark` command that can be used to mark packages as either
explicitly or implicitly installed. Apart from fixing the package
database after installing a dependency manually, it can be used to
implement upgrade workflows as outlined in #13385.
The following commands demonstrate how the `mark` and `gc` commands can be
used to only keep the current version of a package installed:
```console
$ spack install pkgA
$ spack install pkgB
$ git pull # Imagine new versions for pkgA and/or pkgB are introduced
$ spack mark -i -a
$ spack install pkgA
$ spack install pkgB
$ spack gc
```
If there is no new version for a package, `install` will simply mark it as
explicitly installed and `gc` will not remove it.
Co-authored-by: Greg Becker <becker33@llnl.gov>
Users can add test() methods to their packages to run smoke tests on
installations with the new `spack test` command (the old `spack test` is
now `spack unit-test`). spack test is environment-aware, so you can
`spack install` an environment and then run `spack test run` to run smoke
tests on all of its packages. Historical test logs can be perused with
`spack test results`. Generic smoke tests for MPI implementations, C,
C++, and Fortran compilers as well as specific smoke tests for 18
packages.
Inside the test method, individual tests can be run separately (and
continue to run best-effort after a test failure) using the `run_test`
method. The `run_test` method encapsulates finding test executables,
running and checking return codes, checking output, and error handling.
This handles the following trickier aspects of testing with direct
support in Spack's package API:
- [x] Caching source or intermediate build files at build time for
use at test time.
- [x] Test dependencies,
- [x] packages that require a compiler for testing (such as library only
packages).
See the packaging guide for more details on using Spack testing support.
Included is support for package.py files for virtual packages. This does
not change the Spack interface, but is a major change in internals.
Co-authored-by: Tamara Dahlgren <dahlgren1@llnl.gov>
Co-authored-by: wspear <wjspear@gmail.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
The deprecatedProperties custom validator now can accept a function
to compute a better error message.
Improve error/warning message for deprecated properties
As of #18260, `spack load` and `spack env activate` now use
`prefix_inspections` from the modules configuration to decide
how to modify environment variables.
This updates the modules configuration documentation to describe
how to update environment variables with the `prefix_inspections`
section. This also updates the `spack load` and environments
documentation to refer to the new `prefix_inspections` documentation.
`spack load` and `spack env activate` now use the prefix inspections
defined in `modules.yaml`. This allows users to customize/override
environment variable modifications if desired.
If no `prefix_inspections` configuration is present, Spack uses the
values in the default configuration.
This PR reworks a few attributes in the container subsection of
spack.yaml to permit the injection of custom base images when
generating containers with Spack. In more detail, users can still
specify the base operating system and Spack version they want to use:
spack:
container:
images:
os: ubuntu:18.04
spack: develop
in which case the generated recipe will use one of the Spack images
built on Docker Hub for the build stage and the base OS image in the
final stage. Alternatively, they can specify explicitly the two
base images:
spack:
container:
images:
build: spack/ubuntu-bionic:latest
final: ubuntu:18.04
and it will be up to them to ensure their consistency.
Additional changes:
* This commit adds documentation on the two approaches.
* Users can now specify OS packages to install (e.g. with apt or yum)
prior to the build (previously this was only available for the
finalized image).
* Handles to avoid an update of the available system packages have been
added to the configuration to facilitate the generation of recipes
permitting deterministic builds.
This commit address the case of concretizing a root spec with a
transitive conditional dependency on a virtual package, provided
by an external. Before these modifications default variant values
for the dependency bringing in the virtual package were not
respected, and the external package providing the virtual was added
to the DAG.
The issue stems from two facts:
- Selecting a provider has higher precedence than selecting default variants
- To ensure that an external is preferred, we used a negative weight
To solve it we shift all the providers weight so that:
- External providers have a weight of 0
- Non external provider have a weight of 10 or more
Using a weight of zero for external providers is such that having
an external provider, if present, or not having a provider at all
has the same effect on the higher priority minimization.
Also fixed a few minor bugs in concretize.lp, that were causing
spurious entries in the final answer set.
Cleaned concretize.lp from leftover rules.
If a the default of a multi-valued variant is set to
multiple values either in package.py or in packages.yaml
we need to ensure that all the values are present in the
concretized spec.
Since each default value has a weight of 0 and the
variant value is set implicitly by the concretizer
we need to add a rule to maximize on the number of
default values that are used.
This commit introduces a new rule:
real_node(Package) :- not external(Package), node(Package).
that permits to distinguish between an external node and a
real node that shouldn't trim dependency. It solves the
case of concretizing ninja with an external Python.
`node_compiler_hard()` means that something explicitly asked for a node's
compiler to be set -- i.e., it's not inherited, it's required. We're
generating this in spec_clauses even for specs in rule bodies, which
results in conditions like this for optional dependencies:
In py-torch/package.py:
depends_on('llvm-openmp', when='%apple-clang +openmp')
In the generated ASP:
declared_dependency("py-torch","llvm-openmp","build")
:- node("py-torch"),
variant_value("py-torch","openmp","True"),
node_compiler("py-torch","apple-clang"),
node_compiler_hard("py-torch","apple-clang"),
node_compiler_version_satisfies("py-torch","apple-clang",":").
The `node_compiler_hard` there means we would have to *explicitly* set
py-torch's compiler to trigger the llvm-openmp dependency, rather than
just letting it be set by preferences. This is wrong; the dependency
should be there regardless of how the compiler was set.
- [x] remove fn.node_compiler_hard() call from spec_clauses when
generating rule body clauses.
If the version list passed to one_of_iff is empty, it still generates a
rule like this:
node_compiler_version_satisfies("fujitsu-mpi", "arm", ":") :- 1 { } 1.
1 { } 1 :- node_compiler_version_satisfies("fujitsu-mpi", "arm", ":").
The cardinality rules on the right and left above are never
satisfiale, and these rules do nothing.
- [x] Skip generating any rules at all for empty version lists.
As reported, conflicts with compiler ranges were not treated
correctly. This commit adds tests to verify the expected behavior
for the new concretizer.
The new rules to enforce a correct behavior involve:
- Adding a rule to prefer the compiler selected for
the root package, if no other preference is set
- Give a strong negative weight to compiler preferences
expressed in packages.yaml
- Maximize on compiler AND compiler version match
Variant of this kind don't have a list of possible
values encoded in the ASP facts. Since all we have
is a validator the list of possible values just includes
just the default value and possibly the value passed
from packages.yaml or cli.
This is done after the builder has actually built
the specs, to respect the semantics use with the
old concretizer.
Later we could move this to the solver as
a multivalued variant.
This is done after the builder has actually built
the specs, to respect the semantics use with the
old concretizer.
A better approach is to substitute the spec
directly in concretization.
The "none" variant value cannot be combined with
other values.
The '*' wildcard matches anything, including "none".
It's thus relevant in queries, but disregarded in
concretization.
- The test on concretization of anonymous dependencies
has been fixed by raising the expected exception.
- The test on compiler bootstrap has been fixed by
updating the version of GCC used in the test.
Since gcc@2.0 does not support targets later than
x86_64, the new concretizer was looking for a
non-existing spec, i.e. it was correctly trying
to retrieve 'gcc target=x86_64' instead of
'gcc target=core2'.
- The test on gitlab CI needed an update of the target
This commit adds support for specifying rules in
packages.yaml that refer to virtual packages.
The approach is to normalize in memory each
configuration and turn it into an equivalent
configuration without rules on virtual. This
is possible if the set of packages to be handled
is considered fixed.
The weight of the target used in concretization is, in order:
1. A specific per package weight, if set in packages.yaml
2. Inherited from the parent, if possible
3. The default target weight (always set)
Generate facts on externals by inspecting
packages.yaml. Added rules in concretize.lp
Added extra logic so that external specs
disregard any conflict encoded in the
package.
In ASP this would be a simple addition to
an integrity constraint:
:- c1, c2, c3, not external(pkg)
Using the the Backend API from Python it
requires some scaffolding to obtain a default
negated statement.
Conflict rules from packages are added as integrity
constraints in the ASP formulation. Most of the code
to generate them has been reused from PyclingoDriver.rules
The new concretizer and the old concretizer solve constraints
in a different way. Here we ensure that a SpackError is raised,
instead of a specific error that made sense in the old concretizer
but probably not in the new.
Instead of python callbacks, use cardinality constraints for package
versions. This is slightly faster and has the advantage that it can be
written to an ASP program to be executed *outside* of Spack. We can use
this in the future to unify the pyclingo driver and the clingo text
driver.
This makes use of add_weight_rule() to implement cardinality constraints.
add_weight_rule() only has a lower bound parameter, but you can implement
a strict "exactly one of" constraint using it. In particular, wee want to
define:
1 {v1; v2; v3; ...} 1 :- version_satisfies(pkg, constraint).
version_satisfies(pkg, constraint) :- 1 {v1; v2; v3; ...} 1.
And we do that like this, for every version constraint:
atleast1(pkg, constr) :- 1 {version(pkg, v1); version(pkg, v2); ...}.
morethan1(pkg, constr) :- 2 {version(pkg, v1); version(pkg, v2); ...}.
version_satisfies(pkg, constr) :- atleast1, not morethan1(pkg, constr).
:- version_satisfies(pkg, constr), morethan1.
:- version_satisfies(pkg, constr), not atleast1.
v1, v2, v3, etc. are computed on the Python side by comparing every
possible package version with the constraint.
Computing things like this has the added advantage that if v1, v2, v3,
etc. comprise *all* possible versions of a package, we can just omit the
rules for the constraint under consideration. This happens pretty
frequently in the Spack mainline.
- [x] Solver now uses the Python interface to clingo
- [x] can extract unsatisfiable cores from problems when things go wrong
- [x] use Python callbacks for versions instead of choice rules (this may
ultimately hurt performance)
There are now three parts:
- `SpackSolverSetup`
- Spack-specific logic for generating constraints. Calls methods on
`AspTextGenerator` to set up the solver with a Spack problem. This
shouln't change much from solver backend to solver backend.
- ClingoDriver
- The solver driver provides methods for SolverSetup to generates an ASP
program, send it to `clingo` (run as an external tool), and parse the
output into function tuples suitable for `SpecBuilder`.
- The interface is generic and should not have to change much for a
driver for, say, the Clingo Python interface.
- SpecBuilder
- Builds Spack specs from function tuples parsed by the solver driver.
The original implementation was difficult to read, as it only had
single-letter variable names. This converts all of them to descriptive
names, e.g., P -> Package, V -> Virtual/Version/Variant, etc.
To handle unknown compilers propely in tests (and elsewhere), we need to
add unknown compilers from the spec to the list of possible compilers.
Rework how the compiler list is generated and includes compilers from
specs if the existence check is disabled.
Specs like hdf5 ^mpi were unsatisfiable because we added a requierment
for `node("mpi").`. This can't be resolved because "mpi" is not a
package.
- [x] Introduce `virtual_node()`, which says *some* provider must be in
the DAG.
This adds compiler flags to the ASP solve so that we can have conditions
based on them in the solve. But, it keeps order out of the solve to
avoid unneeded complexity and combinatorial explosions.
The solver determines which flags are on a spec, but the order is
determined by DAG precedence (childrens' flags take precedence over
parents' and are added on the right) and order (order flags were
specified on the command line is respected).
The solver is responsible for determining when to propagate flags, when
to inheit them from other nodes, when to take them from compiler
preferences, etc.
Weight microarchitectures and prefers more rercent ones. Also disallow
nodes where the compiler does not support the selected target.
We should revisit this at some point as it seems like if I play around
with the compiler support for different architectures, the solver runs
very slowly. See notes in comments -- the bad case was gcc supporting
broadwell and skylake with clang maxing out at haswell.
We didn't have a cardinality constraint for multi-valued variants, so the
solver wasn't filling them in.
- [x] add a requirement for at least one value for multi-valued variants
Variants like `cpu_target` on `openblas` don't have defineed values, but
they have a default. Ensure that the default is always a possible value
for the solver.
Spack was generating the same dependency connstraints twice in the output ASP:
```
declared_dependency("abinit", "hdf5", "link")
:- node("abinit"),
variant_value("abinit", "mpi", "True"),
variant_value("abinit", "mpi", "True").
```
This was because `AspFunction` was modifying itself when called.
- [x] fix `AspFunction` so that every call returns a new object
- [x] Add support for packages.yaml and command-line compiler preferences.
- [x] Rework compiler version propagation to use optimization rather than
hard logic constraints
Technically the ASP output order does not matter, but it's hard to diff
two different solve fomulations unless we order it.
- [x] make sure ASP output is emitted in a deterministic order (by
sorting all hash keys)
This needs more thought, as I am pretty sure the weights are not correct.
Or, at least, I'm not convinced that they do what we want in all cases.
See note in concretize.lp.
Solver now prefers newer versions like the old concretizer. Prefer
package preferences from packages.yaml, preferred=True, package
definition, and finally each version itself.
Competition output only prints out one model, so we do not have to
unnecessarily parse all the non-optimal models. We'll just look at the
best model and bring that in.
In practice, this saves a lot of JSON parsing and spec construction time.
Clingo actually has an option to output JSON -- use that instead of
parsing the raw otuput ourselves.
This also allows us to pick the best answer -- modify the parser to
*only* construct a spec for that one rather than building all of them
like we did before.
- Instead of using default logic, handle variant defaults by minimizing
the number of non-default variants in the solution.
- This actually seems to be pretty fast, and it fixes the long-standing
issue that writing this:
spack install hdf5 ^mpich
will fail if you don't specify hdf5+mpi. With optimization and
allowing enums to be enumerated, the solver seems to be able to quickly
discover that +mpi is the only way hdf5 can depend on mpich, and it
forces the switch to be thrown.
Use '1 { version(x); version(y); version(z) } 1.' instead of declaring
conflicts for non-matching versions. This keeps the sense of version
clauses positive, which will allow them to be used more easily in
conditionals later.
Also refactor `spec_clauses()` method to return clauses that can be used
in conditions, etc. instead of just printing out facts.
- This handles setting the compiler and falling back to a default
compiler, as well as providing default values for compilers/compiler
versions.
- Versions still aren't quite right -- you can't properly override
versions on compiler specs.
- Model architecture default settings and propagation off of variants
- Leverage ASP default logic to set architecture to default if it's not
set otherwise.
- Move logic out of Python and into concretize.lp as first-order rules.
We are relying on default logic in the variant handling in that we set a
default value if we never see `variant_set(P, V, X)`.
- Move the logic for this into `concretize.lp` instead of generating it
for every package.
- For programs that don't have explicit variant settings, clingo warns
that variant_set(P, V, X) doesn't appear in any rule head, because a
setting is never generated.
- Specifically suppress this warning.
- moving the dump logic into spack.solver.asp.solve() allows us to print
out useful debug info sooner
- prior approach required a successful solve to print out anyhting.
According to the documentation for spack and pkg-config,
$view/share/pkgconfig should also be a valid place to look
for package config files. This commit ensures that when
spack activate env $dir is called, the environment has this
directory in PKG_CONFIG_PATH.
As of #13100, Spack installs the dependencies of a _single_ spec in parallel.
Environments, when installed, can only get parallelism from each individual
spec, as they're installed in order. This PR makes entire environments build
in parallel by extending Spack's package installer to accept multiple root
specs. The install command and Environment class have been updated to use
the new parallel install method.
The specs and kwargs for each *uninstalled* package (when not force-replacing
installations) of an environment are collected, passed to the `PackageInstaller`,
and processed using a single build queue.
This introduces a `BuildRequest` class to track install arguments, and it
significantly cleans up the code used to track package ids during installation.
Package ids in the build queue are now just DAG hashes as you would expect,
Other tasks:
- [x] Finish updating the unit tests based on `PackageInstaller`'s use of
`BuildRequest` and the associated changes
- [x] Change `environment.py`'s `install_all` to use the `PackageInstaller` directly
- [x] Change the `install` command to leverage the new installation process for multiple specs
- [x] Change install output messages for external packages, e.g.:
`[+] /usr` -> `[+] /usr (external bzip2-1.0.8-<dag-hash>`
- [x] Fix incomplete environment install's view setup/update and not confirming all
packages are installed (?)
- [x] Ensure externally installed package dependencies are properly accounted for in
remaining build tasks
- [x] Add tests for coverage (if insufficient and can identity the appropriate, uncovered non-comment lines)
- [x] Add documentation
- [x] Resolve multi-compiler environment install issues
- [x] Fix issue with environment installation reporting (restore CDash/JUnit reports)
This change makes improvements to the `spack ci rebuild` command
which supports running gitlab pipelines on PRs from forks. Much
of this has to do with making sure we can run without the secrets
previously required for running gitlab pipelines (e.g signing key,
aws credentials, etc). Specific improvements in this PR:
Check if spack has precisely one signing key, and use that information
as an additional constraint on whether or not we should attempt to sign
the binary package we create.
Also, if spack does not have at least one public key, add the install
option "--no-check-signature"
If we are running a pipeline without any profile or environment
variables allowing us to push to S3, the pipeline could still
successfully create a buildcache in the artifacts and move on. So
just print a message and move on if pushing either the buildcache
entry or cdash id file to the remote mirror fails.
When we attempt to generate a pacakge or gpg key index on an S3
mirror, and there is nothing to index, just print a warning and
exit gracefully rather than throw an exception.
Support the use of PR-specific mirrors for temporary binary pkg
storage. This will allow quality-of-life improvement for developers,
providing a place to store binaries over the lifetime of a PR, so
that they must only wait for packages to rebuild from source when
they push a new commit that causes it to be necessary.
Replace two-pass install with a single pass and the new option:
--require-full-hash-match. Doing this also removes the need to
save a copy of the spack.yaml to be copied over the one spack
rewrites in between the two spack install passes.
Work around a mirror configuration issue caused by using
spack.util.executable to do the package installation.
* Update pipeline trigger jobs for PRs from forks
Moving to PRs from forks relies on external synchronization script
pushing special branch names. Also secrets will only live on the
spack mirror project, and must be propagated to the E4S project via
variables on the trigger jobs.
When this change is merged, pipelines will not run until we update
the "Custom CI configuration path" in the Gitlab CI Settings, as the
name of the file has changed to better reflect its purpose.
* Arg to MirrorCollection is used exclusively, so add main remote mirror to it
* Compute full hash less frequently
* Add tests covering index generation error handling code
Since #11598 sbang has been installed within the install_tree. This doesn’t play
nicely with install_tree padding, since sbang can’t do its job if it is installed in a
long path (this is the whole point of sbang).
This PR changes the padding specification. Instead of $padding inside paths,
we now have a separate `padding:` field in the `install_tree` configuration.
Previously, the `install_tree` looked like this:
```
/path/to/opt/spack_padding_padding_padding_padding_padding/
bin/
sbang
.spack-db/
...
linux-rhel7-x86_64/
...
```
```
This PR updates things to look like this:
/path/to/opt/
bin/
sbang
spack_padding_padding_padding_padding_padding/
.spack-db/
...
linux-rhel7-x86_64/
...
So padding is added at the start of all install prefixes *within* the unpadded
root. The database and all installations still go under the padded root.
This ensures that `sbang` is in the shorted possible path while also allowing
us to make long paths for relocatable binaries.
As of #18205, all packages must be pickle-able to be installed by
Spack.
This adds a test to check that each package can be pickled. If any
package fails to pickle, the test keeps going and collects the names
of all failed packages; it then takes the first one that failed and
attempts to re-pickle it, generating the full stack trace for the
failed pickle attempt.
Spack creates a separate process to do package installation. Different
operating systems and Python versions use different methods to create
it but up until Python 3.8 both Linux and Mac OS used "fork" (which
duplicates process memory, file descriptor table, etc.).
Python >= 3.8 on Mac OS prefers creating an entirely new process
(referred to as the "spawn" start method) because "fork" was found to
cause issues (in other words "spawn" is the default start method used
by multiprocessing.Process). Spack was dependent on the particular
behavior of fork to replicate process memory and transmit file
descriptors.
This PR refactors the Spack internals to support starting a child
process with the "spawn" method. To achieve this, it makes the
following changes:
- ensure that the package repository and other global state are
transmitted to the child process
- ensure that file descriptors are transmitted to the child process in
a way that works with multiprocessing and spawn
- make all the state needed for the build process and tests picklable
(package, stage, etc.)
- move a number of locally-defined functions into global scope so that
they can be pickled
- rework tests where needed to avoid using local functions
This PR also reworks sbang tests to work on macOS, where temporary
directories are deeper than the Linux sbang limit. We make the limit
platform-dependent (macOS supports 512-character shebangs)
See: #14102
In compiler bootstrapping pipelines, we add an artificial dependency
between jobs for packages to be built with a bootstrapped compiler
and the job building the compiler. To find the right bootstrapped
compiler for each spec, we compared not only the compiler spec to
that required by the package spec, but also the architectures of
the compiler and package spec.
But this prevented us from finding the bootstrapped compiler for a
spec in cases where the architecture of the compiler wasn't exactly
the same as the spec. For example, a gcc@4.8.5 might have
bootstrapped a compiler with haswell as the architecture, while the
spec had broadwell. By comparing the families instead of the architecture
itself, we know that we can build the zlib for broadwell with the gcc for
haswell.
Currently, full JSON output is the only machine readable option for `spack find`
in an environment.
`spack find --format` is also designed to be machine readable, but we print extra
headers in environments.
-[x] don't print headers in `spack find` output when in an environment
When invoking "buildcache list" multiple times, the command was
reporting no specs in the cache the second time around. The
presence of an up-to-date index was causing the internal
representation to be left un-initialized.
Added a command to set up Spack for our tutorial at
https://spack-tutorial.readthedocs.io.
The command does some common operations we need first-time users to do.
Specifically:
- checks out a particular branch of Spack
- deletes spurious configuration in `~/.spack` that might be
left over from prior parts of the tutorial
- adds a mirror and trusts its public key
Previously, we hardcoded a list of Spack versions which could be used by the containerize command.
This PR removes that list. It's a maintenance burden when cutting a release, and prevents older versions of Spack from creating containers to be used by newer versions.
There was an error introduced in #19209 where `full_hash()` and
`build_hash()` are called on older specs that we've read in from the DB;
older specs may not be able to compute these hashes (e.g. if they have
removed patches used in computing the full_hash).
When serializing a Spec, we want to generate the full/build hash when
possible, but we need a mechanism to skip it for Specs that have
themselves been read from YAML (and may not support this).
To get around this ambiguity and to fix the issue, we:
- Add an attribute to the spec called `_hashes_final`, that is `True`
if we can't lazily compute `build_hash` and `full_hash`.
- Set `_hashes_final` to `False` for new specs (i.e., lazily
computing hashes is ok)
- Set `_hashes_final` to `True` for concrete specs read in via
`from_node_dict`, as it may be too late to recompute hashes.
- Compute and write out all hashes in `node_dict_with_hashes` *if
possible*.
Effectively what this means is that we can round-trip specs that are
missing `_build_hash` and `_full_hash` without recomputing them, but for
all new specs, we'll compute them and store them. So Spack should work
fine with old DBs now.
This fixes sbang relocation when using old binary packages, and updates
code in `relocate.py`.
There are really two places where we would want to handle an `sbang`
relocation:
1. Installing an old package that uses `sbang` with shebang lines like
`#!/bin/bash $spack_prefix/sbang`
2. Installing a *new* package that uses `sbang` with shebang lines like
`#!/bin/sh $install_tree/sbang`
The second case is actually handled automatically by our text relocation;
we don't need any special relocation logic for new shebangs, as our
relocation logic already changes references to the build-time
`install_tree` to point to the `install_tree` at intall-time.
Case 1 was not properly handled -- we would not take an old binary
package and point its shebangs at the new `sbang` location. This PR fixes
that and updates the code in `relocation.py` with some notes.
There is one more case we don't currently handle: if a binary package is
created from an installation in a short prefix that does *not* need
`sbang` and is installed to a long prefix that *does* need `sbang`, we
won't do anything. We should just patch the file as we would for a normal
install. In some upcoming PR we should probably change *all* `sbang`
relocation logic to be idempotent and to apply to any sort of shebang'd
file. Then we'd only have to worry about which files to `sbang`-ify at
install time and wouldn't need to care about these special cases.
fixes#15183
- Moved the container related content from
workflows.rst into containers.rst
- Deleted the docker_for_developers.rst file,
since it describes an outdated procedure
Co-authored-by: Axel Huebl <a.huebl@hzdr.de>
Co-authored-by: Omar Padron <omar.padron@kitware.com>
`config.get_config` now caches the results and returns the same
configuration if called multiple times with the same arguments
(i.e. the same section and scope).
As a consequence, it is expected that users will always call
update methods provided in the `config` module after changing
the configuration (even if manipulating it as a Python nested
dictionary). The following two examples should cover most
scenarios:
* Most configuration update logic in the core (e.g. relating to
adding new compiler) should call `Configuration.update_config`
* Tests that need to change the global configuration should use the
newly-provided `config.replace_config` function.
(if neither of these methods apply, then the essential requirement
is to use a method marked as `_config_mutator`)
Failure to call such a function after modifying the configuration
will lead to unexpected results (e.g. calling `get_config` after
changing the configuration will not reflect the changes since the
first call to get_config).
* "spack install" now has a "--require-full-hash-match" option, which
forces Spack to skip an available binary package when the full hash
doesn't match. Normally only a DAG-hash match is required, which
ensures equivalent Specs, but does not account for changing logic
inside the associated package.
* Add a local binary cache index which tracks specs that have a binary
install available in a remote binary cache. It is updated with
"spack buildcache list" or for a given spec when a binary package
is retrieved for that Spec.
Spack has a fallback for hash checking with m55sums that may not be
supported in earlier versions of Python 3.x. The comments in the
Spack code acknowledge that this is best effort and may fail, but
recent vermin checks (running as part of our CI) reject this. This
disables vermin checks for that fallback.
* enable flatcc to be built with gcc/9.X.X
* add static option for building libyogrt
* cleanup
* Initial working version
* rework new oneapi wrappers
* tested and removed my initials from source
* cleanup
* Update __init__.py
* remove whitespace
* working now with mods for testing, detection. Detection for oneapi is working, but entry needs to be modified to add link path for libimf.so. Cleared cruft for old Intel versions
* fixed some formatting
* cleanup
* flake8 cleanup
* flake8
* fixed syntax of compiler version detection tests
* fixed syntax of compiler version detection tests
modified: detection.py
* fix typo
* fixes for compilers tests
* remove erroneous tests for outdated -std= flags, remove ifx version check (output won't parse)
Co-authored-by: Frank Willmore <willmore@anl.gov>
`sbang` now lives at https://github.com/spack/sbang, and it has its own
test suite that's more extensive than what's in Spack. We'll leave sbang
tests to sbang from now on, and just vendor `bin/sbang` directly.
Remaining `sbang` tests have to do with patching files, not with
`sbang`'s functionality.
This update also fixes a bug with `sbang` and multiple command line
arguments that was introduced in #19529. See:
* https://github.com/spack/sbang/pull/1
* https://github.com/spack/sbang/pull/2
- [x] include latest `sbang` from https://github.com/spack/sbang
- [x] remove old `sbang` tests from Spack
- [x] update `COPYRIGHT` and `cmd/license.py`
`sbang` was previously a bash script but did not need to be. This
converts it to a plain old POSIX shell script and adds some options. This
also allows us to simplify sbang shebangs to `#!/bin/sh /path/to/sbang`
instead of `#!/bin/bash /path/to/sbang`.
The new script passes shellcheck (with a few exceptions noted in the file)
- [x] `SBANG_DEBUG` env var enables printing what *would* be executed
- [x] `sbang` checks whether it has been passed an option and fails gracefully
- [x] `sbang` will now fail if it can't find a second shebang line, or if
the second line happens to be sbang (avoid infinite loops)
- [x] add more rigorous tests for `sbang` behavior using `SBANG_DEBUG`
PHP supports an initial shebang, but its comment syntax can't handle our 2-line
shebangs. So, we need to embed the 2nd-line shebang comment to look like a
PHP comment:
<?php #!/path/to/php ?>
This adds patching support to the sbang hook and support for
instrumenting php shebangs.
This also patches `phar`, which is a tool used to create php packages.
`phar` itself has to add sbangs to those packages (as phar archives
apparently contain UTF-8, as well as binary blobs), and `phar` sets a
checksum based on the contents of the package.
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
`sbang` is not always accessible to users of packages, e.g., if Spack
is installed in someone's home directory and they deploy software
for others. Avoid this by:
1. Always installing the `sbang` script in the `install_tree`
2. Relocating binaries to point to the copy in the `install_tree`
and not the one in the Spack installation.
This PR also:
- ensures that `sbang` is reinstalled if it is modified in Spack
- adds tests
- updates the way `gobject-introspection` patches Makefiles
to support `sbang`
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
The logic in `config.py` merges lists correctly so that list elements
from higher-precedence config files come first, but the way we merge
`dict` elements reverses the precedence.
Since `mirrors.yaml` relies on `OrderedDict` for precedence, this bug
causes mirrors in lower-precedence config scopes to be checked before
higher-precedence scopes.
We should probably convert `mirrors.yaml` to use a list at some point,
but in the meantie here's a fix for `OrderedDict`.
- [x] ensuring that keys are ordered correctly in `OrderedDict` by
re-inserting keys from the destination `dict` after adding the keys from
the source `dict`.
- [x] also simplify the logic in `merge_yaml` by always reinserting
common keys -- this preserves mark information without all the special
cases, and makes it simpler to preserve insertion order.
Assuming a default spack configuration, if we run this:
```console
$ spack mirror add foo https://bar.com
```
Results before this change:
```console
$ spack config blame mirrors
--- mirrors:
/Users/gamblin2/src/spack/etc/spack/defaults/mirrors.yaml:2 spack-public: https://spack-llnl-mirror.s3-us-west-2.amazonaws.com/
/Users/gamblin2/.spack/mirrors.yaml:2 foo: https://bar.com
```
Results after:
```console
$ spack config blame mirrors
--- mirrors:
/Users/gamblin2/.spack/mirrors.yaml:2 foo: https://bar.com
/Users/gamblin2/src/spack/etc/spack/defaults/mirrors.yaml:2 spack-public: https://spack-llnl-mirror.s3-us-west-2.amazonaws.com/
```
Shell integration no longer requires setting `SPACK_ROOT`, so we can
simplify the documentation on it. The docs on shell support and using
packages are getting a bit old, and information on `spack load` (which
seems to be everyone's most common way of using packages) is hard to
find.
This PR simplifies the shell documentation to remove SPACK_ROOT, and also
moves some sections around for clearer organization.
- [x] make docs on sourcing setup scripts clearer and simpler
- [x] introduce `spack load` early in the basic usage guide instead of
burying it in the module docs
- [x] clean up module docs so that spack module tcl loads comes later
- [x] be clear about the different ways to use packages so that the users
can find the docs better.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
fixes#19476
Module file content is written to file in a
temporary location and read back to be analyzed
by unit tests.
The approach to patch "open" and write to a
StringIO in memory has been abandoned, since
over time other operations insisting on the
filesystem have been added to the module file
generator.
Synchronization on GitHub macOS runners seems to be very slow, and
frequently the foreground/background tests fail due to the race this
causes. This increases the tolerance for slowness a bit more, to allow up
to 4 spurious output lines in the tests.
This should hopefully result in no more false negatives on these tests
for macOS on GitHub.
* Add recipe for qgraf
* Revert "Add recipe for qgraf"
This reverts commit 76783f7386.
* Add qgraf
* Update package.py
Changes from review
* Changes from MR
* Fix for URLs containing @ symbol
Co-authored-by: Ivan Razumov <ivan.razumov@cern.ch>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* Adding AOCC compiler to SPACK community
The AOCC compiler system offers a high level of advanced optimizations, multi-threading and processor support that includes global optimization, vectorization, inter-procedural analyses, loop transformations, and code generation. AMD also provides highly optimized libraries, which extract the optimal performance from each x86 processor core when utilized. The AOCC Compiler Suite simplifies and accelerates development and tuning for x86 applications.
* Added unit tests for detection and flags for AOCC
* Addressed reviewers comments w.r.t version checks and url,checksum related line lengths
Co-authored-by: Test User <spack@example.com>
* ADD: testing to dev-build command
* RM: mutally exclusive group for testing in parser
* FIX: test option to subparser and not testing
* ADD: spack-completion.bash
* RM: local devbuildcosmo cmd
* FIX: bad merge --drop-in -b --before options forgotten
* FIX: --test place in spack-completion.bash
* FIX: typo
* FIX: blank line removing
* FIX: trailing white space
Co-authored-by: Elsa Germann <egermann@tsa-ln002.cm.cluster>
The package list at https://spack.readthedocs.io/en/latest/package_list.html claims "it is automatically generated based on the packages in the latest Spack release" but it is actually based on the develop branch. This leads to confusion when users find that e.g. herwigpp is included in the list, but it cannot be found when they install the latest release. That latest release has a package list at https://spack.readthedocs.io/en/stable/package_list.html which does indeed not include herwigpp.
Changing the language from "the latest Spack release" to "this Spack version" might make that clearer. Maybe.
* Add nvhpc compiler definition: "spack compiler add" will now look
for instances of the NVIDIA HPC SDK compiler executables
(nvc, nvc++, nvfortran) in supplied paths
* Add the nvhpc package which installs the nvhpc compiler
* Add testing for nvhpc detection and C++-standard/pic flags
Co-authored-by: Scott McMillan <smcmillan@nvidia.com>
Output was, e.g. `Executables in /bin and /,u,s,r,/,b,i,n are both associated with the same spec xz@5.2.2`, will be `Executables in /bin and /usr/bin are both associated with the same spec xz@5.2.2`.
Previously config.guess and config.sub were patched only
in the root of the source path.
This modification extend the previous behavior to patch every
config.guess or config.sub file even in subfolders, if need be.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* allow environments to specify dev-build packages
* spack develop and spack undevelop commands
* never pull dev-build packges from bincache
* reinstall dev_specs when code has changed; reinstall dependents too
* preserve dev info paths and versions in concretization as special variant
* move install overwrite transaction into installer
* move dev-build argument handling to package.do_install
now that specs are dev-aware, package.do_install can add
necessary args (keep_stage=True, use_cache=False) to dev
builds. This simplifies driving logic in cmd and env._install
* allow 'any' as wildcard for variants
* spec: allow anonymous dependencies
raise an error when constraining by or normalizing an anonymous dep
refactor concretize_develop to remove dev_build variant
refactor tests to check for ^dev_path=any instead of +dev_build
* fix variant class hierarchy
* autotools: add attribute to delete libtool archives .la files
According to Autotools Mythbuster (https://autotools.io/libtool/lafiles.html)
libtool archive files are mostly vestigial, but they might create issues
when relocating binary packages as shown in #18694.
For GCC specifically, most distributions remove these files with
explicit commands:
https://git.stg.centos.org/rpms/gcc/blob/master/f/gcc.spec#_1303
Considered all of that, this commit adds an easy way for each
AutotoolsPackage to remove every .la file that has been installed.
The default, for the time being, is to maintain them - to be consistent
with what Spack was doing previously.
* autotools: delete libtool archive files by default
Following review this commit changes the default for
libtool archive files deletion and adds test to verify
the behavior.
This commit refactors the computation of the search path
for aclocal in its own method, so that it's easier to reuse
for packages that need to have a custom autoreconf phase.
Co-authored-by: Toyohisa Kameyama <kameyama@riken.jp>
This reverts #18359 and follow-on PRs intended to address issues with
#18359 because that PR changes the hash of all specs. A future PR will
reintroduce the changes.
* Revert "Fix location in spec.yaml where we look for full_hash (#19132)"
* Revert "Fix fetch of spec.yaml files from buildcache (#19101)"
* Revert "Merge pull request #18359 from scottwittenburg/add-binary-distribution-cache-manager"
When we attempt to determine whether a remote spec (in a binary mirror)
is up-to-date or needs to be rebuilt, we compare the full_hash stored in
the remote spec.yaml file against the full_hash computed from the local
concrete spec. Since the full_hash moved into the spec (and is no longer
at the top level of the spec.yaml), we need to look there for it. This
oversight from #18359 was causing all specs to get rebuilt when the
full_hash wasn't fouhd at the expected location.
This changes makes sure that when we run the pipeline job that updates
the buildcache package index on the remote mirror, we also update the
key index. The public keys corresponding to the signing keys used to
sign the package was pushed to the mirror as a part of creating the
buildcache index, so this is just ensuring those keys are reflected
in the key index.
Also, this change makes sure the "spack buildcache update-index"
job runs even when there may have been pipeline failures, since we
would like the index always to reflect the true state of the mirror.
Since those files currently exist in buildcaches (in S3 buckets) with
potentially different content types, we should be less restrictive in
what content types we accept when attempting to fetch them. This PR
removes the content type constraint so any file with the matching
name will be found.
* Remove duplication of reconstructed RPATHs caused by multiple
identical entries in prefixes dictionary
* Don't rewrite RPATHs if relative RPATHs are unchanged because the
directory layout is unchanged
* Need to check the binary is not a Mach-o binary in a linux package or an ELF binary in a macOS package.
* use sys.platform
* Darwin -> darwin for sys.platform
* Rework spack.util.web.list_url()
list_url() now accepts an optional recursive argument (default: False)
for controlling whether to only return files within the prefix url or to
return all files whose path starts with the prefix url. Allows for the
most effecient implementation for the given prefix url scheme. For
example, only recursive queries are supported for S3 prefixes, so the
returned list is trimmed down if recursive == False, but the native
search is returned as-is when recursive == True. Suitable
implementations for each case are also used for file system URLs.
* Switch to using an explicit index for public keys
Switches to maintaining a build cache's keys under build_cache/_pgp.
Within this directory is an index.json file listing all the available
keys and a <fingerprint>.pub file for each such key.
- Adds spack.binary_distribution.generate_key_index()
- (re)generates a build cache's key index
- Modifies spack.binary_distribution.build_tarball()
- if tarball is signed, automatically pushes the key used for signing
along with the tarball
- if regenerate_index == True, automatically (re)generates the build
cache's key index along with the build cache's package index; as in
spack.binary_distribution.generate_key_index()
- Modifies spack.binary_distribution.get_keys()
- a build cache's key index is now used instead of programmatic
listing
- Adds spack.binary_distribution.push_keys()
- publishes keys from Spack's keyring to a given list of mirrors
- Adds new spack subcommand: spack gpg publish
- publishes keys from Spack's keyring to a given list of mirrors
- Modifies spack.util.gpg.Gpg.signing_keys()
- Accepts optional positional arguments for filtering the set of keys
returned
- Adds spack.util.gpg.Gpg.public_keys()
- As spack.util.gpg.Gpg.signing_keys(), except public keys are
returned
- Modifies spack.util.gpg.Gpg.export_keys()
- Fixes an issue where GnuPG would prompt for user input if trying to
overwrite an existing file
- Modifies spack.util.gpg.Gpg.untrust()
- Fixes an issue where GnuPG would fail for input that were not key
fingerprints
- Modifies spack.util.web.url_exists()
- Fixes an issue where url_exists() would throw instead of returning
False
* rework gpg module/fix error with very long GNUPGHOME dir
* add a shim for functools.cached_property
* handle permission denied error in gpg util
* fix tests/make gpgconf optional if no socket dir is available
Update pipelines documentation to describe how 'tags', 'variables',
'image', 'before_script', 'script', and 'after_script' can be
supplied at the top level, to be used by any of the runner mappings,
and also overridden by any of the runner mappings.
Also show an example of capturing the custom spack SHA at pipeline
generation time, so all jobs are sure to run with the same version
of spack, as a means to illustrate the $env:VARIABLE_NAME syntax.
* Use the config path instead of the basename
* Removing unused variables
Co-authored-by: Greg Becker <becker33@llnl.gov>
* Test
Making sure if there are 2 include config files with the same basename they are both implemented
* Edit test assert
Co-authored-by: Greg Becker <becker33@llnl.gov>
Fixes#18441
When writing an environment, there are cases where the lock file for
the environment may be removed. In this case there was a period
between removing the lock file and writing the new manifest file
where an exception could leave the manifest in its old state (in
which case the lock and manifest would be out of sync).
This adds a context manager which is used to restore the prior lock
file state in cases where the manifest file cannot be written.
This is a special case of overriding since each section is being matched with the current spec.
The trailing ':' for sections with override is now removed when parsing the configuration so the special handling for the modules configuration stopped working but it went unnoticed.
`spack install --yes-to-all` doesn't actually make the build non-interactive,
but that is why people typically use it. This documents that you must also
specify `--no-checksum` for a fully non-interactive build.
* Modules: Deduplicate suffixes but don't sort them.
The suffixes' order is defined by the order in which they appear in the configuration file.
* Modules: Modify tests to use spack_yaml.load_config.
spack_yaml.load_config ensures that the configuration is stored in an ordered manner. Without this change, the behavior of the tests did not match Spack's.
* Modules: Tweak the suffixes test to better catch ordering issues.
* spack config: default modification scope can be an environment
The previous model was that environments are the highest priority config
scope for config reading operations, but were not considered for config
writing operations. Now, the active environment is the highest priority
config scope for both reading and writing operations.
Now spack config add, spack external find and spack compiler set environment
configuration in the environment by default if an environment is active. This is a
change in default behavior for these routines, but better matches the mental
model for an environment taking precedence over the user's default config file.
* add scope argument to 'spack external find' to choose non-default scope
* Increase testing for config modifications on environments
Co-authored-by: Gregory Becker <becker33@llnl.gov>
The 'external_modules' attribute on a Spec, when read from a YAML
configuration file, may contain extra formatting that is lost when
that Spec is written-to/read-from JSON format. This was resulting in
a hashing instability (when the Spec was read back, it would report a
different hash). This commit adds a function which removes the extra
formatting from 'external_modules' as it is passed to the Spec in
__init__ to ensure a consistent hash.
As detailed in https://bugs.python.org/issue33725, starting new
processes with 'fork' on Mac OS is not guaranteed to work in general.
As of Python 3.8 the default process spawning mechanism was changed
to avoid this issue.
Spack depends on the fork-based method to preserve file descriptors
transparently, to preserve global state, and to avoid pickling some
objects. An effort is underway to remove dependence on fork-based
process spawning (see #18205). In the meantime, this allows Spack to
run with Python 3.8 on Mac OS by explicitly choosing to use 'fork'.
Co-authored-by: Peter Josef Scheibel <scheibel1@llnl.gov>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
I know that it's just an example, but I was trying to figure out what was going on and it wasn't making sense....
`tput sgr0` resets the terminal state (http://linuxcommand.org/lc3_adv_tput.php) and I can't see any reason to do it twice. Deleting the second occurrence doesn't seem to break the fancy prompt effect.
Compilers can have strange versions, as the version is provided by the user. We know the real version internally, (by querying the compiler) so expose it as a property and use it in places we don't trust the user. Eventually we'll refactor this with compilers as dependencies, but this is the best fix we've got for now.
- [x] Make `real_version` a property and cache the version returned by the compiler
- [x] Use `real_version` to make C++ language level flags work
Restores the fetching progress bar sans failure outputs; restores non-debug reporting of using fetch cache for installed packages; and adds a unit test.
* Add status bar check to test and fetch output when already installed
Some of the feature flags are named differently and clwb is missing on
my i7-1065G7. cascadelake and cannonlake might have similar problems but
I do not have access to those architectures to test.
* make_package_relative: relocate rpaths on cray
* relocate_package: relocate rpaths on cray
* platforms: add `binary_formats` property
We need to know which binary formats are supported on a platform so we
know which types of relocations to try. This adds a list of binary
formats to the platform and removes a bunch of special cases from
`binary_distribution.py`.
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Before this PR, packages.yaml files that contained an
empty "paths" or "modules" attribute were not updated
correctly, since the update function was not reporting
them as changed after the update.
This PR fixes that issue and adds a unit test to
avoid regression.
This commit adds output to the "spack external find"
command to inform users of the result of the operation.
It also fixes a bug introduced in #17804 due to the fact
that a function was not updated to conform to the new
packages.yaml format (_get_predefined_externals).
* Handle uninstalled rootspecs in buildcache
- Do not parse specs / find matching specs when in an environment and no
package string is provided
- Error only when a spec.yaml or spec string are not installed. In an
environment it is fine when the root spec does not exist.
- When iterating through the matched specs, simply skip uninstalled
packages
* Run Python2.6 unit tests on Github Actions
* Skip url tests on Python 2.6 to reduce waiting times
* Skip foreground background tests on Python 2.6 to reduce waiting times
* Removed references to Travis in the documentation
* Deleted install_patchelf.sh (can be installed from repo on CentOS 6)
* Buildcache:
* Try mocking an install of quux, corge and garply using prebuilt binaries
* Put patchelf install after ccache restore
* Add script to install patchelf from source so it can be used on Ubuntu:Trusty which does not have a patchelf pat package. The script will skip building on macOS
* Remove mirror at end of bindist test
* Add patchelf to Ubuntu build env
* Revert mock patchelf package to allow other tests to run.
* Remove depends_on('patchelf', type='build') relying instead on
* Test fixture to ensure patchelf is available.
* Call g++ command to build libraries directly during test build
* Flake8
* Install patchelf in before_install stage using apt unless on Trusty where a build is done.
* Add some symbolic links between packages
* Flake8
* Flake8:
* Update mock packages to write their own source files
* Create the stage because spec search does not create it any longer
* updates after change of list command arguments
* cleanup after merge
* flake8
- [x] Remove references to `master` branch
- [x] Document how release branches are structured
- [x] Document how to make a major release
- [x] Document how to make a point release
- [x] Document how to do work in our release projects
* Move flake8 tests on Github Actions
* Move shell test to Github Actions
* Moved documentation build to Github Action
* Don't run coverage on Python 2.6
Since we get connection errors consistently on Travis
when trying to upload coverage results for Python 2.6,
avoid computing coverage entirely to speed-up tests.
`spack -V` stopped working when we added the `releases/latest` tag to
track the most recent release. It started just reporting the version,
even on a `develop` checkout. We need to tell it to *only* search for
tags that start with `v`, so that it will ignore `releases/latest`.
`spack -V` also would print out unwanted git eror output on a shallow
clone.
- [x] add `--match 'v*'` to `git describe` arguments
- [x] route error output to `os.devnull`
`spack buildcache list` was trying to construct an `Arch` object and
compare it to `arch_for_spec(<spec>)`. for each spec in the buildcache.
`Arch` objects are only intended to be constructed for the machine they
describe. The `ArchSpec` object (part of the `Spec`) is the descriptor
that lets us talk about architectures anywhere.
- [x] Modify `spack buildcache list` and `spack buildcache install` to
filter with `Spec` matching instead of using `Arch`.
- [x] Make it easier to get a `Spec` with a proper `ArchSpec` from an
`Arch` object via new `Arch.to_spec()` method.
- [x] Pull `spack.architecture.default_arch()` out of
`spack.architecture.sys_type()` so we can get an `Arch` instead of
a string.
* Loosen Axom's variants, add shared variant for axom, fix clang/xlf rpath'ing problem on blueos
* Fix flake8
* Add main branch to list of known git branches
The modifications in 193e8333fa
introduced a bug in the loading of compiler modules, since a
function that was expecting a list of string was just getting
a string.
This commit fixes the bug and adds an assertion to verify the
prerequisite of the function.
Packages can implement “detect_version” to support detection
of external instances of a package. This is generally easier
than implementing “determine_spec_details”. The API for
determine_version is similar: for example you can return
“None” to indicate that an executable is not an instance
of a package.
Users may implement a “determine_variants” method for a package.
When doing external detection, executables are grouped by version
and each group results in a single invocation of “determine_variants”
for the associated spec. The method returns a string specifying
the variants for the package. The method may additionally return
a dictionary representing extra attributes for the package.
These will be stored in the spec yaml and can be retrieved
from self.spec.extra_attributes
The Spack GCC package has been updated with an implementation
of “determine_variants” which adds the following extra
attributes to the package: c, cxx, fortran
The YAML config for paths and modules of external packages has
changed: the new format allows a single spec to load multiple
modules. Spack will automatically convert from the old format
when reading the configs (the updates do not add new essential
properties, so this change in Spack is backwards-compatible).
With this update, Spack cannot modify existing configs/environments
without updating them (e.g. “spack config add” will fail if the
configuration is in a format that predates this PR). The user is
prompted to do this explicitly and commands are provided. All
config scopes can be updated at once. Each environment must be
updated one at a time.
`spack -V` stopped working when we added the `releases/latest` tag to
track the most recent release. It started just reporting the version,
even on a `develop` checkout. We need to tell it to *only* search for
tags that start with `v`, so that it will ignore `releases/latest`.
`spack -V` also would print out unwanted git eror output on a shallow
clone.
- [x] add `--match 'v*'` to `git describe` arguments
- [x] route error output to `os.devnull`
`spack buildcache list` was trying to construct an `Arch` object and
compare it to `arch_for_spec(<spec>)`. for each spec in the buildcache.
`Arch` objects are only intended to be constructed for the machine they
describe. The `ArchSpec` object (part of the `Spec`) is the descriptor
that lets us talk about architectures anywhere.
- [x] Modify `spack buildcache list` and `spack buildcache install` to
filter with `Spec` matching instead of using `Arch`.
- [x] Make it easier to get a `Spec` with a proper `ArchSpec` from an
`Arch` object via new `Arch.to_spec()` method.
- [x] Pull `spack.architecture.default_arch()` out of
`spack.architecture.sys_type()` so we can get an `Arch` instead of
a string.
* Run Python2.6 unit tests on Github Actions
* Skip url tests on Python 2.6 to reduce waiting times
* Skip foreground background tests on Python 2.6 to reduce waiting times
* Removed references to Travis in the documentation
* Deleted install_patchelf.sh (can be installed from repo on CentOS 6)
Relative paths in views have been broken since #17608 or earlier.
- [x] Fix by passing base path of the environment into the `ViewDescriptor`.
Relative paths are calculated from this path.
Relative paths in views have been broken since #17608 or earlier.
- [x] Fix by passing base path of the environment into the `ViewDescriptor`.
Relative paths are calculated from this path.
A bug was introduced in #13100 where ChildErrors would be redundantly
printed when raised during a build. We should eventually revisit error
handling in builds and figure out what the right separation of
responsibilities is for distributed builds, but for now just skip
printing.
- [x] SpackErrors were designed to be printed by the forked process, not
by the parent, so check if they've already been printed.
- [x] update tests
A bug was introduced in #13100 where ChildErrors would be redundantly
printed when raised during a build. We should eventually revisit error
handling in builds and figure out what the right separation of
responsibilities is for distributed builds, but for now just skip
printing.
- [x] SpackErrors were designed to be printed by the forked process, not
by the parent, so check if they've already been printed.
- [x] update tests
Fixes#17299
Cray Shasta systems appear to use an unmodified Sles or other Linux operating system on the backend (like Cray "Cluster" systems and unlike Cray "XC40" systems that use CNL).
This updates the CNL version detection to properly note that this is the underlying OS instead of CNL and delegate to LinuxDistro.
* environment-views: fix bug where missing recipe/repo breaks env commands
When a recipe or a repo has been removed from Spack and an environment
is active, it causes the view activation to crash Spack before any
commands can be executed. Further, the error message it not at all clear
in explaining the issue.
This forces view regeneration to always start from scratch to avoid the
missing package recipes, and defaults add_view=False in main for views activated
by the `spack -e` option.
* add messages to env status and deactivate
Warn users that a view may be corrupt when deactivating an environment
or checking its status while active. Updated message for activate.
* tests for view checking
Co-authored-by: Gregory Becker <becker33@llnl.gov>
* switch from bool to int debug levels
* Added debug options and changed lock logging to use more detailed values
* Limit installer and timestamp PIDs to standard debug output
* Reduced verbosity of fetch/stage/install output, changing most to debug level 1
* Combine lock log methods; change build process install to debug
* Changed binary cache install messages to extraction messages
* bugfix: make compiler preferences slightly saner
This fixes two issues with the way we currently select compilers.
If multiple compilers have the same "id" (os/arch/compiler/version), we
currently prefer them by picking this one with the most supported
languages. This can have some surprising effects:
* If you have no `gfortran` but you have `gfortran-8`, you can detect
`clang` that has no configured C compiler -- just `f77` and `f90`. This
happens frequently on macOS with homebrew. The bug is due to some
kludginess about the way we detect mixed `clang`/`gfortran`.
* We can prefer suffixed versions of compilers to non-suffixed versions,
which means we may select `clang-gpu` over `clang` at LLNL. But,
`clang-gpu` is not actually clang, and it can break builds. We should
prefer `clang` if it's available.
- [x] prefer compilers that have C compilers and prefer no name variation
to variation.
* tests: add test for which()
Apple's gcc is really clang. We previously ignored it by default but
there was a regression in #17110.
Originally we checked for all clang versions with this, but I know of
none other than `gcc` on macos that actually do this, so limiting to
`apple-clang` should be ok.
- [x] Fix check for `apple-clang` in `gcc.py` to use version detection
from `spack.compilers.apple_clang`
The `spack-build-env.txt` file may contains many secrets, but the obvious one is the private signing key in `SPACK_SIGNING_KEY`. This file is nonetheless uploaded as a build artifact to gitlab. For anyone running CI on a public version of Gitlab this is a major security problem. Even for private Gitlab instances it can be very problematic.
Co-authored-by: Scott Wittenburg <scott.wittenburg@kitware.com>
Fixes#17299
Cray Shasta systems appear to use an unmodified Sles or other Linux operating system on the backend (like Cray "Cluster" systems and unlike Cray "XC40" systems that use CNL).
This updates the CNL version detection to properly note that this is the underlying OS instead of CNL and delegate to LinuxDistro.
* environment-views: fix bug where missing recipe/repo breaks env commands
When a recipe or a repo has been removed from Spack and an environment
is active, it causes the view activation to crash Spack before any
commands can be executed. Further, the error message it not at all clear
in explaining the issue.
This forces view regeneration to always start from scratch to avoid the
missing package recipes, and defaults add_view=False in main for views activated
by the `spack -e` option.
* add messages to env status and deactivate
Warn users that a view may be corrupt when deactivating an environment
or checking its status while active. Updated message for activate.
* tests for view checking
Co-authored-by: Gregory Becker <becker33@llnl.gov>
* switch from bool to int debug levels
* Added debug options and changed lock logging to use more detailed values
* Limit installer and timestamp PIDs to standard debug output
* Reduced verbosity of fetch/stage/install output, changing most to debug level 1
* Combine lock log methods; change build process install to debug
* Changed binary cache install messages to extraction messages
* bugfix: make compiler preferences slightly saner
This fixes two issues with the way we currently select compilers.
If multiple compilers have the same "id" (os/arch/compiler/version), we
currently prefer them by picking this one with the most supported
languages. This can have some surprising effects:
* If you have no `gfortran` but you have `gfortran-8`, you can detect
`clang` that has no configured C compiler -- just `f77` and `f90`. This
happens frequently on macOS with homebrew. The bug is due to some
kludginess about the way we detect mixed `clang`/`gfortran`.
* We can prefer suffixed versions of compilers to non-suffixed versions,
which means we may select `clang-gpu` over `clang` at LLNL. But,
`clang-gpu` is not actually clang, and it can break builds. We should
prefer `clang` if it's available.
- [x] prefer compilers that have C compilers and prefer no name variation
to variation.
* tests: add test for which()
Apple's gcc is really clang. We previously ignored it by default but
there was a regression in #17110.
Originally we checked for all clang versions with this, but I know of
none other than `gcc` on macos that actually do this, so limiting to
`apple-clang` should be ok.
- [x] Fix check for `apple-clang` in `gcc.py` to use version detection
from `spack.compilers.apple_clang`
Spack did not support usage of the `--config-scope` option in
combination with an environment: In `lib/spack/spack/main.py`,
`spack.config.command_line_scopes` is set equal to any config scopes
passed by the `--config-scope` option. However, this is done after
activating an environment. In the process of activating an environment,
the `spack.config.config` singleton is instantiated, so later setting of
`spack.config.command_line_scopes` is ignored.
This commit sets command line scopes before activating an environment to
ensure that they are included in the configuration.
Co-authored-by: Tim Fuller <tjfulle@sandia.gov>
The `spack-build-env.txt` file may contains many secrets, but the obvious one is the private signing key in `SPACK_SIGNING_KEY`. This file is nonetheless uploaded as a build artifact to gitlab. For anyone running CI on a public version of Gitlab this is a major security problem. Even for private Gitlab instances it can be very problematic.
Co-authored-by: Scott Wittenburg <scott.wittenburg@kitware.com>
For normal users, `-o` or `--no-same-owner` (GNU extension) is
the default behavior, but for the root user, `tar` attempts to preserve
the ownership from the tarball.
This makes `tar` use `-o` all the time. This should improve untarring
files owned by users not available in rootless Docker builds.
The error message was not updated when the behavior of Spack environments
was changed to not automatically activate the local environment in #17258.
The previous error message no longer makes sense.
When Spack installs a package, it stores repository package.py files
for it and all of its dependencies - any package with a Spack metadata
directory in its installation prefix.
It turns out this was too broad: this ends up including external
packages installed by Spack (e.g. installed by another Spack instance).
Currently Spack doesn't store the namespace properly for such packages,
so even though the package file could be fetched from the external,
Spack is unable to locate it.
This commit avoids the issue by skipping any attempt to locate and copy
from the package repository of externals, regardless of whether they
have a Spack repo directory.
Spack was attempting to calculate abspath on the located config.guess
path even when it was not found (None); this commit skips the abspath
calculation when config.guess is not found.
The error message was not updated when the behavior of Spack environments
was changed to not automatically activate the local environment in #17258.
The previous error message no longer makes sense.
When Spack installs a package, it stores repository package.py files
for it and all of its dependencies - any package with a Spack metadata
directory in its installation prefix.
It turns out this was too broad: this ends up including external
packages installed by Spack (e.g. installed by another Spack instance).
Currently Spack doesn't store the namespace properly for such packages,
so even though the package file could be fetched from the external,
Spack is unable to locate it.
This commit avoids the issue by skipping any attempt to locate and copy
from the package repository of externals, regardless of whether they
have a Spack repo directory.
* Buildcache:
* Try mocking an install of quux, corge and garply using prebuilt binaries
* Put patchelf install after ccache restore
* Add script to install patchelf from source so it can be used on Ubuntu:Trusty which does not have a patchelf pat package. The script will skip building on macOS
* Remove mirror at end of bindist test
* Add patchelf to Ubuntu build env
* Revert mock patchelf package to allow other tests to run.
* Remove depends_on('patchelf', type='build') relying instead on
* Test fixture to ensure patchelf is available.
* Call g++ command to build libraries directly during test build
* Flake8
* Install patchelf in before_install stage using apt unless on Trusty where a build is done.
* Add some symbolic links between packages
* Flake8
* Flake8:
* Update mock packages to write their own source files
* Create the stage because spec search does not create it any longer
* updates after change of list command arguments
* cleanup after merge
* flake8
fixes#17396
This prevents the class attribute to be inherited and
saves current maintainers from becoming the default
maintainers of every Cuda package.
We got rid of `master` after #17377, but users still want a way to get
the latest stable release without knowing its number.
We've added a `releases/latest` tag to replace what was once `master`.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Fixes#16478
This allows an uninstall to proceed even when encountering pre-uninstall
hook failures if the user chooses the --force option for the uninstall.
This also prevents post-uninstall hook failures from raising an exception,
which would terminate a sequence of uninstalls. This isn't likely essential
for #16478, but I think overall it will improve the user experience: if
the post-uninstall hook fails, there isn't much point in terminating a
sequence of spec uninstalls because at the point where the post-uninstall
hook is run, the spec has already been removed from the database (so it
will never have another chance to run).
Notes:
* When doing spack uninstall -a, certain pre/post-uninstall hooks aren't
important to run, but this isn't easy to track with the current model.
For example: if you are uninstalling a package and its extension, you
do not have to do the activation check for the extension.
* This doesn't handle the uninstallation of specs that are not in the DB,
so it may leave "dangling" specs in the installation prefix
- [x] Remove references to `master` branch
- [x] Document how release branches are structured
- [x] Document how to make a major release
- [x] Document how to make a point release
- [x] Document how to do work in our release projects
Spack was attempting to calculate abspath on the located config.guess
path even when it was not found (None); this commit skips the abspath
calculation when config.guess is not found.
* Move flake8 tests on Github Actions
* Move shell test to Github Actions
* Moved documentation build to Github Action
* Don't run coverage on Python 2.6
Since we get connection errors consistently on Travis
when trying to upload coverage results for Python 2.6,
avoid computing coverage entirely to speed-up tests.
* share/spack/setup-env.fish file to setup environment in fish shell
* setup-env.fish testing script
* Update share/spack/setup-env.fish
Co-Authored-By: Elsa Gonsiorowski, PhD <gonsie@me.com>
* Update share/spack/qa/setup-env-test.fish
Co-Authored-By: Adam J. Stewart <ajstewart426@gmail.com>
* updates completions using `spack commands --update-completion`
* added stderr-nocaret warning
* added fish shell tests to CI system
Co-authored-by: becker33 <becker33@llnl.gov>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Elsa Gonsiorowski, PhD <gonsie@me.com>
* cray: detect frontend compilers automatically
This commit permits to detect frontend compilers
automatically, with the exception of cce.
Co-authored-by: Gregory Becker <becker33.llnl.gov>
[george.hartzell@172-16-193-97 spack-explore-docker]$ spack containerize
Running `spack containerize` with the example `spack.yaml` file fails
with an error that ends like so:
```
[...]
File "/local_scratch/hartzell/tmp/spack-explore-docker/lib/spack/external/ruamel/yaml/scanner.py", line 165, in need_more_tokens
self.stale_possible_simple_keys()
File "/local_scratch/hartzell/tmp/spack-explore-docker/lib/spack/external/ruamel/yaml/scanner.py", line 309, in stale_possible_simple_keys
"could not find expected ':'", self.get_mark())
ruamel.yaml.scanner.ScannerError: while scanning a simple key
in "/local_scratch/hartzell/tmp/spack-explore-docker/spack.yaml", line 26, column 1
could not find expected ':'
in "/local_scratch/hartzell/tmp/spack-explore-docker/spack.yaml", line 28, column 5
```
Indenting the block string fixes the problem for me.
CentOS 7,
```
$ spack --version
0.14.2-1529-ec58f28c2
```
* env: no automatic activation
* Ensure ci rebuild jobs activate the environment (no longer automagic)
Co-authored-by: Scott Wittenburg <scott.wittenburg@kitware.com>
* Start moving toward a json buildcache index
* Add spec and database index schemas
* Add a schema for buildcache spec.yaml files
* Provide a mode for database class to generate buildcache index
* Update db and ci tests to validate object w/ new schema
* Remove unused temporary upload-s3 command
* Use database class to generate buildcache index
* Do not generate index with each buildcache creation
* Make buildcache index mode into a couple of constructor args to Database class
* Use keyword args for _createtarball
* Parse new json index when we get specs from buildcache
Now that only one index file per mirror needs to be fetched in
order to have all the concrete specs for binaries available on the
mirror, we can just fetch and refresh the cached specs every time
instead of needing to use the '-f' flag to force re-reading.
* First fix for SPACK_DEPENDENCIES problem when doing setup
* Get rid of transitive include path in setup.
* Export SPACK_INCLUDE_DIRS into spconfig.py
* add buildcache create test
* add functionality and test to create buildcache from environment
* use env.concretized_user_specs rather than env.roots to get concretized specs, as suggested in review from becker33
* Allow `spack remove -f` and `spack uninstall` to work on matrices
Allow Environment.remove(force=True) to remove the concrete spec from the environment
even when the user spec cannot be removed because it is in a matrix.
* Separate Apple Clang from LLVM Clang
Apple Clang is a compiler of its own. All places
referring to "-apple" suffix have been updated.
* Hack to use a dash in 'apple-clang'
To be able to use autodoc from Sphinx we need
a valid Python name for the module that contains
Apple's Clang code.
* Updated packages to account for the existence of apple-clang
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* Added unit test for XCode related functions
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* short-circuit is_activated check when the extendee is installed upstream
* add test for checking activation status of packages with an extendee installed upstream
spack config add <value>: add nested value value to the configuration scope specified
spack config remove/rm: remove specified configuration from the relevant scope
* Some minor fixes to set_permissions() in file_permissions.py
The set_permissions() routine claims to prevent users from creating
world writable suid binaries. However, it seems to only be checking
for/preventing group writable suid binaries.
This patch modifies the routine to check for both world and group
writable suid binaries, and complain appropriately.
* permissions.py: Add test to check blocks world writable SUID files
The original test_chmod_rejects_group_writable_suid tested
that the set_permissions() function in
lib/spack/spack/util/file_permissions.py
would raise an exception if changed permission on a file with
both SUID and SGID plus sticky bits is chmod-ed to g+rwx and o+rwx.
I have modified so that more narrowly tests a file with SUID
(and no SGID or sticky bit) set is chmod-ed to g+w.
I have added a second test test_chmod_rejects_world_writable_suid
that checks that exception is raised if an SUID file is chmod-ed
to o+w
* file_permissions.py: Raise exception when try to make sgid file world writable
Updated set_permissions() in file_permissions.py to also raise
an exception if try to make an SGID file world writable. And
added corresponding unit test as well.
* Remove debugging prints from permissions.py
* Module index should not be unconditionally overwritten
Uncovered after we switched our CI to generate modules for packages
one-by-one rather than in bulk. This overwrote a complete module index
with an index with a single entry, and broke our downstream Spack
instances that needed the upstream module index.
* Changed the 'include' config section to use 'substitute_path_variables' to allow for Spack config variables to be used (e.g. $spack).
* Fixed a bug with 'include' section path expansion and added a test case for 'include' paths with embedded config variables.
* Cray: fix Blue Waters support
* pkg-config env vars needed on Blue Waters
* cray platform: fix support for user-build MPI on cray machines
* reintroduce cray environment cleaning behind cnl version guard
* cray platform: fix support for user-build MPI on cray machines
Co-authored-by: Gregory <becker33@llnl.gov>
Builds can be stopped before the final install phase due to user requests. Those builds
should not be registered as installed in the database.
We had code intended to handle this but:
1. It caught the wrong type of exception
2. We were catching these exceptions to suppress them at a lower level in the stack
This PR allows the StopIteration to propagate through a ChildError, and catches it
properly. Also added to an existing test to prevent regression.
This fixes a fork bomb in `spack versions`. Recursive generation of pools
to scrape URLs in `_spider` was creating large numbers of processes.
Instead of recursively creating process pools, we now use a single
`ThreadPool` with a concurrency limit.
More on the issue: having ~10 users running at the same time spack
versions on front-end nodes caused kernel lockup due to the high number
of sockets opened (sys-admin reports ~210k distributed over 3 nodes).
Users were internal, so they had ulimit -n set to ~70k.
The forking behavior could be observed by just running:
$ spack versions boost
and checking the number of processes spawned. Number of processes
per se was not the issue, but each one of them opens a socket
which can stress `iptables`.
In the original issue the kernel watchdog was reporting:
Message from syslogd@login03 at May 19 12:01:30 ...
kernel:Watchdog CPU:110 Hard LOCKUP
Message from syslogd@login03 at May 19 12:01:31 ...
kernel:watchdog: BUG: soft lockup - CPU#110 stuck for 23s! [python3:2756]
Message from syslogd@login03 at May 19 12:01:31 ...
kernel:watchdog: BUG: soft lockup - CPU#94 stuck for 22s! [iptables:5603]
* add an --exclude-file option to 'spack mirror create' which allows a user to specify a file of specs to exclude when creating a mirror. this is anticipated to be useful especially when using the '--all' option
* allow specifying number of versions when mirroring all packages
* when mirroring all specs within an environment, include dependencies of root specs
* add '--exclude-specs' option to allow user to specify that specs should be excluded on the command line
* add test for excluding specs
fixes#12527
Mention that specs can be uninstalled by hash also in
the help message. Reference `spack gc` in case people
are looking for ways to clean the store from build time
dependencies.
Use "spec" instead of "package" to avoid ambiguity in
the error message.
* Unify tests for compiler command in the same file
Tests for the "spack compiler" command were previously
scattered among different files.
* Tests should use mutable_config, since they modify the compiler list
Because of the way abstract variants are implemented, the following
spec matrix does not work as intended:
```
matrix:
- [foo]
- [bar=a, bar=b]
exclude:
- bar=a
```
because abstract variants always satisfy any variant of the same
name, regardless of values.
This PR converts abstract variants to whatever their appropriate
type is before running satisfaction checks for the excludes clause
in a matrix.
fixes#16841
Now that the version number of GCC reached double digits, an update
to the regex is needed to recognize gcc-10 as an executable to be
inspected when searching for compilers.
* make_link_relative: added docstring
* make_elf_binaries_relative: added docstring, unit tests
* raise_if_not_relocatable: added docstring, added unit test for exceptional case
* relocate_links: removed unused arguments, added docstring and comments
Also fixed a possible bug that was issuing spurious
warning when a file was relocated successfully
* relocate_text: added docstring and comments, renamed arguments
* relocate_text_bin: added docstring and comments, renamed arguments, unit tests
Problem: when calling `static_to_shared_library` on the `cray` arch, it
produces a non-sensical compiler command with no input files. For
example, when installing lua@5.2.4, it produced:
'gcc -lm -ldl -o /big-long-spack-path/liblua.so.5.2.4'
Solution: do the same thing on `cray` that is done for `linux`
* account for schema validation errors where the associated instance doesn't have a line number
* fix unrelated flake error (but it must be fixed because this PR touches this file and the flake rules have been updated since the last edit to this file)
Allows `all` to be configured non-buildable in packages.yaml.
The following config would only allow zlib to be built by Spack, all other packages would have to be found as externals.
```
packages:
all:
buildable: False
zlib:
buildable: True
```
This change also adds a code path through the spack ci pipelines
infrastructure which supports PR testing on the Spack repository.
Gitlab pipelines run as a result of a PR (either creation or pushing
to a PR branch) will only verify that the packages in the environment
build without error. When the PR branch is merged to develop,
another pipeline will run which results in the generated binaries
getting pushed to the binary mirror.
Providing only $padding or ${padding} results in an attempt to
substitute a padding of maximum system path length, while leaving
room for the parts of the install path spack generates. Providing
$padding-<len> or ${padding-<len>} simply substitutes padding of
the specified length.
Packages built with lmod core_compiler are placed in `Core`.
Other packages may belong in `Core`. For example, python may be built with a proprietary compiler for performance, but belong on the `Core` directory.
With this PR, lmod config can include a `core_specs` list. Any package that satisfies a spec in that list is placed in `Core`, regardless of its compiler or dependencies.
This improves the documentation for `spack external find` in several ways:
* Provide a code example of implementing `determine_spec_details` for a package
* Explain how to define executables to look for (and also e.g. that they are treated as regular expressions and so can pull in unexpected files).
* Add the "why" for a couple of constraints (i.e. explain that this logic only works for build/run deps because it examines `PATH` for executables)
* Spread the docs between build customization and packaging sections
* Add cross-references
* Add a label so that `spack external find` is linked from the command reference.
* Add pmi support (required by ucx, ofi, and gni backends)
* Add support for ucx backend
* Add dependency on MPI for pmi=simplepmi, slurmpmi, or slurmpmi2
* Remove charmpp as an MPI provider since the changes in this PR can
add MPI as a dependency (mentioned previously)
* Install into transport_protocol-OS-arch subdirectory to match
default charmpp installation behavior (which helps dependents find it)
- add docstrings and make parameter names consistent in `relocate.py`
- Make `replace_prefix_*` and other functions private (as they are implementation details)
- remove unused function _replace_prefix_nullterm()
- Add unit tests for `relocate.py` functions
- add patchelf to Travis and use it during tests
- add hello_world fixture with a compiled binary, so we can test relocation
After migrating to `travis-ci.com`, we saw I/O issues in our tests --
tests that relied on `capfd` and `capsys` were failing. We've also seen
this in GitHub actions, and it's kept us from switching to them so far.
Turns out that the issue is that using streams like `sys.stdout` as
default arguments doesn't play well with `pytest` and output redirection,
as `pytest` changes the values of `sys.stdout` and `sys.stderr`. if these
values are evaluated before output redirection (as they are when used as
default arg values), output won't be captured properly later.
- [x] replace all stream default arg values with `None`, and only assign stream
values inside functions.
- [x] fix tests we didn't notice were relying on this erroneous behavior
This adds the `url` alternative `urls` to `package.all_urls`. With
this addition, one can find again new versions with
`spack versions <package>` for packages that are populated with
from mixin mirror `urls`.
Example: `util-macros` from x.org mixin.
* Non-interactive mode for spack checksum; allow passing 'package@version' to spack checksum
* Flake8 fixes
* Update checksum.py
Fix typo
* Update spack-completion script
* Automatically set non-interactive mode if more than one version passed
* Update lib/spack/spack/cmd/checksum.py
Co-Authored-By: Adam J. Stewart <ajstewart426@gmail.com>
* Add documentation and update spack-completion
* Flake8
* Rename option
* Update spack-completion
* Update lib/spack/spack/cmd/checksum.py
Co-Authored-By: Adam J. Stewart <ajstewart426@gmail.com>
* Update checksum.py
* Update stage.py
* Update create.py
Use batch mode when adding a new package
Co-authored-by: Ivan Razumov <ivan.razumov@cern.ch>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This fixes some errors with setting up test configuration. These
errors do not cause current Spack tests to fail but do create
red herring issues elsewhere (see #15666). Fixing these errors
leads to more errors in tests that depended on the original
misconfigured state, so those are also addressed here.
This is an update to #16003 which accounts for some unit tests with
conflicting config/mutable_config fixtures. These conflicts were
not exposed until the mutable_config fixture was fixed. Details are
included below. The change which builds on #16003 is prefixed with
"(new)".
* For tests that use the real Spack package repository, the config
needs to avoid using MPI providers that are not intended to be
installed by Spack. Without this, it is possible that Spack tests
which concretize the MPI virtual will end up trying to use an
implementation that it shouldn't (e.g. one that is always
provided externally). See #15666 for an example.
* The mutable_config test fixture was not initializing the scope
roots to the right directories (so the resulting config was empty).
* The current_host fixture in the concretize.py tests was using the
config fixture rather than mutable_config, and was polluting the
config cache for other tests.
* One test in concretize.py was clearing a nonexistent cache
(PackagePrefs._packages_config_cache). This reference has been
removed.
* The test 'test_preferred_compilers' was was depending on cross
test config pollution to succeed. The initial spec before
concretization has been updated to updated to be explicit about
the desired result.
* (new) For tests that use install_mockery and mutable_config,
replace install_mockery with a separate install_mockery_mutable_config
fixture that is exactly the same as install_mockery but uses the
mutable_config fixture to avoid conflicts.
Fixed#15884.
Spack asks every package linked into an environment to tell us how
environment variables should be modified when a spack environment is
activated. As part of this, specs in an environment are symlinked into
the environment's view (see #13249), and the package calculates
environment modifications with *the default view as the prefix*.
All of this works nicely for pointing the user's environment at the view
*if* every package is successfully linked. Unfortunately, right now we
only track what specs "should" be in a view, not which specs actually
are. So we end up calculating environment modifications on things that
aren't linked into thee view, and the exception isn't caught, so lots of
spack commands end up failing.
This fixes the issue by ignoring and warning about specs where
calculating environment modifications fails. So we can still keep using
Spack even if the current environment is incomplete.
We should probably also just avoid computing env modifications *entirely*
for unlinked packages, but right now that is a slow operation (requires a
lot of YAML parsing). We should revisit that when we have some better
state management for views, but the fix adopted here will still be
necessary, as we want spack commands to be resilient to other types of
bugs in `setup_run_environment()` and friends. That code is in packages
and we have to assume it could be buggy when we call it outside of builds
(as it might fail more than just the build).
Add a `spack external find` command that tries to populate
`packages.yaml` with external packages from the user's `$PATH`. This
focuses on finding build dependencies. Currently, support has only been
added for `cmake`.
For a package to be discoverable with `spack external find`, it must define:
* an `executables` class attribute containing a list of
regular expressions that match executable names.
* a `determine_spec_details(prefix, specs_in_prefix)` method
Spack will call `determine_spec_details()` once for each prefix where
executables are found, passing in the path to the prefix and the path to
all found executables. The package is responsible for invoking the
executables and figuring out what type of installation(s) are in the
prefix, and returning one or more specs (each with version, variants or
whatever else the user decides to include in the spec).
The found specs and prefixes will be added to the user's `packages.yaml`
file. Providing the `--not-buildable` option will mark all generated
entries in `packages.yaml` as `buildable: False`
Cray has two machine types. "XC" machines are the larger
machines more common in HPC, but "Cluster" machines are
also cropping up at some HPC sites. Cluster machines run
a slightly different form of the CrayPE programming environment,
and often come without default modules loaded. Cluster
machines also run different versions of some software, and run
a linux distro on the backend nodes instead of running Compute
Node Linux (CNL).
Below are the changes made to support "Cluster" machines in
Spack. Some of these changes are semi-related general upkeep
of the cray platform.
* cray platform: detect properly after module purge
* cray platform: support machines running OSs other than CNL
Make Cray backend OS delegate to LinuxDistro when no cle_release file
favor backend over frontend OS when name clashes
* cray platform: target detection uses multiple strategies
This commit improves the robustness of target
detection on Cray by trying multiple strategies.
The first one that produces results wins. If
nothing is found only the generic family of the
frontend host is used as a target.
* cray-libsci: add package from NERSC
* build_env: unload cray-libsci module when not explicitly needed
cray-libsci is a package in Spack. The cray PrgEnv
modules load it implicitly when we set up the compiler.
We now unload it after setting up the compiler and
only reload it when requested via external package.
* util/module_cmd: more robust module parsing
Cray modules have documentation inside the module
that is visible to the `module show` command.
Spack module parsing is now robust to documentation
inside modules.
* cce compiler: uses clang flags for versions >= 9.0
* build_env: push CRAY_LD_LIBRARY_PATH into everything
Some Cray modules add paths to CRAY_LD_LIBRARY_PATH
instead of LD_LIBRARY_PATH. This has performance benefits
at load time, but leads to Spack builds not finding their
dependencies from external modules.
Spack now prepends CRAY_LD_LIBRARY_PATH to
LD_LIBRARY_PATH before beginning the build.
* mvapich2: setup cray compilers when on cray
previously, mpich was the only mpi implementation to support
cray systems (because it is the MPI on Cray XC systems).
Cray cluster systems use mvapich2, which now supports cray
compiler wrappers.
* build_env: clean pkgconf from environment
Cray modules silently add pkgconf to the user environment
This can break builds that do not user pkgconf.
Now we remove it frmo the environment and add it again if it
is in the spec.
* cray platform: cheat modules for rome/zen2 module on naples/zen node
Cray modules for naples/zen architecture currently specify
rome/zen2. For now, we detect this and return zen for modules
named `craype-x86-rome`.
* compiler: compiler default versions
When detecting compiler default versions for target/compiler
compatibility checks, Spack previously ran the compiler without
setting up its environment. Now we setup a temporary environment
to run the compiler with its modules to detect its version.
* compilers/cce: improve logic to determine C/C++ std flags
* tests: fix existing tests to play nicely with new cray support
* tests: test new functionality
Some new functionality can only be tested on a cray system.
Add tests for what can be tested on a linux system.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Since #9481 Python's None is not permitted as a value for
MV variants. The string 'none' is used instead.
Add the same fix for the amgx and lammps packages
If spack is checked out in a git worktree (see [1]), all git-related
commands fail because the `spack_is_git_repo()`-check is not thorough
enough.
When developing in a feature-branch in a seperate worktree, this is
annoying as all unittests regarding git-related spack commands fail,
cluttering the test results with false-positives.
[1]: https://git-scm.com/docs/git-worktree
Change-Id: I94b573a2c0e058e9ccc169e7ee6561626fbb06fd
* For tests that use the real Spack package repository, the config
needs to avoid using MPI providers that are not intended to be
installed by Spack. Without this, it is possible that Spack tests
which concretize the MPI virtual will end up trying to use an
implementation that it shouldn't (e.g. one that is always
provided externally). See #15666 for an example.
* The mutable_config test fixture was not initializing the scope
roots to the right directories (so the resulting config was empty).
* The current_host fixture in the concretize.py tests was using the
config fixture rather than mutable_config, and was polluting the
config cache for other tests.
* One test in concretize.py was clearing a nonexistent cache
(PackagePrefs._packages_config_cache). This reference has been
removed.
* The test 'test_preferred_compilers' was was depending on cross
test config pollution to succeed. The initial spec before
concretization has been updated to updated to be explicit about
the desired result.
* dev-build: --drop-in <shell>
Add a `--drop-in <shell>` option to `spack dev-build`.
This option will automatically run a
`spack build-env <spec> -- <shell>` at the end of a `dev-build`, e.g.
to quickly drop-and-devel into a build phase of a package.
Example usage:
```
spack dev-build --before cmake --drop-in bash openpmd-api@develop
```
* build_env: drop in unit test
Co-authored-by: Greg Becker <becker33@llnl.gov>
Generally speaking, errors that are encountered when attempting to load
command extensions now terminate the running Spack instance.
* Added new exceptions `spack.cmd.PythonNameError` and
`spack.cmd.CommandNameError`.
* New functions `spack.cmd.require_python_name(pname)` and
`spack.cmd.require_cmd_name(cname)` check that `pname` and `cname`
respectively meet requirements, throwing the appropriate error if not.
* `spack.cmd.get_module()` uses `require_cmd_name()` and passes through
exceptions from module load attempts.
* `spack.cmd.get_command()` uses `require_cmd_name()` and invokes
`get_module()` with the correct command-name form rather than the
previous (incorrect) Python name.
* Added New exceptions `spack.extensions.CommandNotFoundError` and
`spack.extensions.ExtensionNamingError`.
* `_extension_regexp` has a new leading underscore to indicate expected
privacy.
* `spack.extensions.extension_name()` raises an `ExtensionNamingError`
rather than using `tty.warn()`.
* `spack.extensions.load_command_extension()` checks command source
existence early and bails out if missing. Also, exceptions raised by
`load_module_from_file()` are passed through.
* `spack.extensions.get_module()` raises `CommandNotFoundError` as
appropriate.
* Spack `main()` allows `parser.add_command()` exceptions to cause
program end.
Tests:
* More common boilerplate has been pulled out into fixtures including
`sys.modules` dictionary cleanup and resource-managed creation of a
simple command extension with specified contents in the source file
for a single named command.
* "Hello, World!" test now uses a command named `hello-world` instead of
`hello` in order to verify correct handling of commands with hyphens.
* New tests for:
* Missing (or misnamed) command.
* Badly-named extension.
* Verification that errors encountered during import of a command are
propagated upward.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
This PR introduces trivial refactoring in:
- `get_existing_elf_rpaths`
- `get_relative_elf_rpaths`
- `get_normalized_elf_rpaths`
- `set_placeholder`
mainly to be more consistent with practices used in other
parts of the code and to simplify functions locally. It also
adds or reworks unit tests for these functions and extends
their docstrings.
Co-authored-by: Patrick Gartung <gartung@fnal.gov>
Co-authored-by: Peter J. Scheibel <scheibel1@llnl.gov>
Packages in Spack are classes, and we need to be able to execute class
methods on mock packages. The previous design used instances of a single
MockPackage class; this version gives each package its own class that can
spider depenencies. This allows us to implement class methods like
`possible_dependencies()` on mock packages.
This design change moves mock package creation into the
`MockPackageMultiRepo`, and mock packages now *must* be created from a
repo. This is required for us to mock `possible_dependencies()`, which
needs to be able to get dependency packages from the package repo.
Changes include:
* `MockPackage` is now `MockPackageBase`
* `MockPackageBase` instances must now be created with
`MockPackageMultiRepo.add_package()`
* add `possible_dependencies()` method to `MockPackageBase`
* refactor tests to use new code structure
* move package mocking infrastructure into `spack.util.mock_package`,
as it's becoming a more sophisticated class and it gets lots in `conftest.py`
The variants table in `spack info` is cramped, as the *widest* it can be
is 80 columns. And that's actually only sort of true -- the padding
calculation is off, so it still wraps on terminals of size 80 because it
comes out *slightly* wider.
This change looks at the terminal size and calculates the width of the
description column based on it. On larger terminals, the output looks
much nicer, and on small terminals, the output no longer wraps.
Here's an example for `spack info qmcpack` with 110 columns.
Before:
Name [Default] Allowed values Description
==================== ==================== ==============================
afqmc [off] on, off Install with AFQMC support.
NOTE that if used in
combination with CUDA, only
AFQMC will have CUDA.
build_type [Release] Debug, Release, The build type to build
RelWithDebInfo
complex [off] on, off Build the complex (general
twist/k-point) version
cuda [off] on, off Build with CUDA
After:
Name [Default] Allowed values Description
==================== ==================== ========================================================
afqmc [off] on, off Install with AFQMC support. NOTE that if used in
combination with CUDA, only AFQMC will have CUDA.
build_type [Release] Debug, Release, The build type to build
RelWithDebInfo
complex [off] on, off Build the complex (general twist/k-point) version
cuda [off] on, off Build with CUDA
Update compiler config with bootstrapped compiler when it was already installed and added config defaults to code so mutable_config test fixture works.
To specify an environment for a comment, the user can specify
"spack -e <env>". The documentation incorrectly specified "-E" (which
is actually used to ignore any implicit use of environments).
If the Spack compiler wrapper encounters any "-isystem" option, then
when adding include directories for Spack dependencies, Spack will
use "-isystem" instead of "-I". This prevents Spack-generated "-I"
options from overriding the "-isystem" options generated by the build
system. To ensure that build-system "-isystem" directories are
searched first, Spack places all of its inserted "-isystem"
directories after.
The new ordering of -isystem includes is:
* -isystem from build system (not system directories)
* -isystem from Spack
* -isystem from build system (for directories like /usr/include)
The prior order of "-I" arguments is preserved (although as of this
commit Spack no longer generates -I if -isystem is detected):
* -I from build system (not system directories)
* -I from Spack (only if there are no "-isystem" options)
* -I from build system (for directories like /usr/include)
Since #16132, we've consolidated the setting of FORCE_UNSAFE_CONFIGURE to
`autotools.py`, so we don't need to use it in packages like `coreutils`,
in our commands, or in our container recipes.
- [x] Remove FORCE_UNSAFE_CONFIGURE from packages
- [x] Remove FORCE_UNSAFE_CONFIGURE from container recipes
- [x] Remove FORCE_UNSAFE_CONFIGURE from `spack ci` command
This commit sets the `FORCE_UNSAFE_CONFIGURE` environment variable to 1 in autotools builds.
We see a lot of builds popping up and complaining about `FORCE_UNSAFE_CONFIGURE`. This behavior is not actually part of `autoconf` per se. It comes from this patch to `mknod.m4`, which is used by a lot of autoconf builds:
* https://lists.gnu.org/archive/html/bug-gnulib/2010-07/msg00282.html
Which originated from this problem that someone had on AIX:
* https://lists.gnu.org/archive/html/bug-gnulib/2010-07/msg00279.html
The gist of the problem seems to be that they want to check whether `mknod` can do something as root, but instead of checking whether they're running as root and using `su` or something to test this, they just made it harder to run `configure` as root.
This seems very ad hoc and this is one of many checks that are run as root in `configure`. Many of them run before this check, so it's not clear that the `FORCE_UNSAFE_CONFIGURE` thing is even preventing bad things from happening.
So:
1. This only happens in `autotools` builds, so we should go ahead and put it into `autotools.py` instead of in the global build environment, and
2. The variable does too little and provides a false sense of security in the first place, so we'll just disable it and avoid the nuisance. If we really feel strongly about this we can put some warnings in Spack about running as root, but at the top level, not in the middle of an already running script like `configure`.
* SourceForge: Mirror Mixin
Add a mixing class for direct `CNAME`s to sourceforge mirrors.
Since the main gateway servers are often down, this could reduce
timeouts and fetch errors for sourceforge.net hosted software.
* SourceForge: unspectacular mirror replacement
add mirrors to all sourceforge packages with trivial
download logic.
tested fetch of latest version of each of these packages
with various mirrors before committing.
* SourceForge: xz
the author homepage is chronocially overrun and this is the offical
upload with many mirrors.
`DYLD_LIBRARY_PATH` can frequently break builtin macOS software when
pointed at Spack libraries. This is because it takes *higher* precedence
than the default library search paths, which are used by system software.
`DYLD_FALLBACK_LIBRARY_PATH`, on the other hand, takes lower precedence.
At first glance, this might seem bad, because the software installed by
Spack in an environment needs to find *its* libraries, and it should not
use the defaults. However, Spack's isntallations are always `RPATH`'d,
so they do not have this problem.
`DYLD_FALLBACK_LIBRARY_PATH` is thus useful for things built in an
environment that need to use Spack's libraries, that don't set *their*
RPATHs correctly for whatever reason. We now prefer it to
`DYLD_LIBRARY_PATH` in modules and in environments because it helps a
little bit, and it is much less intrusive.
provided (#15662).
Prior to this fix, the checked Spec object would not be populated, and
concretization would fail.
Co-authored-by: Marc Allen <mrcall@amazon.com>
`spack test` has a spurious '[+] ' in the output:
```
lib/spack/spack/test/install.py .........[+] ......
```
Output is properly suppressed:
```
lib/spack/spack/test/install.py ...............
```
Makes the following changes:
* (Fixes#15620) tty configuration was failing when stdout was
redirected. The implementation now creates a pseudo terminal for
stdin and checks stdout properly, so redirections of stdin/out/err
should be handled now.
* Handles terminal configuration when the Spack process moves between
the foreground and background (possibly multiple times) during a
build.
* Spack adjusts terminal settings to allow users to to enable/disable
build process output to the terminal using a "v" toggle, abnormal
exit cases (like CTRL-C) could leave the terminal in an unusable
state. This is addressed here with a special-case handler which
restores terminal settings.
Significantly extend testing of process output logger:
* New PseudoShell object for setting up a master and child process
and configuring file descriptor inheritance between the two
* Tests for "v" verbosity toggle making use of the added PseudoShell
object
* Added `uniq` function which takes a list of elements and replaces
any consecutive sequence of duplicate elements with a single
instance (e.g. "112211" -> "121")
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
The performance improvements done in #14693 where leaving the DB in an inconsistent state when specs were removed from it. This PR updates the DB internal state whenever the DB is written to a file.
Note that we still cannot properly enumerate installed dependents, so there is a TODO in this code. Fixing that will require the dependents dictionaries in specs to be re-keyed (either by hash, or not keyed at all -- a list would do). See #11983 for details.
Reading the database repeatedly can be quite slow. We need a way to speed
up Spack when it reads the DB multiple times, but the DB has not been
modified between reads (which is nearly all the time).
- [x] Add a file containing a unique uuid that is regenerated at database
write time. Use this uuid to suppress re-parsing the database
contents if we know a previous uuid and the uuid has not changed.
- [x] Fix mutable_database fixture so that it resets the last seen
verifier when it resets.
- [x] Enable not rereading the database immediately after a write. Make
the tests reset the last seen verifier in between tests that use the
database fixture.
- [x] make presence of uuid module optional
Removed the code that was converting the old index.yaml format into
index.json. Since the change happened in #2189 it should be
considered safe to drop this (untested) code.
* only override spec prefix for non-external packages
* add test that environment shell modifications respect explicitly-specified prefixes for external packages
* add clarifying comment
spack.util.environment_after_sourcing_files compares the local
environment against a shell environment after having sourced a
file; but this ends up including the default shell profile and
rc, which might differ from the local environment.
To change this, compare against the default shell environment,
expressed here as 'source /dev/null'.
According to my nightly CI/CD tests, x.org is another large provider
of software in common build chains that is often down.
Added a hand-selected amount of mirrors that is well up-to-sync.
Tested with `util-macros` that has a quite "recent" patch release.
Other packages to follow in an individual PR.
Makes the following changes:
* (Fixes#15620) tty configuration was failing when stdout was
redirected. The implementation now creates a pseudo terminal for
stdin and checks stdout properly, so redirections of stdin/out/err
should be handled now.
* Handles terminal configuration when the Spack process moves between
the foreground and background (possibly multiple times) during a
build.
* Spack adjusts terminal settings to allow users to to enable/disable
build process output to the terminal using a "v" toggle, abnormal
exit cases (like CTRL-C) could leave the terminal in an unusable
state. This is addressed here with a special-case handler which
restores terminal settings.
Significantly extend testing of process output logger:
* New PseudoShell object for setting up a master and child process
and configuring file descriptor inheritance between the two
* Tests for "v" verbosity toggle making use of the added PseudoShell
object
* Added `uniq` function which takes a list of elements and replaces
any consecutive sequence of duplicate elements with a single
instance (e.g. "112211" -> "121")
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* Moved link to the right place in the docs
* Fixed a few minor issues in extensions docs
Fixed a typo, added a subsubsection for better
navigation, reworded "modules in Python" as
"Python packages"
sourceware.org is often quite overrun and times out or results in
certificate errors.
Since libffi, bzip2, elfutils, etc. are quite fundamental in
build chains, lets add some official mirrors.
libffi, bzip2, elfutils, lvm2, valgrind: add mirrors
The performance improvements done in #14693 where leaving the DB in an inconsistent state when specs were removed from it. This PR updates the DB internal state whenever the DB is written to a file.
Note that we still cannot properly enumerate installed dependents, so there is a TODO in this code. Fixing that will require the dependents dictionaries in specs to be re-keyed (either by hash, or not keyed at all -- a list would do). See #11983 for details.
* Skip collection of compiler link paths if compiler does not define a verbose flag
* modules config bug: allow user to configure a compiler without an explicit entry for loaded modules
* Add capability for detecting build number for Arm compilers
* Fixing fleck8 errors and updating test_arm_version_detection function for more detailed Arm compielr version detection
* Ran flake8 locally and corrected errors
* Altering Arm compielr version check to remove else clause and be more consistent with other compielr version checks. Added test case so both the 'if' and 'else' conditionals of the Arm compiler version check have a test case
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-7-135.us-east-2.compute.internal>
spack.util.environment_after_sourcing_files compares the local
environment against a shell environment after having sourced a
file; but this ends up including the default shell profile and
rc, which might differ from the local environment.
To change this, compare against the default shell environment,
expressed here as 'source /dev/null'.
* only override spec prefix for non-external packages
* add test that environment shell modifications respect explicitly-specified prefixes for external packages
* add clarifying comment
Currently, to force Spack to use an external MPI, you have to specify `buildable: False`
for every MPI provider in Spack in your packages.yaml file. This is both tedious and
fragile, as new MPI providers can be added and break your workflow when you do a
git pull.
This PR allows you to specify an entire virtual dependency as non-buildable, and
specify particular implementations to be built:
```
packages:
all:
providers:
mpi: [mpich]
mpi:
buildable: false
paths:
mpich@3.2 %gcc@7.3.0: /usr/packages/mpich-3.2-gcc-7.3.0
```
will force all Spack builds to use the specified `mpich` install.
Removed provider_index use of 'import from' and refactored a few routines to a further subclassing of _IndexBase for implementing user defined bindings of provider specs.
* relocate: removed import from statements
* relocate: renamed *Exception to *Error
This aims at consistency in naming with both
the standard library (ValueError, AttributeError,
etc.) and other errors in 'spack.error'.
Improved existing docstrings
* relocate: simplified search function by un-nesting conditionals
The search function that searches for patchelf has been
refactored to remove deeply nested conditionals.
Extended docstring.
* relocate: removed a condition specific to unit tests
* relocate: added test for _patchelf
Our unit tests run many times. Any unit test which actually installs
a package (which involves fetching code on the internet) is a severe
bug because it runs an installation many times (i.e. re-downloading
the same package for each version of Python that we run unit tests
for).
This reverts commit 25893f1, which added tests that install real
packages.
If the Python used by Spack does not include Setuptools, then
'spack test' will fail because Spack's vendored pytest dependency
imports and uses Setuptools in some of its functions. It turns out
that Spack doesn't use the functionality those methods enable, so
this PR removes those functions and thereby allows 'spack test' to
run without Setuptools.
For any Spack test using Spack's YAML configuration, avoid using real
Spack configuration that has been cached by other tests and Spack
startup logic. Previously this was only done for tests using
'mutable_config' (i.e. those which expected to *change* the
configuration of Spack), but in fact all tests that read Spack config
should use it.
This was an issue when running tests within an environment, because
compiler configuration ends up being queried earlier, and the user's
real config "leaks" into the cache. Outside an environment, the cache
is never set until tests touch it, so we weren't seeing this issue.
`spack test` has a spurious '[+] ' in the output:
```
lib/spack/spack/test/install.py .........[+] ......
```
Output is properly suppressed:
```
lib/spack/spack/test/install.py ...............
```
Reading the database repeatedly can be quite slow. We need a way to speed
up Spack when it reads the DB multiple times, but the DB has not been
modified between reads (which is nearly all the time).
- [x] Add a file containing a unique uuid that is regenerated at database
write time. Use this uuid to suppress re-parsing the database
contents if we know a previous uuid and the uuid has not changed.
- [x] Fix mutable_database fixture so that it resets the last seen
verifier when it resets.
- [x] Enable not rereading the database immediately after a write. Make
the tests reset the last seen verifier in between tests that use the
database fixture.
- [x] make presence of uuid module optional
Spack currently cannot run as a background process uninterrupted because some of the logging functions used in the install method (especially to create the dynamic verbosity toggle with the v key) cause the OS to issue a SIGTTOU to Spack when it's backgrounded.
This PR puts the necessary gatekeeping in place so that Spack doesn't do anything that will cause a signal to stop the process when operating as a background process.
Spack currently cannot run as a background process uninterrupted because some of the logging functions used in the install method (especially to create the dynamic verbosity toggle with the v key) cause the OS to issue a SIGTTOU to Spack when it's backgrounded.
This PR puts the necessary gatekeeping in place so that Spack doesn't do anything that will cause a signal to stop the process when operating as a background process.
This makes sure that a package's fetch_options are used when fetching
new versions to checksum. This allows working around problems with
slow servers or those requiring a cookie to be set.
Bug: Spack hangs on some Cray machines
Reason: The TERM environment variable is necessary to run bash -lc "echo $CRAY_CPU_TARGET", but we run that command within env -i, which wipes the environment.
Fix: Manually forward the TERM environment variable to env -i /bin/bash -lc "echo $CRAY_CPU_TARGET"
When trying to use an upstream Spack repository, as of f2aca86 Spack
was attempting to write to the upstream DB based on a new metadata
directory added in that commit. Upstream DBs are read-only, so this
should not occur.
This adds a check to prevent Spack from writing to the upstream DB
fixes#15449
Before this PR a call to pkg.url_for_version was modifying
class attributes determining different results for subsequents
calls and an error when the urls was empty.
This recovers the old behavior of replace_prefix_bin that was
modified to work with elf binaries by prefixing os.sep to new prefix
until length is the same as old prefix.
Testing the install StopIteration exception resulted in an attribute error:
AttributeError: 'StopIteration' object has no attribute 'message'
This PR adds a unit test and resolves that error.
The new build process, introduced in #13100 , relies on a spec's dependents in addition to their dependencies. Loading a spec from a yaml file was not initializing the dependents.
- [x] populate dependents when loading from yaml
The distributed build PR (#13100) -- did not check the install status of dependencies when using the `--only package` option so would refuse to install a package with the claim that it had uninstalled dependencies whether that was the case or not.
- [x] add install status checks for the `--only package` case.
- [x] add initial set of tests
This change stores packages' configure arguments during build and makes
use of them while refreshing module files. This fixes problems such as in
#10716.
Bug: Spack hangs on some Cray machines
Reason: The TERM environment variable is necessary to run bash -lc "echo $CRAY_CPU_TARGET", but we run that command within env -i, which wipes the environment.
Fix: Manually forward the TERM environment variable to env -i /bin/bash -lc "echo $CRAY_CPU_TARGET"
- [x] move some logic for handling virtual packages from the `spack
dependencies` command into `spack.package.possible_dependencies()`
- [x] rework possible dependencies tests so that expected and actual
output are on the left/right respectively
When trying to use an upstream Spack repository, as of f2aca86 Spack
was attempting to write to the upstream DB based on a new metadata
directory added in that commit. Upstream DBs are read-only, so this
should not occur.
This adds a check to prevent Spack from writing to the upstream DB
* try extend path to solve PyQt5.sip not found issue
* disable private sip installation in sippackage class
* undo manual PyQt5 dir creation in py-sip site-packages dir
* fix typo
* fix typo
* also apply fix to PyQt4
* tidy up
* flake8 and tidy up
* tidy and undo hardcoding of python_include_dir
* replace hardcoded python inc dir
* fix minor issues
* rethink include dir variable name
* improve style
* add new versions
* implement new sip setup to qsci installation
* set sip-incdir correctly for the new setup
* setup extend_path thing before qsci python bindings
* take care of conflict
* flake8
* also extend for PyQt4
* improve style
* improve style
* SipPackage build sys should depend on py-sip
* consolidate extend_path fixes into SipPackage
* fix typo
* fix bugs
* flake8
* revert sip doc to pre-resource setup
* import os module
* flake8
Co-authored-by: Sinan81 <sbulut@3vgeomatics.com>
Add a 'define_from_variant` helper function to CMake-based Spack
packages to convert package variants into CMake arguments. For
example:
args.append('-DFOO=%s' % ('ON' if '+foo' in self.spec else 'OFF'))
can be replaced with:
args.append(self.define_from_variant('foo'))
The following conversions are handled automatically:
* Flag variants will be converted to CMake booleans
* Multivalued variants will be converted to semicolon-separated strings
* Other variant values are converted to CMake string arguments
This also adds a 'define' helper method to convert any variable to
a CMake argument. It has the same conversion rules as
'define_from_variant' (but operates directly on values rather than
requiring the user to supply the name of a package variant).
* Buildcache: Install into non-default directory layouts
Store a dictionary mapping of original dependency prefixes to dependency hashes
Use the loaded spec to grab the new dependency prefixes in the new directory layout.
Map the original dependency prefixes to the new dependency prefixes using the dependency hashes.
Use the dependency prefixes map to replace original rpaths with new rpaths preserving the order.
For mach-o binaries, use the dependency prefixes map to replace the dependency library entires for libraries and executables and the replace the library id for libraries.
On Linux, patchelf is used to replace the rpaths of elf binaries.
On macOS, install_name_tool is used to replace the rpaths and dependency libraries of mach-o binaries and the id of mach-o libraries.
On Linux, macholib is used to replace the dependency libraries of mach-o binaries and the id of mach-o libraries.
Binary text with padding replacement is attempted for all binaries for the following paths:
spack layout root
spack prefix
sbang script location
dependency prefixes
package prefix
Text replacement is attempted for all text files using the paths above.
Symbolic links to the absolute path of the package install prefix are replaced, all others produce warnings.
PR #15212 added a new connect_timeout option that can be overridden
using fetch_options but had to specified per-version. This adds a new
per-package variable that can be used to override fetch_options for
all versions in the package. This includes connect_timeout as well
as 'cookie' (e.g. for the jdk package).
Packages can combine package-level fetch_options with per-version
fetch_options, in which case the version fetch_options completely
override the package-level fetch_options.
This commit includes tests for the added behavior.
fixes#15449
Before this PR a call to pkg.url_for_version was modifying
class attributes determining different results for subsequents
calls and an error when the urls was empty.
* add --skip-unstable-versions option to 'spack mirror create' which skips sources/resource for packages if their version is not stable (i.e. if they are the head of a git branch rather than a fixed commit)
* '--skip-unstable-versions' should skip all VCS sources/resources, not just those which are not cachable
Allows spack.config InternalConfigScope and Configuration.set() to
handle keys with trailing ':' to indicate replacement vs merge
behavior with respect to lower priority scopes.
Lists may now be replaced rather than merged (this behavior was
previously only available for dictionaries).
This commit adds tests for the new behavior.
Testing the install StopIteration exception resulted in an attribute error:
AttributeError: 'StopIteration' object has no attribute 'message'
This PR adds a unit test and resolves that error.
This recovers the old behavior of replace_prefix_bin that was
modified to work with elf binaries by prefixing os.sep to new prefix
until length is the same as old prefix.
Removed the code that was converting the old index.yaml format into
index.json. Since the change happened in #2189 it should be
considered safe to drop this (untested) code.
Spack's fflags are meant for both f77 and fc. Therefore, they must
be passed as FFLAGS and FCFLAGS to the configure scripts of
Autotools-based packages.
The distributed build PR (#13100) -- did not check the install status of dependencies when using the `--only package` option so would refuse to install a package with the claim that it had uninstalled dependencies whether that was the case or not.
- [x] add install status checks for the `--only package` case.
- [x] add initial set of tests
connect_timeout can be used to increase the time Spack waits for the
server to answer. This can be used to work around slow connections or
servers.
Fixes#14700
* CudaPackage: add support for Tesla K80 and older CUDA
* Flake8 fixes
* Fix cuda_arch when no arch is set
* Fine-tune cuda_arch=37,50 supported CUDA versions
* CUDA 6.5+ supports SM_37
* Add @svenevs as a maintainer
The new build process, introduced in #13100 , relies on a spec's dependents in addition to their dependencies. Loading a spec from a yaml file was not initializing the dependents.
- [x] populate dependents when loading from yaml
* Buildcache command: add install option -o/--otherarch
This will allow matching specs from other archs, for example
installing macOS buildcaches on linux hosts.
* spack commands --update-completion
args.specs is a list, which results in output like this:
```
eval `spack load --sh ['libxml2', 'xz']`
```
We want this instead:
```
eval `spack load --sh libxml2 xz`
```
This change stores packages' configure arguments during build and makes
use of them while refreshing module files. This fixes problems such as in
#10716.
* Emit a sensible error message if compiler's target is overly specific
fixes#14798fixes#13733
Compiler specifications require a generic architecture family as
their target. This commit improves the error message that is
displayed to users if they edit compilers.yaml and use an overly
specific name.
The hashing logic looks for function calls that are Spack directives.
It expects that when a Spack directive is used that it is referenced
directly by name, and that the directive function is not itself
retrieved by calling another function. When the hashing logic
encountered a function call where the function was determined
dynamically, it would fail (attempting to access a name attribute
that does not happen to exist in this case).
This updates the hashing logic to filter out function calls where the
function is determined dynamically when looking for uses of Spack
directives.
Spack now requires an exact match of the compiler version
requested by the user. A loose constraint can be given to
Spack by using a version range instead of a concrete version
(e.g. 4.5: instead of 4.5).
Sometimes one needs to preserve the (relative order) of
mtimes on installed files. So it's better to just copy
over all the metadata from the source tree to the install
tree. If permissions need fixing, that will be done anyway
afterwards.
One major use case are resource()s:
They're unpacked in one place and then copied to their
final place using install_tree(). If the resource is a
source tree using autoconf/automake, resetting mtimes
uncorrectly might force unwanted autoconf/etc calls.
If the mimetype returned from `file -h -b --mime-type` contains slashes
in its subtype, the tuple returned from `spack.relocate.mime_type` will
have a size larger than two, which leads to errors.
Change-Id: I31de477e69f114ffdc9ae122d00c573f5f749dbb
Fixes#9394Closes#13217.
## Background
Spack provides the ability to enable/disable parallel builds through two options: package `parallel` and configuration `build_jobs`. This PR changes the algorithm to allow multiple, simultaneous processes to coordinate the installation of the same spec (and specs with overlapping dependencies.).
The `parallel` (boolean) property sets the default for its package though the value can be overridden in the `install` method.
Spack's current parallel builds are limited to build tools supporting `jobs` arguments (e.g., `Makefiles`). The number of jobs actually used is calculated as`min(config:build_jobs, # cores, 16)`, which can be overridden in the package or on the command line (i.e., `spack install -j <# jobs>`).
This PR adds support for distributed (single- and multi-node) parallel builds. The goals of this work include improving the efficiency of installing packages with many dependencies and reducing the repetition associated with concurrent installations of (dependency) packages.
## Approach
### File System Locks
Coordination between concurrent installs of overlapping packages to a Spack instance is accomplished through bottom-up dependency DAG processing and file system locks. The runs can be a combination of interactive and batch processes affecting the same file system. Exclusive prefix locks are required to install a package while shared prefix locks are required to check if the package is installed.
Failures are communicated through a separate exclusive prefix failure lock, for concurrent processes, combined with a persistent store, for separate, related build processes. The resulting file contains the failing spec to facilitate manual debugging.
### Priority Queue
Management of dependency builds changed from reliance on recursion to use of a priority queue where the priority of a spec is based on the number of its remaining uninstalled dependencies.
Using a queue required a change to dependency build exception handling with the most visible issue being that the `install` method *must* install something in the prefix. Consequently, packages can no longer get away with an install method consisting of `pass`, for example.
## Caveats
- This still only parallelizes a single-rooted build. Multi-rooted installs (e.g., for environments) are TBD in a future PR.
Tasks:
- [x] Adjust package lock timeout to correspond to value used in the demo
- [x] Adjust database lock timeout to reduce contention on startup of concurrent
`spack install <spec>` calls
- [x] Replace (test) package's `install: pass` methods with file creation since post-install
`sanity_check_prefix` will otherwise error out with `Install failed .. Nothing was installed!`
- [x] Resolve remaining existing test failures
- [x] Respond to alalazo's initial feedback
- [x] Remove `bin/demo-locks.py`
- [x] Add new tests to address new coverage issues
- [x] Replace built-in package's `def install(..): pass` to "install" something
(i.e., only `apple-libunwind`)
- [x] Increase code coverage
* Buildcache creation change the way prefix is copied to workdir.
* install_tree copies hardlinked files
* tarfile creates hardlinked files on extraction.
* create a temporary tarfile from prefix and extract it to workdir
* Use temp tarfile to move workdir to prefix to preserve hardlinks instead of copying
It's often useful to run a module with `python -m`, e.g.:
python -m pyinstrument script.py
Running a python script this way was hard, though, as `spack python` did
not have a similar `-m` option. This PR adds a `-m` option to `spack
python` so that we can do things like this:
spack python -m pyinstrument ./test.py
This makes it easy to write a script that uses a small part of Spack and
then profile it. Previously thee easiest way to do this was to write a
custom Spack command, which is often overkill.
Fixes#10019
If multiple instances of a package were installed in a single
instance of Spack, and they differed in terms of dependencies, then
"spack find" would not distinguish specs based on their dependencies.
For example if two instances of X were installed, one with Y and one
with Z, then "spack find X ^Y" would display both instances of X.
Using `sys.executable` to run Python in a sub-shell doesn't always work in a virtual environment as the `sys.executable` Python is not necessarily compatible with any loaded spack/other virtual environment.
- revert use of sys.executable to print out subshell environment (#14496)
- try instead to use an available python, then if there *is not* one, use `sys.executable`
- this addresses RHEL8 (where there is no `python` and `PYTHONHOME` issue in a simpler way
When removing packages from a view, extensions were being deactivated
in an arbitrary order. Extensions must be deactivated in preorder
traversal (dependents before dependencies), so when this order was
violated the view update would fail.
This commit ensures that views deactivate extensions based on a
preorder traversal and adds a test for it.
Despite trying very hard to keep dicts out of our hash algorithm, we seem
to still accidentally add them in ways that the tests can't catch. This
can cause errors when hashes are not computed deterministically.
This fixes an error we saw with Python 3.5, where dictionary iteration
order is random. In this instance, we saw a bug when reading Spack
environment lockfiles -- The load would fail like this:
```
...
File "/sw/spack/lib/spack/spack/environment.py", line 1249, in concretized_specs
yield (s, self.specs_by_hash[h])
KeyError: 'qcttqplkwgxzjlycbs4rfxxladnt423p'
```
This was because the hashes differed depending on whether we wrote `path`
or `module` first when recomputing the build hash as part of reading a
Spack lockfile. We can fix it by ensuring a determistic iteration order.
- [x] Fix two places (one that caused an issue, and one that did
not... yet) where our to_node_dict-like methods were using regular python
dicts.
- [x] Also add a check that statically analyzes our to_node_dict
functions and flags any that use Python dicts.
The test found the two errors fixed here, specifically:
```
E AssertionError: assert [] == ['Use syaml_dict instead of ...pack/spack/spec.py:1495:28']
E Right contains more items, first extra item: 'Use syaml_dict instead of dict at /Users/gamblin2/src/spack/lib/spack/spack/spec.py:1495:28'
E Full diff:
E - []
E + ['Use syaml_dict instead of dict at '
E + '/Users/gamblin2/src/spack/lib/spack/spack/spec.py:1495:28']
```
and
```
E AssertionError: assert [] == ['Use syaml_dict instead of ...ack/architecture.py:359:15']
E Right contains more items, first extra item: 'Use syaml_dict instead of dict at /Users/gamblin2/src/spack/lib/spack/spack/architecture.py:359:15'
E Full diff:
E - []
E + ['Use syaml_dict instead of dict at '
E + '/Users/gamblin2/src/spack/lib/spack/spack/architecture.py:359:15']
```
This commit introduces a `--no-check-signature` option for
`spack install` so that unsigned packages can be installed. It is
off by default (signatures required).
VSX alitvec extensions are supported by PowerISA from v2.06 (Power7+), but might
not be listed in features.
FMA has been supported by PowerISA since Power1, but might not be listed in
features.
This commit adds these features to all the power ISA family sets.
Add an optional 'submodules_delete' field to Git versions in Spack
packages that allows them to remove specific submodules.
For example: the nervanagpu submodule has become unavailable for the
PyTorch project (see issue 19457 at
https://github.com/pytorch/pytorch/issues/). Removing this submodule
allows 0.4.1 to build.
* Initialize _cached_specs at the file level and check for spec in it before searching mirrors in try_download_spec.
* Make _cached_specs a set to avoid duplicates
* Fix packaging test
* Ignore build_cache in stage when spec.yaml files are downloaded.
`spack -V` previously always returned the version of spack from
`spack.spack_version`. This gives us a general idea of what version
users are on, but if they're on `develop` or on some branch, we have to
ask more questions.
This PR makes `spack -V` check whether this instance of Spack is a git
repository, and if it is, it appends useful information from `git
describe --tags` to the version. Specifically, it adds:
- number of commits since the last release tag
- abbreviated (but unique) commit hash
So, if you're on `develop` you might get something like this:
$ spack -V
0.13.3-912-3519a1762
This means you're on commit 3519a1762, which is 912 commits ahead of
the 0.13.3 release.
If you are on a release branch, or if you are using a tarball of Spack,
you'll get the usual `spack.spack_version`:
$ spack -V
0.13.3
This should help when asking users what version they are on, since a lot
of people use the `develop` branch.
This PR adds a new command to Spack:
```console
$ spack containerize -h
usage: spack containerize [-h] [--config CONFIG]
creates recipes to build images for different container runtimes
optional arguments:
-h, --help show this help message and exit
--config CONFIG configuration for the container recipe that will be generated
```
which takes an environment with an additional `container` section:
```yaml
spack:
specs:
- gromacs build_type=Release
- mpich
- fftw precision=float
packages:
all:
target: [broadwell]
container:
# Select the format of the recipe e.g. docker,
# singularity or anything else that is currently supported
format: docker
# Select from a valid list of images
base:
image: "ubuntu:18.04"
spack: prerelease
# Additional system packages that are needed at runtime
os_packages:
- libgomp1
```
and turns it into a `Dockerfile` or a Singularity definition file, for instance:
```Dockerfile
# Build stage with Spack pre-installed and ready to be used
FROM spack/ubuntu-bionic:prerelease as builder
# What we want to install and how we want to install it
# is specified in a manifest file (spack.yaml)
RUN mkdir /opt/spack-environment \
&& (echo "spack:" \
&& echo " specs:" \
&& echo " - gromacs build_type=Release" \
&& echo " - mpich" \
&& echo " - fftw precision=float" \
&& echo " packages:" \
&& echo " all:" \
&& echo " target:" \
&& echo " - broadwell" \
&& echo " config:" \
&& echo " install_tree: /opt/software" \
&& echo " concretization: together" \
&& echo " view: /opt/view") > /opt/spack-environment/spack.yaml
# Install the software, remove unecessary deps and strip executables
RUN cd /opt/spack-environment && spack install && spack autoremove -y
RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
xargs file -i | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: '{print $1}' | xargs strip -s
# Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh
# Bare OS image to run the installed executables
FROM ubuntu:18.04
COPY --from=builder /opt/spack-environment /opt/spack-environment
COPY --from=builder /opt/software /opt/software
COPY --from=builder /opt/view /opt/view
COPY --from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_environment.sh
RUN apt-get -yqq update && apt-get -yqq upgrade \
&& apt-get -yqq install libgomp1 \
&& rm -rf /var/lib/apt/lists/*
ENTRYPOINT ["/bin/bash", "--rcfile", "/etc/profile", "-l"]
```
* Add binary_distribution::get_spec which takes concretized spec
Add binary_distribution::try_download_specs for downloading of spec.yaml files to cache
get_spec is used by package::try_install_from_binary_cache to download only the spec.yaml
for the concretized spec if it exists.
The Spec parser currently calls `spec.traverse()` after every parse, in
order to set the platform if it's not set. We don't need to do a full
traverse -- we can just check the platforrm as new specs are parsed.
This takes about a second off the time required to import all packages in
Spack (from 8s to 7s).
- [x] simplify platform-setting logic in `SpecParser`.
`filename_for_package_name()` and `dirname_for_package_name()`
automatically construct a Spec from their arguments, which adds a fair
amount of overhead to importing lots of packages. Removing this removes
about 11% of the runtime of importing all packages in Spack (9s -> 8s).
- [x] `filename_for_package_name()` and `dirname_for_package_name()` now
take a string `pkg_name` arguments instead of specs.
* `Environment.__init__` is now synchronized with all writing operations
* `spack uninstall` now synchronizes its updates to any associated environment
* A side effect of this is that the environment is no longer updated piecemeal as specs are uninstalled - all specs are removed from the environment before they are uninstalled
This commit makes two fundamental corrections to tests:
1) Changes 'matches' to the correct 'match' argument for 'pytest.raises' (for all affected tests except those checking for 'SystemExit');
2) Replaces the 'match' argument for tests expecting 'SystemExit' (since the exit code is retained instead) with 'capsys' error message capture.
Both changes are needed to ensure the associated exception message is actually checked.
Updates to environments were not multi-process safe, which prevented them from taking advantage of parallel builds as implemented in #13100. This is a minimal set of changes to enable `spack install` in an environment to be parallelized:
- [x] add an internal lock, stored in the `.spack-env` directory,
to synchronize updates to `spack.yaml` and `spack.lock`
- [x] add `Environment.write_transaction` interface for this lock
- [x] makes use of `Environment.write_transaction` in `install`,
`add`, and `remove` commands
- `uninstall` is not synchronized yet; that is left for a future PR.
Spack commands referring to upstream-installed specs by hash have
been broken since 6b619da (merged September 2019), which added a new
Database function specifically for parsing hashes from command-line
specs; this function was inappropriately attempting to acquire locks
on upstream databases.
This PR updates the offending function to avoid locking upstream
databases and also updates associated tests to catch regression
errors: the upstream database created for these tests was not
explicitly set as an upstream (i.e. initialized with upstream=True)
so it was not guarding against inappropriate accesses.
* Unified environment modifications in config files
fixes#13357
This commit factors all the code that is involved in
the validation (schema) and parsing of environment modifications
from configuration files in a single place. The factored out
code is then used for module files and compiler configuration.
Attributes were separated by dashes in `compilers.yaml` files and
by underscores in `modules.yaml` files. This PR unifies the syntax
on attributes separated by underscores.
Unit testing of environment modifications in compilers
has been refactored and simplified.
Using `sys.executable` to run Python in a sub-shell doesn't always work in a virtual environment as the `sys.executable` Python is not necessarily compatible with any loaded spack/other virtual environment.
- revert use of sys.executable to print out subshell environment (#14496)
- try instead to use an available python, then if there *is not* one, use `sys.executable`
- this addresses RHEL8 (where there is no `python` and `PYTHONHOME` issue in a simpler way
Openblas target is now determined automatically upon inspection of
`TargetList.txt`. If the spack target is a generic architecture family
(like x86_64 or aarch64) the DYNAMIC_ARCH setting is used
instead of targeting a specific microarchitecture.
Instead of another script, this adds a simple argument to `spack
commands` that updates the completion script. Developers can now just
run:
spack commands --update-completion
This should make it simpler for developers to remember to run this
*before* the tests fail. Also, this version tab-completes.
Previously the `spack load` command was a wrapper around `module load`. This required some bootstrapping of modules to make `spack load` work properly.
With this PR, the `spack` shell function handles the environment modifications necessary to add packages to your user environment. This removes the dependence on environment modules or lmod and removes the requirement to bootstrap spack (beyond using the setup-env scripts).
Included in this PR is support for MacOS when using Apple's System Integrity Protection (SIP), which is enabled by default in modern MacOS versions. SIP clears the `LD_LIBRARY_PATH` and `DYLD_LIBRARY_PATH` variables on process startup for executables that live in `/usr` (but not '/usr/local', `/System`, `/bin`, and `/sbin` among other system locations. Spack cannot know the `LD_LIBRARY_PATH` of the calling process when executed using `/bin/sh` and `/usr/bin/python`. The `spack` shell function now manually forwards these two variables, if they are present, as `SPACK_<VAR>` and recovers those values on startup.
- [x] spack load/unload no longer delegate to modules
- [x] refactor user_environment modification calculations
- [x] update documentation for spack load/unload
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This PR adds a `--format=bash` option to `spack commands` to
auto-generate the Bash programmable tab completion script. It can be
extended to work for other shells.
Progress:
- [x] Fix bug in superclass initialization in `ArgparseWriter`
- [x] Refactor `ArgparseWriter` (see below)
- [x] Ensure that output of old `--format` options remains the same
- [x] Add `ArgparseCompletionWriter` and `BashCompletionWriter`
- [x] Add `--aliases` option to add command aliases
- [x] Standardize positional argument names
- [x] Tests for `spack commands --format=bash` coverage
- [x] Tests to make sure `spack-completion.bash` stays up-to-date
- [x] Tests for `spack-completion.bash` coverage
- [x] Speed up `spack-completion.bash` by caching subroutine calls
This PR also necessitates a significant refactoring of
`ArgparseWriter`. Previously, `ArgparseWriter` was mostly a single
`_write` method which handled everything from extracting the information
we care about from the parser to formatting the output. Now, `_write`
only handles recursion, while the information extraction is split into a
separate `parse` method, and the formatting is handled by `format`. This
allows subclasses to completely redefine how the format will appear
without overriding all of `_write`.
Co-Authored-by: Todd Gamblin <tgamblin@llnl.gov>
The gpg2 command isn't always around; it's sometimes called gpg. This is
the case with the brew-installed version, and it's breaking our tests.
- [x] Look for both 'gpg2' and 'gpg' when finding the command
- [x] If we find 'gpg', ensure the version is 2 or higher
- [x] Add tests for version detection.
- [x] Factored to a common place the fixture `testing_gpg_directory`, renamed it as
`mock_gnupghome`
- [x] Removed altogether the function `has_gnupg2`
For `has_gnupg2`, since we were not trying to parse the version from the output of:
```console
$ gpg2 --version
```
this is effectively equivalent to check if `spack.util.gpg.GPG.gpg()` was found. If we need to ensure version is `^2.X` it's probably better to do it in `spack.util.gpg.GPG.gpg()` than in a separate function.
Despite trying very hard to keep dicts out of our hash algorithm, we seem
to still accidentally add them in ways that the tests can't catch. This
can cause errors when hashes are not computed deterministically.
This fixes an error we saw with Python 3.5, where dictionary iteration
order is random. In this instance, we saw a bug when reading Spack
environment lockfiles -- The load would fail like this:
```
...
File "/sw/spack/lib/spack/spack/environment.py", line 1249, in concretized_specs
yield (s, self.specs_by_hash[h])
KeyError: 'qcttqplkwgxzjlycbs4rfxxladnt423p'
```
This was because the hashes differed depending on whether we wrote `path`
or `module` first when recomputing the build hash as part of reading a
Spack lockfile. We can fix it by ensuring a determistic iteration order.
- [x] Fix two places (one that caused an issue, and one that did
not... yet) where our to_node_dict-like methods were using regular python
dicts.
- [x] Also add a check that statically analyzes our to_node_dict
functions and flags any that use Python dicts.
The test found the two errors fixed here, specifically:
```
E AssertionError: assert [] == ['Use syaml_dict instead of ...pack/spack/spec.py:1495:28']
E Right contains more items, first extra item: 'Use syaml_dict instead of dict at /Users/gamblin2/src/spack/lib/spack/spack/spec.py:1495:28'
E Full diff:
E - []
E + ['Use syaml_dict instead of dict at '
E + '/Users/gamblin2/src/spack/lib/spack/spack/spec.py:1495:28']
```
and
```
E AssertionError: assert [] == ['Use syaml_dict instead of ...ack/architecture.py:359:15']
E Right contains more items, first extra item: 'Use syaml_dict instead of dict at /Users/gamblin2/src/spack/lib/spack/spack/architecture.py:359:15'
E Full diff:
E - []
E + ['Use syaml_dict instead of dict at '
E + '/Users/gamblin2/src/spack/lib/spack/spack/architecture.py:359:15']
```
Rework Spack's continuous integration workflow to be environment-based.
- Add the `spack ci` command, which replaces the many scripts in `bin/`
- `spack ci` decouples the CI workflow from the spack instance:
- CI is defined in a spack environment
- environment is in its own (single) git repository, separate from Spack
- spack instance used to run the pipeline is up to the user
- A new `gitlab-ci` section in environments allows users to configure how
specs in the environment should be mapped to runners
- Compilers can be bootstrapped in the new pipeline workflow
- Add extensive documentation on pipelines (see `pipelines.rst` for further details)
- Add extensive tests for pipeline code
* Reorder GNU mirrors (#14395)
As @adamjstewart commented in #14395, GNU suggests to use
their mirror. So reorder the mirror to the top.
GNU Doc: https://www.gnu.org/prep/ftp.en.html
* Use spack.util.url.join for URLs in GNU mirrors (#14395)
One should not use os.path.join for URLs. This does only
work on POSIX systems.
Instead use spack.util.url.join.
So every part in spack uses the same url joining method.
When removing packages from a view, extensions were being deactivated
in an arbitrary order. Extensions must be deactivated in preorder
traversal (dependents before dependencies), so when this order was
violated the view update would fail.
This commit ensures that views deactivate extensions based on a
preorder traversal and adds a test for it.
* Spack can uninstall unused specs
fixes#4382
Added an option to spack uninstall that removes all unused specs i.e.
build dependencies or transitive dependencies that are left
in the store after the specs that pulled them in have been removed.
* Moved the functionality to its own command
The command has been named 'spack autoremove' to follow the naming used
for the same functionality by other widely known package managers i.e.
yum and apt.
* Speed-up autoremoving specs by not locking and re-reading the scratch DB
* Make autoremove work directly on Spack's store
* Added unit tests for the new command
* Display a terser output to the user
* Renamed the "autoremove" command "gc"
Following discussion there's more consensus around
the latter name.
* Preserve root specs in env contexts
* Instead of preserving specs, restrict gc to the active environment
* Added docs
* Added a unit test for gc within an environment
* Updated copyright to 2020
* Updated documentation according to review
Rephrased a couple of sentences, added references to
`spack find` and dependency types.
* Updated function naming and docstrings
* Simplified computation of unused specs
Since the new approach uses private attributes of the DB
it has been coded as a method of that class rather than a
freestanding function.
The imports in `spec.py` are getting to be pretty unwieldy.
- [x] Remove all of the `import from` style imports and replace them with
`import` or `import as`
- [x] Remove a number names that were exported by `spack.spec` that
weren't even in `spack.spec`
Previously, `spack test` automatically passed all of its arguments to
`pytest -k` if no options were provided, and to `pytest` if they were.
`spack test -l` also provided a list of test filenames, but they didn't
really let you completely narrow down which tests you wanted to run.
Instead of trying to do our own weird thing, this passes `spack test`
args directly to `pytest`, and omits the implicit `-k`. This means we
can now run, e.g.:
```console
$ spack test spec_syntax.py::TestSpecSyntax::test_ambiguous
```
This wasn't possible before, because we'd pass the fully qualified name
to `pytest -k` and get an error.
Because `pytest` doesn't have the greatest ability to list tests, I've
tweaked the `-l`/`--list`, `-L`/`--list-long`, and `-N`/`--list-names`
options to `spack test` so that they help you understand the names
better. you can combine these options with `-k` or other arguments to do
pretty powerful searches.
This one makes it easy to get a list of names so you can run tests in
different orders (something I find useful for debugging `pytest` issues):
```console
$ spack test --list-names -k "spec and concretize"
cmd/env.py::test_concretize_user_specs_together
concretize.py::TestConcretize::test_conflicts_in_spec
concretize.py::TestConcretize::test_find_spec_children
concretize.py::TestConcretize::test_find_spec_none
concretize.py::TestConcretize::test_find_spec_parents
concretize.py::TestConcretize::test_find_spec_self
concretize.py::TestConcretize::test_find_spec_sibling
concretize.py::TestConcretize::test_no_matching_compiler_specs
concretize.py::TestConcretize::test_simultaneous_concretization_of_specs
spec_dag.py::TestSpecDag::test_concretize_deptypes
spec_dag.py::TestSpecDag::test_copy_concretized
```
You can combine any list option with keywords:
```console
$ spack test --list -k microarchitecture
llnl/util/cpu.py modules/lmod.py
```
```console
$ spack test --list-long -k microarchitecture
llnl/util/cpu.py::
test_generic_microarchitecture
modules/lmod.py::TestLmod::
test_only_generic_microarchitectures_in_root
```
Or just list specific files:
```console
$ spack test --list-long cmd/test.py
cmd/test.py::
test_list test_list_names_with_pytest_arg
test_list_long test_list_with_keywords
test_list_long_with_pytest_arg test_list_with_pytest_arg
test_list_names
```
Hopefully this stuff will help with debugging test issues.
- [x] make `spack test` send args directly to `pytest` instead of trying
to do fancy things.
- [x] rework `--list`, `--list-long`, and add `--list-names` to make
searching for tests easier.
- [x] make it possible to mix Spack's list args with `pytest` args
(they're just fancy parsing around `pytest --collect-only`)
- [x] add docs
- [x] add tests
- [x] update spack completion
Test configuration files (except modules.yaml) were in the root level of
test/data, but should really just be in their own directory. The absence
of modules.yaml was also breaking module tests if we got module
preferences after tests started, as the mock modules.yaml was not in the
test directory.
The module hook would previously fail if there were no enabled module types.
- Instead of looking for a `KeyError`, default to empty list when the
config variable is not present.
- Convert lambdas to real functions for clarity.
- Remove legacy yaml_version_check() hook
- Remove the pre_run hook from `hook/__init__.py` and `main.py`
We want to discourage the use of pre-run hooks because they have to run
at startup. To keep Spack fast, we should do things like this lazily
instead of in hooks that require spidering directories full of modules.
Continuing to shave small bits of time off startup --
`spack.cmd.common.arguments` constructs many `Args` objects at module
scope, which has to be done for all commands that import it. Instead of
doing this at load time, do it lazily.
- [x] construct Args objects lazily
- [x] remove the module-scoped argparse fixture
- [x] make the mock config scope set dirty to False by default (like the
regular scope)
This *seems* to reduce load time slightly
Previously, fixtures like `config`, `database`, and `store` were
module-scoped, but frequently used as test function arguments. These
fixtures swap out global on setup and restore them on teardown. As
function arguments, they would do the right set-up, but they'd leave the
global changes in place for the whole module the function lived in. This
meant that if you use `config` once, other functions in the same module
would inadvertently inherit the mock Spack configuration, as it would
only be torn down once all tests in the module were complete.
In general, we should module- or session-scope the *STATE* required for
these global objects (as it's expensive to create0, but we shouldn't
module-or session scope the activation/use of them, or things can get
really confusing.
- [x] Make generic context managers for global-modifying fixtures.
- [x] Make session- and module-scoped fixtures that ONLY build filesystem
state and create objects, but do not swap out any variables.
- [x] Make seeparate function-scoped fixtures that *use* the session
scoped fixtures and actually swap out (and back in) the global
variables like `config`, `database`, and `store`.
These changes make it so that global changes are *only* ever alive for a
singlee test function, and we don't get weird dependencies because a
global fixture hasn't been destroyed.
`PackagePrefs` has had a class-level cache of data from `packages.yaml` for
a long time, but it complicates testing and leads to subtle errors,
especially now that we frequently manipulate custom config scopes and
environments.
Moving the cache to instance-level doesn't slow down concretization or
the test suite, and it just caches for the life of a `PackagePrefs`
instance (i.e., for a single cocncretization) so we don't need to worry
about global state anymore.
- [x] Remove class-level caches from `PackagePrefs`
- [x] Add a cached _spec_order object on each `PackagePrefs` instance
- [x] Remove all calls to `PackagePrefs.clear_caches()`
Commands like `spack blame` were printig poorly when redirected to files,
as colify reverts to a single column when redirected. This works for
list data but not tables.
- [x] Force a table by always passing `tty=True` from `colify_table()`
In "spack info" the Variants header currently has two blank
lines under it. That's too much. It looks like the actual
content belongs to something else.
Instead underline the headers to make things more obvious.
This commit removes the `python_version.py` unit test module
and the vendored dependencies `pyqver2.py` and `pyqver3.py`.
It substitutes them with an equivalent check done using
`vermin` that is run as a separate workflow via Github Actions.
This allows us to delete 2 vendored dependencies that are unmaintained
and substitutes them with a maintained tool.
Also, updates the list of vendored dependencies.
`ViewDescriptor.regenerate()` calls `get_all_specs()`, which reads
`spec.yaml` files, which is slow. It's fine to do this once, but
`view.remove_specs()` *also* calls it immediately afterwards.
- [x] Pass the result of `get_all_specs()` as an optional parameter to
`view.remove_specs()` to avoid reading `spec.yaml` files twice.
`ViewDescriptor.regenerate()` was copying specs and stripping build
dependencies, which clears `_hash` and other cached fields on concrete
specs, which causes a bunch of YAML hashes to be recomputed.
- [x] Preserve the `_hash` and `_normal` fields on stripped specs, as
these will be unchanged.
`spack install` previously concretized, writes the entire environment
out, regenerated views, then wrote and regenerated views
again. Regenerating views is slow, so ensure that we only do that once.
- [x] add an option to env.write() to skip view regeneration
- [x] add a note on whether regenerate_views() shouldn't just be a
separate operation -- not clear if we want to keep it as part of write
to ensure consistency, or take it out to avoid performance issues.
Environments need to read the DB a lot when installing all specs.
- [x] Put a read transaction around `install_all()` and `install()`
to avoid repeated locking
Our `LockTransaction` class was reading overly aggressively. In cases
like this:
```
1 with spack.store.db.read_transaction():
2 with spack.store.db.write_transaction():
3 ...
```
The `ReadTransaction` on line 1 would read in the DB, but the
WriteTransaction on line 2 would read in the DB *again*, even though we
had a read lock the whole time. `WriteTransaction`s were only
considering nested writes to decide when to read, but they didn't know
when we already had a read lock.
- [x] `Lock.acquire_write()` return `False` in cases where we already had
a read lock.
If a write transaction was nested inside a read transaction, it would not
write properly on release, e.g., in a sequence like this, inside our
`LockTransaction` class:
```
1 with spack.store.db.read_transaction():
2 with spack.store.db.write_transaction():
3 ...
4 with spack.store.db.read_transaction():
...
```
The WriteTransaction on line 2 had no way of knowing that its
`__exit__()` call was the last *write* in the nesting, and it would skip
calling its write function.
The `__exit__()` call of the `ReadTransaction` on line 1 wouldn't know
how to write, and the file would never be written.
The DB would be correct in memory, but the `ReadTransaction` on line 4
would re-read the whole DB assuming that other processes may have
modified it. Since the DB was never written, we got stale data.
- [x] Make `Lock.release_write()` return `True` whenever we release the
*last write* in a nest.
Lock transactions were actually writing *after* the lock was
released. The code was looking at the result of `release_write()` before
writing, then writing based on whether the lock was released. This is
pretty obviously wrong.
- [x] Refactor `Lock` so that a release function can be passed to the
`Lock` and called *only* when a lock is really released.
- [x] Refactor `LockTransaction` classes to use the release function
instead of checking the return value of `release_read()` / `release_write()`
`ViewDescriptor.regenerate()` checks repeatedly whether packages are
installed and also does a lot of DB queries. Put a read transaction
around the whole thing to avoid repeatedly locking and unlocking the DB.
`Environment.added_specs()` has a loop around calls to
`Package.installed()`, which can result in repeated DB queries. Optimize
this with a read transaction in `Environment`.
Checks for deprecated specs were repeatedly taking out read locks on the
database, which can be very slow.
- [x] put a read transaction around the deprecation check
BundlePackages use a noop fetch strategy. The mirror logic was assuming
that the fetcher had a resource to cach after performing a fetch. This adds
a special check to skip caching if the stage is associated with a
BundleFetchStrategy. Note that this should allow caching resources
associated with BundlePackages.
When updating a mirror, Spack was re-retrieving all patches (since the
fetch logic for patches is separate). This updates the patch logic to
allow the mirror logic to avoid this.
Since cache_mirror does the fetch itself, it also needs to do the
checksum itself if it wants to verify that the source stored in the
mirror is valid. Note that this isn't strictly required because fetching
(including from mirrors) always separately verifies the checksum.
The targets for the cosmetic paths in mirrrors were being calculated
incorrectly as of fb3a3ba: the symlinks used relative paths as targets,
and the relative path was computed relative to the wrong directory.
When creating a cosmetic symlink for a resource in a mirror, remove
it if it already exists. The symlink is removed in case the logic to
create the symlink has changed.
* Some packages (e.g. mpfr at the time of this patch) can have patches
with the same name but different contents (which apply to different
versions of the package). This appends part of the patch hash to the
cache file name to avoid conflicts.
* Some exceptions which occur during fetching are not a subclass of
SpackError and therefore do not have a 'message' attribute. This
updates the logic for mirroring a single spec (add_single_spec)
to produce an appropriate error message in that case (where before
it failed with an AttributeError)
* In various circumstances, a mirror can contain the universal storage
path but not a cosmetic symlink; in this case it would not generate
a symlink. Now "spack mirror create" will create a symlink for any
package that doesn't have one.
`ViewDescriptor.regenerate()` calls `get_all_specs()`, which reads
`spec.yaml` files, which is slow. It's fine to do this once, but
`view.remove_specs()` *also* calls it immediately afterwards.
- [x] Pass the result of `get_all_specs()` as an optional parameter to
`view.remove_specs()` to avoid reading `spec.yaml` files twice.
`ViewDescriptor.regenerate()` was copying specs and stripping build
dependencies, which clears `_hash` and other cached fields on concrete
specs, which causes a bunch of YAML hashes to be recomputed.
- [x] Preserve the `_hash` and `_normal` fields on stripped specs, as
these will be unchanged.
`spack install` previously concretized, writes the entire environment
out, regenerated views, then wrote and regenerated views
again. Regenerating views is slow, so ensure that we only do that once.
- [x] add an option to env.write() to skip view regeneration
- [x] add a note on whether regenerate_views() shouldn't just be a
separate operation -- not clear if we want to keep it as part of write
to ensure consistency, or take it out to avoid performance issues.
Environments need to read the DB a lot when installing all specs.
- [x] Put a read transaction around `install_all()` and `install()`
to avoid repeated locking
Our `LockTransaction` class was reading overly aggressively. In cases
like this:
```
1 with spack.store.db.read_transaction():
2 with spack.store.db.write_transaction():
3 ...
```
The `ReadTransaction` on line 1 would read in the DB, but the
WriteTransaction on line 2 would read in the DB *again*, even though we
had a read lock the whole time. `WriteTransaction`s were only
considering nested writes to decide when to read, but they didn't know
when we already had a read lock.
- [x] `Lock.acquire_write()` return `False` in cases where we already had
a read lock.
If a write transaction was nested inside a read transaction, it would not
write properly on release, e.g., in a sequence like this, inside our
`LockTransaction` class:
```
1 with spack.store.db.read_transaction():
2 with spack.store.db.write_transaction():
3 ...
4 with spack.store.db.read_transaction():
...
```
The WriteTransaction on line 2 had no way of knowing that its
`__exit__()` call was the last *write* in the nesting, and it would skip
calling its write function.
The `__exit__()` call of the `ReadTransaction` on line 1 wouldn't know
how to write, and the file would never be written.
The DB would be correct in memory, but the `ReadTransaction` on line 4
would re-read the whole DB assuming that other processes may have
modified it. Since the DB was never written, we got stale data.
- [x] Make `Lock.release_write()` return `True` whenever we release the
*last write* in a nest.
Lock transactions were actually writing *after* the lock was
released. The code was looking at the result of `release_write()` before
writing, then writing based on whether the lock was released. This is
pretty obviously wrong.
- [x] Refactor `Lock` so that a release function can be passed to the
`Lock` and called *only* when a lock is really released.
- [x] Refactor `LockTransaction` classes to use the release function
instead of checking the return value of `release_read()` / `release_write()`
`ViewDescriptor.regenerate()` checks repeatedly whether packages are
installed and also does a lot of DB queries. Put a read transaction
around the whole thing to avoid repeatedly locking and unlocking the DB.
Users can now list mirrors of the main url in packages.
- [x] Instead of just a single `url` attribute, users can provide a list (`urls`) in the package, and these will be tried by in order by the fetch strategy.
- [x] To handle one of the most common mirror cases, define a `GNUMirrorPackage` mixin to handle all the standard GNU mirrors. GNU packages can set `gnu_mirror_path` to define the path within a mirror, and the mixin handles setting up all the requisite GNU mirror URLs.
- [x] update all GNU packages in `builtin` to use the `GNUMirrorPackage` mixin.
- Add an optional argument so that `possible_dependencies()` will report
missing dependencies.
- Add a test to ensure it works.
- Ignore missing dependencies in `possible_dependencies()` by default.
- this version allows getting possible dependencies of multiple packages
or specs at once.
- New method handles calling `PackageBase.possible_dependencies` multiple
times and passing `visited` dict around.
`Environment.added_specs()` has a loop around calls to
`Package.installed()`, which can result in repeated DB queries. Optimize
this with a read transaction in `Environment`.
Checks for deprecated specs were repeatedly taking out read locks on the
database, which can be very slow.
- [x] put a read transaction around the deprecation check
doesn't understand a custom, user-defined compiler version. However, if
the compiler's version check fails, you can't build anything with the
custom compiler.
- [x] Be more lenient: fall back to the custom compiler version and use
it verbatim if the version check fails.
`pgcc -V` was failing on power machines because it returns 2 (despite
correctly printing version information). On x86_64 machines the same
command returns 0 and doesn't cause an error.
- [x] Ignore return value of 2 for pgcc when doign a version check
Vendors for ARM come out of `/proc/cpuinfo` as hex numbers instead of readable strings.
- Add support for associating vendor names with the hex numbers.
- Also move these mappings from Python code to `microarchitectures.json`
- Move darwin feature name mappings to `microarchitectures.json` as well
* when constructing package hash, default to including a method in the content hash if we can't determine whether it would be included by examining the AST
* add a test for updated content-hash calculations
* refactor content hash tests to eliminate repeated lines
BundlePackages use a noop fetch strategy. The mirror logic was assuming
that the fetcher had a resource to cach after performing a fetch. This adds
a special check to skip caching if the stage is associated with a
BundleFetchStrategy. Note that this should allow caching resources
associated with BundlePackages.
When updating a mirror, Spack was re-retrieving all patches (since the
fetch logic for patches is separate). This updates the patch logic to
allow the mirror logic to avoid this.
Since cache_mirror does the fetch itself, it also needs to do the
checksum itself if it wants to verify that the source stored in the
mirror is valid. Note that this isn't strictly required because fetching
(including from mirrors) always separately verifies the checksum.
The targets for the cosmetic paths in mirrrors were being calculated
incorrectly as of fb3a3ba: the symlinks used relative paths as targets,
and the relative path was computed relative to the wrong directory.
When creating a cosmetic symlink for a resource in a mirror, remove
it if it already exists. The symlink is removed in case the logic to
create the symlink has changed.
* pytest: add __init__ files for all test subdirs
* add licenses to empty files
* Fix Sphinx warning message about comment within docstring
* Further fixes to Sphinx docstring
* fix docstring in generate_package_index() refering to "public" keys as "signing" keys
* use explicit kwargs in push_to_url()
* simplify url_util.parse() per tgamblin's suggestion
* replace standardize_header_names() with the much simpler get_header()
* add some basic tests
* update s3_fetch tests
* update S3 list code to strip leading slashes from prefix
* correct minor warning regression introduced in #11117
* add more tests
* flake8 fixes
* add capsys fixture to mirror_crud test
* add get_header() tests
* use get_header() in more places
* incorporate review comments
This PR allows virtual packages to be added to the specs list using
the add command.
Virtual packages are already allowed in named lists in spack
environments/stacks, and they are already allowed in the specs list
when added using the yaml directly.
I have, more than once, tried to install the list of things that need
to build the docs, only to discover that the list doesn't use Spack's
package names. I'm tired of facepalming....
While I was there I touched up the prose about activating the new
Python packages; activating a python package doesn't add anything to
your PYTHONPATH, it links things into a directory that's *already* on
your PYTHONPATH. Note that this all presupposes that you're using
that same python....
* CUDA HeaderList: Unit Test
* Spec Header Dirs: Only first include/
Avoid matching recurringly nested include paths that usually
refer to internally shipped libraries in packages.
Example in CUDA Toolkit, shipping a libc++ fork internally
with libcu++ since 10.2.89:
`<prefix>/include/cuda/some/more/details/include/` or
`<prefix>/include/cuda/std/detail/libcxx/include`
regex: non-greedy first match of include
Co-Authored-By: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* CUDA: Re-Enable 10.2.89 as Default
* apply strict constraint checks for patches, otherwise Spack may incorrectly treat a version range constraint as satisfied when mixing x.y and x.y.z versions
* add mixed version checks to version comparison tests
`spack module loads` and `spack module find` previously failed if any upstream modules were missing. This prevented it from being used with upstreams (or, really, any spack instance) that blacklisted modules.
This PR makes module finding is now more lenient (especially for blacklisted modules).
- `spack module find` now does not report an error if the spec is blacklisted
- instead, it prints a single warning if any modules will be omitted from the loads file
- It comments the missing modules out of the loads file so the user can see what's missing
- Debug messages are also printed so users can check this with `spack -d...`
- also added tests for new functionality
`spack module loads` and `spack module find` previously failed if any upstream modules were missing. This prevented it from being used with upstreams (or, really, any spack instance) that blacklisted modules.
This PR makes module finding is now more lenient (especially for blacklisted modules).
- `spack module find` now does not report an error if the spec is blacklisted
- instead, it prints a single warning if any modules will be omitted from the loads file
- It comments the missing modules out of the loads file so the user can see what's missing
- Debug messages are also printed so users can check this with `spack -d...`
- also added tests for new functionality
* Fixed x86-64 optimization flags for clang
* Fixed expected results in unit tests
Before the flags used where the one for llc, the underlying compiler from LLVM IR to machine assembly. It turns out that the semantic of `-march`, `-mtune` and `-mcpu` changes from clang front-end to llc.
I found no definitive reference for the flags submitted in this PR, but I checked the assembly on a vectorizable function using Godbolt's web-site.
* Add a transaction around repeated calls to `spec.prefix` in the activation process
* cache the computation of home in the python package to speed up setting deps
* ensure that module-scope variables are only set *once* per module