- `spack.util.environment` is the new home for routines that modify
environment variables.
- This is to make room for `spack.environment` to contain new routines
for dealing with spack environments
* modified tutorial packages
* update hint in hdf5 tutorial file (typo for suggested argument)
* add repo.yaml to tutorial repository
* update tutorial docs to refer user to tutorial package repository
* flake edits
* recommend site scope vs. defaults
* you don't specify the repo's name when adding a repo, just the path
* Unite Dockerfiles - add build/run/push scripts
* update docker documentation
* update .travis.yml
* switch to using a preprocessor on Dockerfiles
* skip building docker images on pull requests
* update files with copyright info
* tweak when travis builds for docker files are done
- remove the old LGPL license headers from all files in Spack
- add SPDX headers to all files
- core and most packages are (Apache-2.0 OR MIT)
- a very small number of remaining packages are LGPL-2.1-only
compilers.yaml can track a module that is needed for a compiler, but
Spack does not fill this in automatically. This adds a note to the
documentation informing the user how to do this.
Spack can now be configured to assign permissions to the files installed by a package.
In the `packages.yaml` file under `permissions`, the attributes `read`, `write`, and `group` control the package permissions. These attributes can be set per-package, or for all packages under `all`. If permissions are set under `all` and for a specific package, the package-specific settings take precedence. The `read` and `write` attributes take one of `user`, `group`, and `world`.
packages:
all:
permissions:
write: group
group: spack
my_app:
permissions:
read: group
group: my_team
* Push default flag handlers into module scope
* Preserve backwards compatibility of builtin flag handler names
Ensure Spack continues to work for packages using the `Package.env_flags` idiom and equivalent.
* update docs and tests to match
* Update packages to match new syntax
Consolidate prefix calculation logic for intel packages into the
IntelPackage class.
Add documentation on installing Intel packages with Spack an
(alternatively) adding them as external packages in Spack.
- Support for Python 3.3 isn't really needed, as nothing uses it as the
default system Python, and nearly everyone will have a newer Python 3
version installed.
* Branch with the meson build-system
* Fix build_environment for dual loads and add create code
* Add documentation
* Fixed option list
* Update build_system_guess for meson
* Fixed documentation errors
* Added meson to build and configure and updated documentation
* fix typos
As requested in the review all the commands meant to manage module
files have been grouped under the `spack module` command.
Unit tests have been refactored to match the new command structure.
fixes#4400
The feature requested in #4400 was already part of the module file
configuration, but it was neither tested nor documented. This
commit takes care of adding a few lines in the documentation and a
regression test.
'spack module' has been split into multiple commands, each one tied to a
specific module type. This permits the specialization of the new
commands with features that are module type specific (e.g. set the
default module file in lmod when multiple versions of the same package
are installed at the same time).
Spack provides a number of classes based on commonly-used build systems
that users can extend when writing packages; the classes provide functionality
to perform the actions relevant to the build system (e.g. running "configure" for
an Autotools-based package). This adds documentation for classes supporting the
following build systems:
* Makefile
* Autotools
* CMake
* QMake
* SCons
* Waf
This includes build systems for managing extensions of the following packages:
* Perl
* Python
* R
* Octave
This also adds documentation on implementing packages that use a custom build
system (e.g. Perl/CMake).
Spack also provides extendable classes which aggregate functionality for related
sets of packages, e.g. those using CUDA. Documentation is added for
CudaPackage.
If the user sets "ccache: true" in spack's config.yaml, Spack will use an available
ccache executable when compiling c/c++ code. This feature is disabled by default
(i.e. "ccache: false") and the documentation is updated with how to enable
ccache support
Functional updates:
- `python` now creates a copy of the `python` binaries when it is added
to a view
- Python extensions (packages which subclass `PythonPackage`) rewrite
their shebang lines to refer to python in the view
- Python packages in the same namespace will not generate conflicts if
both have `...lib/site-packages/namespace-example/__init__.py`
- These `__init__` files will also remain when removing any package in
the namespace until the last package in the namespace is removed
Generally (Updated 2/16):
- Any package can define `add_files_to_view` to customize how it is added
to a view (and at the moment custom definitions are included for
`python` and `PythonPackage`)
- Likewise any package can define `remove_files_from_view` to customize
which files are removed (e.g. you don't always want to remove the
namespace `__init__`)
- Any package can define `view_file_conflicts` to customize what it
considers a merge conflict
- Global activations are handled like views (where the view root is the
spec prefix of the extendee)
- Benefit: filesystem-management aspects of activating extensions are
now placed in views (e.g. now one can hardlink a global activation)
- Benefit: overriding `Package.activate` is more straightforward (see
`Python.activate`)
- Complication: extension packages which have special-purpose logic
*only* when activated outside of the extendee prefix must check for
this in their `add_files_to_view` method (see `PythonPackage`)
- `LinkTree` is refactored to have separate methods for copying a
directory structure and for copying files (since it was found that
generally packages may want to alter how files are copied but still
wanted to copy directories in the same way)
TODOs (updated 2/20):
- [x] additional testing (there is some unit testing added at this point
but more would be useful)
- [x] refactor or reorganize `LinkTree` methods: currently there is a
separate set of methods for replicating just the directory structure
without the files, and a set for replicating everything
- [x] Right now external views (i.e. those not used for global
activations) call `view.add_extension`, but global activations do not
to avoid some extra work that goes into maintaining external views. I'm
not sure if addressing that needs to be done here but I'd like to
clarify it in the comments (UPDATE: for now I have added a TODO and in
my opinion this can be merged now and the refactor handled later)
- [x] Several method descriptions (e.g. for `Package.activate`) are out
of date and reference a distinction between global activations and
views, they need to be updated
- [x] Update aspell package activations
The following improvements are made to cxx standard support
(e.g. compiler.cxxNN_flag functions) in compilers:
* Add cxx98_flag property
* Add support for throwing an exception when a flag is not supported (previously
if a flag was not supported the application was terminated with tty.die)
* The name of the flag associated with e.g. c++14 standard support changes for
different compiler versions (e.g. c++1y vs c++14). This makes a few corrections
on what flag to return for which version.
* Added tests to confirm that versions report expected flags for various c++
standards (or raise an exception for versions that don't provide a given cxx
standard)
Note that if a given cxx standard is the default, the associated flag property will
return ""; cxx98 is assumed to be the default standard so this is the behavior for
the associated property in the base compiler class.
Package changes:
* Improvements to the boost spec to take advantage of the improved standard
flag facility.
* Update the clingo spec to catch the new exception rather than look for an
empty flag to indicate non-support (which is not part of the compiler flag API)
* extend Prefix class with join() member to support dynamic directories
* add more tests for Prefix.join()
* more tests for Prefix.join()
* add docstring
* add example to docstring of Prefix class
* cleanup Prefix.join() tests
* use Prefix.join() in Packaging Guide
- Spack packages were originally expected to call `from spack import *`
themselves, but it has become difficult to manage imports in the
Spack core.
- the top-level namespace polluted by package symbols, and it's not
possible to avoid circular dependencies and unnecessary module loads in
the core, given all the stuff the packages need.
- This makes the top-level `spack` package essentially empty, save for a
version tuple and a version string, and `from spack import *` is now
essentially a no-op.
- The common routines and directives that packages need are now in
`spack.pkgkit`, and the import system forces packages to automatically
include this so that old packages that call `from spack import *`
will continue to work without modification.
- Since `from spack import *` is no longer required, we could consider
removing ``from spack import *`` from packages in the future and
shifting to ``from spack.pkgkit import *``, but we can wait a while to
do this.
- spack.util.lock behaves the same as llnl.util.lock, but Lock._lock and
Lock._unlock do nothing.
- can be disabled with a control variable.
- configuration options can enable/disable locking:
- `locks` option in spack configuration controls whether Spack will use filesystem locks or not.
- `-l` and `-L` command-line options can force-disable or force-enable locking.
- Spack will check for group- and world-writability before disabling
locks, and it will not allow a group- or world-writable instance to
have locks disabled.
- update documentation
- `spack.cmd.all_commands` does a directory listing on
`lib/spack/spack/cmd`, regardless of whether it is needed
- make this lazy so that the directory listing won't happen unless it's
necessary.
- spack.repository module is now spack.repo
- `spack.repo` is now `spack.repo.path()` and loaded lazily
- Added `spack.repo.get()` and `spack.repo.all_package_names()` as
convenience functions to simplify the new lazy interface.
- updated tests and code
- no longer require `spack_version` to be a Version (it isn't used that
way anyway)
- use a simple tuple `spack_version_info` with major, minor, patch
versions
- generate `spack_version` from the tuple