Fixes#10769
This updates the .headers property to include header subdirectories
for Python and Eigen (as is recommended by these packages).
#10623 updated the default behavior of .headers.directories to
exclude subdirectories (since this can cause clashes with system
headers). This broke some packages which depended on the old behavior
of .headers.directories: for example if you had
<package-prefix>/include/subdir/ex1.h, .headers.directories would
include <package-prefix>/include/subdir.
Allow customizing views with Spec-formatted directory structure
Allow views to specify projections that are more complicated than
merging every package into a single shared prefix. This will allow
sites to configure a view for the way they want to present packages
to their users; for example this can be used to create a prefix for
each package but omit the DAG hash from the path.
This includes a new YAML format file for specifying the simplified
prefix for a spec in a view. This configuration allows the use of
different prefix formats for different specs (i.e. specs depending
on MPI can include the MPI implementation in the prefix).
Documentation on usage of the view projection configuration is
included.
Depending on the projection configuration, paths are not guaranteed
to be unique and it may not be possible to add multiple installs of
a package to a view.
- remove the old LGPL license headers from all files in Spack
- add SPDX headers to all files
- core and most packages are (Apache-2.0 OR MIT)
- a very small number of remaining packages are LGPL-2.1-only
Replace use of `shutil.copytree` with `copy_tree` and `install_tree` functions in `llnl.util.filesystem`.
- `copy_tree` copies without setting permissions. It should be used to copy files around in the build directory.
- `install_tree` copies files and sets permissions. It should be used to copy files into the installation directory.
- `install` and `copy` are analogous single-file functions.
- add more extensive tests for these functions
- update packages to use these functions.
Functional updates:
- `python` now creates a copy of the `python` binaries when it is added
to a view
- Python extensions (packages which subclass `PythonPackage`) rewrite
their shebang lines to refer to python in the view
- Python packages in the same namespace will not generate conflicts if
both have `...lib/site-packages/namespace-example/__init__.py`
- These `__init__` files will also remain when removing any package in
the namespace until the last package in the namespace is removed
Generally (Updated 2/16):
- Any package can define `add_files_to_view` to customize how it is added
to a view (and at the moment custom definitions are included for
`python` and `PythonPackage`)
- Likewise any package can define `remove_files_from_view` to customize
which files are removed (e.g. you don't always want to remove the
namespace `__init__`)
- Any package can define `view_file_conflicts` to customize what it
considers a merge conflict
- Global activations are handled like views (where the view root is the
spec prefix of the extendee)
- Benefit: filesystem-management aspects of activating extensions are
now placed in views (e.g. now one can hardlink a global activation)
- Benefit: overriding `Package.activate` is more straightforward (see
`Python.activate`)
- Complication: extension packages which have special-purpose logic
*only* when activated outside of the extendee prefix must check for
this in their `add_files_to_view` method (see `PythonPackage`)
- `LinkTree` is refactored to have separate methods for copying a
directory structure and for copying files (since it was found that
generally packages may want to alter how files are copied but still
wanted to copy directories in the same way)
TODOs (updated 2/20):
- [x] additional testing (there is some unit testing added at this point
but more would be useful)
- [x] refactor or reorganize `LinkTree` methods: currently there is a
separate set of methods for replicating just the directory structure
without the files, and a set for replicating everything
- [x] Right now external views (i.e. those not used for global
activations) call `view.add_extension`, but global activations do not
to avoid some extra work that goes into maintaining external views. I'm
not sure if addressing that needs to be done here but I'd like to
clarify it in the comments (UPDATE: for now I have added a TODO and in
my opinion this can be merged now and the refactor handled later)
- [x] Several method descriptions (e.g. for `Package.activate`) are out
of date and reference a distinction between global activations and
views, they need to be updated
- [x] Update aspell package activations
- simplify the singleton pattern across the codebase
- reduce lines of code needed for crufty initialization
- reduce functions that need to mess with a global
- Singletons whose semantics changed:
- spack.store.store() -> spack.store
- spack.repo.path() -> spack.repo.path
- spack.config.config() -> spack.config.config
- spack.caches.fetch_cache() -> spack.caches.fetch_cache
- spack.caches.misc_cache() -> spack.caches.misc_cache
- spack.store was previously initialized at the spack.store module level,
but this means the store has to be initialized on every spack call.
- this moves the state in spack.store to a singleton so that the store is
only initialized when needed.
A build of python@3.X had the following in the logs:
```
The necessary bits to build these optional modules were not found:
_dbm _gdbm _tkinter
```
As Tkinter is already a variant, we adopt the same strategy for dbm.
fixes#7128
Before this PR packages that were indirectly dependent on python might
have failed due to inconsistency between the python found in the
environment and the standard libraries set in PYTHONHOME
See #6794
This fixes cases where test-only dependencies were omitted from
consideration when modifying the environment at build time. This
includes an update to the python package definition to add
testing-related python extensions to its specialized environment
setup.
* python: ensure that distutils sets valid compiler options for RPATH on cray
* python: add cray-rpath patches for python@2.3:3.0.1 and python@3.1:
* python: in patch(..., when="@a:b platform=c"), limit b must be specified
* python: assume that python@4 will break the cray patches
## Motivation
Python installations are both important and unfortunately inconsistent. Depending on the Python version, OS, and the strength of the Earth's magnetic field when it was installed, the name of the Python executable, directory containing its libraries, library names, and the directory containing its headers can vary drastically.
I originally got into this mess with #3274, where I discovered that Boost could not be built with Python 3 because the executable is called `python3` and we were telling it to use `python`. I got deeper into this mess when I started hacking on #3140, where I discovered just how difficult it is to find the location and name of the Python libraries and headers.
Currently, half of the packages that depend on Python and need to know this information jump through hoops to determine the correct information. The other half are hard-coded to use `python`, `spec['python'].prefix.lib`, and `spec['python'].prefix.include`. Obviously, none of these packages would work for Python 3, and there's no reason to duplicate the effort. The Python package itself should contain all of the information necessary to use it properly. This is in line with the recent work by @alalazo and @davydden with respect to `spec['blas'].libs` and friends.
## Prefix
For most packages in Spack, we assume that the installation directory is `spec['python'].prefix`. This generally works for anything installed with Spack, but gets complicated when we include external packages. Python is a commonly used external package (it needs to be installed just to run Spack). If it was installed with Homebrew, `which python` would return `/usr/local/bin/python`, and most users would erroneously assume that `/usr/local` is the installation directory. If you peruse through #2173, you'll immediately see why this is not the case. Homebrew actually installs Python in `/usr/local/Cellar/python/2.7.12_2` and symlinks the executable to `/usr/local/bin/python`. `PYTHONHOME` (and presumably most things that need to know where Python is installed) needs to be set to the actual installation directory, not `/usr/local`.
Normally I would say, "sounds like user error, make sure to use the real installation directory in your `packages.yaml`". But I think we can make a special case for Python. That's what we decided in #2173 anyway. If we change our minds, I would be more than happy to simplify things.
To solve this problem, I created a `spec['python'].home` attribute that works the same way as `spec['python'].prefix` but queries Python to figure out where it was actually installed. @tgamblin Is there any way to overwrite `spec['python'].prefix`? I think it's currently immutable.
## Command
In general, Python 2 comes with both `python` and `python2` commands, while Python 3 only comes with a `python3` command. But this is up to the OS developers. For example, `/usr/bin/python` on Gentoo is actually Python 3. Worse yet, if someone is using an externally installed Python, all 3 commands may exist in the same directory! Here's what I'm thinking:
If the spec is for Python 3, try searching for the `python3` command.
If the spec is for Python 2, try searching for the `python2` command.
If neither are found, try searching for the `python` command.
## Libraries
Spack installs Python libraries in `spec['python'].prefix.lib`. Except on openSUSE 13, where it installs to `spec['python'].prefix.lib64` (see #2295 and #2253). On my CentOS 6 machine, the Python libraries are installed in `/usr/lib64`. Both need to work.
The libraries themselves change name depending on OS and Python version. For Python 2.7 on macOS, I'm seeing:
```
lib/libpython2.7.dylib
```
For Python 3.6 on CentOS 6, I'm seeing:
```
lib/libpython3.so
lib/libpython3.6m.so.1.0
lib/libpython3.6m.so -> lib/libpython3.6m.so.1.0
```
Notice the `m` after the version number. Yeah, that's a thing.
## Headers
In Python 2.7, I'm seeing:
```
include/python2.7/pyconfig.h
```
In Python 3.6, I'm seeing:
```
include/python3.6m/pyconfig.h
```
It looks like all Python 3 installations have this `m`. Tested with Python 3.2 and 3.6 on macOS and CentOS 6
Spack has really nice support for libraries (`find_libraries` and `LibraryList`), but nothing for headers. Fixed.
- _spider in web.py was actually failing to spider deeper than a certain
point.
- Fixed multiprocessing pools to not use daemons and to allow recursive
spawning.
- Added detailed tests for spidering and for finding archive versions.
- left some xfail URL finding exercises for the reader.
- Fix noqa annotations for some @when decorators
* Add new package for PaGMO/PyGMO
* Rename py-pygmo to pagmo
* Fix concretization bug
* Correct Python detection, use correct flags
* Install PyGMO to the pagmo prefix, not the Python prefix
- Add a PythonPackage class with build system support.
- Support build phases in PythonPackage
- Add a custom sanity check for PythonPackages
- Get rid of nolink dependencies in python packages
- Update spack create to use new PythonPackage class
- Port most of Python packages to new PythonPackage class
- Conducted a massive install and activate of Python packages.
- Fixed bugs introduced by install and activate.
- Update API docs on PythonPackage
* Removing the nobuild, nolink, and alldeps dependency types in favor of being explicit.
* This will help with maintenance going forward, as adding more dependency types won't affect existing declared dependencies in weird ways.
* default deptype is still `('build', 'link')`