With this change we get the invariant that `mirror.fetch_url` and
`mirror.push_url` return valid URLs, even when the backing config
file is actually using (relative) paths with potentially `$spack` and
`$env` like variables.
Secondly it avoids expanding mirror path / URLs too early,
so if I say `spack mirror add name ./path`, it stays `./path` in my
config. When it's retrieved through MirrorCollection() we
exand it to say `file://<env dir>/path` if `./path` was set in an
environment scope.
Thirdly, the interface is simplified for the relevant buildcache
commands, so it's more like `git push`:
```
spack buildcache create [mirror] [specs...]
```
`mirror` is either a mirror name, a path, or a URL.
Resolving the relevant mirror goes as follows:
- If it contains either / or \ it is used as an anonymous mirror with
path or url.
- Otherwise, it's interpreted as a named mirror, which must exist.
This helps to guard against typos, e.g. typing `my-mirror` when there
is no such named mirror now errors with:
```
$ spack -e . buildcache create my-mirror
==> Error: no mirror named "my-mirror". Did you mean ./my-mirror?
```
instead of creating a directory in the current working directory. I
think this is reasonable, as the alternative (requiring that a local dir
exists) feels a bit pendantic in the general case -- spack is happy to
create the build cache dir when needed, saving a `mkdir`.
The old (now deprecated) format will still be available in Spack 0.20,
but is scheduled to be removed in 0.21:
```
spack buildcache create (--directory | --mirror-url | --mirror-name) [specs...]
```
This PR also touches `tmp_scope` in tests, because it didn't really
work for me, since spack fixes the possible --scope values once and
for all across tests, so tests failed when run out of order.
* extending example for buildcaches
I was attempting to create a local build cache from a directory, and I found the
docs for both buildcaches and mirrors, but did not connect the docs that the
url variable could be the local filesystem variable. I am extending the docs for
buildcaches with an example of creating and interacting with one on the filesystem
because I suspect other users will run into this need and possibly not find what
they are looking for.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
* adding as follows to spack mirror list
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
It is currently kind of confusing to the reader to distinguish spack buildcache install
and spack install, and it is not clear how to use a build cache once a mirror is added.
Hopefully this little big of description can help (and I hope I got it right!)
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
- [x] add `concretize.lp`, `spack.yaml`, etc. to licensed files
- [x] update all licensed files to say 2013-2021 using
`spack license update-copyright-year`
- [x] appease mypy with some additions to package.py that needed
for oneapi.py
- remove the old LGPL license headers from all files in Spack
- add SPDX headers to all files
- core and most packages are (Apache-2.0 OR MIT)
- a very small number of remaining packages are LGPL-2.1-only
* When creating a tar of a package for a build cache, symlinks are
preserved (the corresponding path in the newly-created tarfile will
be a symlink rather than a copy of the file)
* Dont add external packages to a build cache
* When installing from binary cache, don't create install prefix until
verification is complete
Adds the "buildcache" command to spack. The buildcache command is
used to create gpg signatures for archives of installed spack
packages; the signatures and archives are placed together in a
directory that can be added to a spack mirror. A user can retrieve
the archives from a mirror and verify their integrity using the
buildcache command. It is often the case that the user's Spack
instance is located in a different path compared to the Spack
instance used to generate the package archive and signature, so
this includes logic to relocate the RPATHs generated by Spack.