The `intel` compiler at versions > 20 is provided by the `intel-oneapi-compilers-classic`
package (a thin wrapper around the `intel-oneapi-compilers` package), and the `oneapi`
compiler is provided by the `intel-oneapi-compilers` package.
Prior to this work, neither of these compilers could be bootstrapped by Spack as part of
an install with `install_missing_compilers: True`.
Changes made to make these two packages bootstrappable:
1. The `intel-oneapi-compilers-classic` package includes a bin directory and symlinks
to the compiler executables, not just logical pointers in Spack.
2. Spack can look for bootstrapped compilers in directories other than `$prefix/bin`,
defined on a per-package basis
3. `intel-oneapi-compilers` specifies a non-default search directory for the
compiler executables.
4. The `spack.compilers` module now can make more advanced associations between
packages and compilers, not just simple name translations
5. Spack support for lmod hierarchies accounts for differences between package
names and the associated compiler names for `intel-oneapi-compilers/oneapi`,
`intel-oneapi-compilers-classic/intel@20:`, `llvm+clang/clang`, and
`llvm-amdgpu/rocmcc`.
- [x] full end-to-end testing
- [x] add unit tests
Compilers and linker optimize string constants for space by aliasing
them when one is a suffix of another. For gcc / binutils this happens
already at -O1, due to -fmerge-constants. This means that we have
to take care during relocation to always preserve a certain length
of the suffix of those prefixes that are C-strings.
In this commit we pick length 7 as a safe suffix length, assuming the
suffix is typically the 7 characters from the hash (i.e. random), so
it's unlikely to alias with any string constant used in the sources.
In general we now pad shortened strings from the left with leading
dir seperators, but in the case of C-strings that are much shorter
and don't share a common suffix (due to projections), we do allow
shrinking the C-string, appending a null, and retaining the old part
of the prefix.
Also when rewiring, we ensure that the new hash preserves the last
7 bytes of the old hash.
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
Currently, compiler flags and variants are inconsistent: compiler flags set for a
package are inherited by its dependencies, while variants are not. We should have these
be consistent by allowing for inheritance to be enabled or disabled for both variants
and compiler flags.
- [x] Make new (spec language) operators
- [x] Apply operators to variants and compiler flags
- [x] Conflicts currently result in an unsatisfiable spec
(i.e., you can't propagate two conflicting values)
What I propose is using two of the currently used sigils to symbolized that the variant
or compiler flag will be inherited:
Example syntax:
- `package ++variant`
enabled variant that will be propagated to dependencies
- `package +variant`
enabled variant that will NOT be propagated to dependencies
- `package ~~variant`
disabled variant that will be propagated to dependencies
- `package ~variant`
disabled variant that will NOT be propagated to dependencies
- `package cflags==True`
`cflags` will be propagated to dependencies
- `package cflags=True`
`cflags` will NOT be propagated to dependencies
Syntax for string-valued variants is similar to compiler flags.
This PR introduces breadth-first traversal, and moves depth-first traversal
logic out of Spec's member functions, into `traverse.py`.
It introduces a high-level API with three main methods:
```python
spack.traverse.traverse_edges(specs, kwargs...)
spack.traverse.traverse_nodes(specs, kwags...)
spack.traverse.traverse_tree(specs, kwargs...)
```
with the usual `root`, `order`, `cover`, `direction`, `deptype`, `depth`, `key`,
`visited` kwargs for the first two.
What's new is that `order="breadth"` is added for breadth-first traversal.
The lower level API is not exported, but is certainly useful for advanced use
cases. The lower level API includes visitor classes for direction reversal and
edge pruning, which can be used to create more advanced traversal methods,
especially useful when the `deptype` is not constant but depends on the node
or depth.
---
There's a couple nice use-cases for breadth-first traversal:
- Sometimes roots have to be handled differently (e.g. follow build edges of
roots but not of deps). BFS ensures that root nodes are always discovered at
depth 0, instead of at any depth > 1 as a dep of another root.
- When printing a tree, it would be nice to reduce indent levels so it fits in the
terminal, and ensure that e.g. `zlib` is not printed at indent level 10 as a
dependency of a build dep of a build dep -- rather if it's a direct dep of my
package, I wanna see it at depth 1. This basically requires one breadth-first
traversal to construct a tree, which can then be printed with depth-first traversal.
- In environments in general, it's sometimes inconvenient to have a double
loop: first over the roots then over each root's deps, and maintain your own
`visited` set outside. With BFS, you can simply init the queue with the
environment root specs and it Just Works. [Example here](3ec7304699/lib/spack/spack/environment/environment.py (L1815-L1816))
Currently, many tests hardcode to older versions of gcc for comparisons of
concretization among compiler versions. Those versions are too old to concretize for
`aarch64`-family targets, which leads to failing tests on `aarch64`.
This PR fixes those tests by updating the compiler versions used for testing.
Currently, many tests hardcode the expected architecture result in concretization to the
`x86_64` family of architectures.
This PR generalizes the tests that can be generalized, to cover multiple architecture
families. For those that test specific relationships among `x86_64`-family targets, it
ensures that concretization uses the `x86_64`-family targets in those cases.
Currently, many tests rely on the fact that `AutotoolsPackage` imposes no dependencies
on the inheriting package. That is not true on `aarch64`-family architectures.
This PR ensures that the fact `AutotoolsPackage` on `aarch64` pulls in a dependency on
`gnuconfig` is ignored when testing for the appropriate relationships among dependencies
Additionally, 5 tests currently prompt the user for input when `gpg` is available in the
user's path. This PR fixes that issue. And 7 tests fail currently when the user has a
yubikey available. This PR fixes the incorrect gpg argument causing those issues.
This commit extends the DSL that can be used in packages
to allow declaring that a package uses different build-systems
under different conditions.
It requires each spec to have a `build_system` single valued
variant. The variant can be used in many context to query, manipulate
or select the build system associated with a concrete spec.
The knowledge to build a package has been moved out of the
PackageBase hierarchy, into a new Builder hierarchy. Customization
of the default behavior for a given builder can be obtained by
coding a new derived builder in package.py.
The "run_after" and "run_before" decorators are now applied to
methods on the builder. They can also incorporate a "when="
argument to specify that a method is run only when certain
conditions apply.
For packages that do not define their own builder, forwarding logic
is added between the builder and package (methods not found in one
will be retrieved from the other); this PR is expected to be fully
backwards compatible with unmodified packages that use a single
build system.
Scan the text files for relocatable prefixes *before* creating a tarball,
to reduce the amount of work to be done during install from binary
cache.
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
Currently, module changes from `setup_dependent_package` are applied only to the module of the package class, but not to any parent classes' modules between the package class module and `spack.package_base`.
In this PR, we create a custom class to accumulate module changes, and apply those changes to each class that requires it. This design allows us to code for a single module, while applying the changes to multiple modules as needed under the hood, without requiring the user to reason about package inheritance.
Add a post-install step which runs (only) on Windows to modify an
install prefix, adding symlinks to all dependency libraries.
Windows does not have the same concept of RPATHs as Linux, but when
resolving symbols will check the local directory for dependency
libraries; by placing a symlink to each dependency library in the
directory with the library that needs it, the package can then
use all Spack-built dependencies.
Note:
* This collects dependency libraries based on Package.rpath, which
includes only direct link dependencies
* There is no examination of libraries to check what dependencies
they require, so all libraries of dependencies are symlinked
into any directory of the package which contains libraries
Ensure that build tools with module-level commands in spack use
the version built as part of their build graph if one exists.
This is now also required for mesa, scons, cmake and ctest, out
of graph versions of these tools in path will not be found unless
added as an external.
This bug appeared because a new version of rocprim needs cmake
3.16, while I have 3.14 in my path I had added an external for
cmake 3.20 to the dag, but 3.14 was still used to configure
rocprim causing it to fail. As far as I can tell, all the build
tools added in build_environment.py had this problem, despite the
fact that they should have been resolving these tools by name
with a path search and find the one in the dag that way. I'm
still investigating why the path searching and Executable logic
didn't do it, but this makes three of the build systems much more
explicit, and leaves only gmake and ninja as dependencies from
out in the system while ensuring the version in the dag is used
if there is one.
The additional sqlite version is to perturb the hash of python to
work around a relocation bug which will be fixed in a subsequent
PR.
The current use of git ref's as a version requires a search algorithm to pick the right matching version based on the tags in the git history of the package.
This is less than ideal for the use case where users already know the specific version they want the git ref to be associated with. This PR makes a new version syntax [package]@[ref]=[version] to allow the users to specify the exact hash they wish to use.
Black will automatically fix a lot of the exceptions we previously allowed for
directives, so we don't need them in our custom `flake8_formatter` anymore.
- [x] remove `E501` (long line) exceptions for directives from `flake8_formatter`,
as they won't help us now.
- [x] Refine exceptions for long URLs in the `flake8_formatter`.
- [x] Adjust the mock `flake8-package` to exhibit the exceptions we still allow.
- [x] Update style tests for new `flake8-package`.
- [x] Blacken style test.
Many noqa's in the code are no longer necessary now that the column limit is 99
characters. Others can easily be eliminated, and still more can just be made more
specific if they do not have to do with line length.
The only E501's still in the code are in the tests for `spack.util.path` and the tests
for `spack style`.
The goal of this PR is to make clearer where we need a package object in Spack as opposed to a package class.
We currently instantiate a lot of package objects when we could make do with a class. We should use the class
when we only need metadata, and we should only instantiate and us an instance of `PackageBase` at build time.
Modifications:
- [x] Remove the `spack.repo.get` convenience function (which was used in many places, and not really needed)
- [x] Use `spack.repo.path.get_pkg_class` wherever possible
- [x] Try to route most of the need for `spack.repo.path.get` through `Spec.package`
- [x] Introduce a non-data descriptor, that can be used as a decorator, to have "class level properties"
- [x] Refactor unit tests that had to be modified to reduce code duplication
- [x] `Spec.package` and `Repo.get` now require a concrete spec as input
- [x] Remove `RepoPath.all_packages` and `Repo.all_packages`
Explicitly import package utilities in all packages, and corresponding fallout.
This includes:
* rename `spack.package` to `spack.package_base`
* rename `spack.pkgkit` to `spack.package`
* update all packages in builtin, builtin_mock and tutorials to include `from spack.package import *`
* update spack style
* ensure packages include the import
* automatically add the new import and remove any/all imports of `spack` and `spack.pkgkit`
from packages when using `--fix`
* add support for type-checking packages with mypy when SPACK_MYPY_CHECK_PACKAGES
is set in the environment
* fix all type checking errors in packages in spack upstream
* update spack create to include the new imports
* update spack repo to inject the new import, injection persists to allow for a deprecation period
Original message below:
As requested @adamjstewart, update all packages to use pkgkit. I ended up using isort to do this,
so repro is easy:
```console
$ isort -a 'from spack.pkgkit import *' --rm 'spack' ./var/spack/repos/builtin/packages/*/package.py
$ spack style --fix
```
There were several line spacing fixups caused either by space manipulation in isort or by packages
that haven't been touched since we added requirements, but there are no functional changes in here.
* [x] add config to isort to make sure this is maintained going forward
Currently, environments can either be concretized fully together or fully separately. This works well for users who create environments for interoperable software and can use `concretizer:unify:true`. It does not allow environments with conflicting software to be concretized for maximal interoperability.
The primary use-case for this is facilities providing system software. Facilities provide multiple MPI implementations, but all software built against a given MPI ought to be interoperable.
This PR adds a concretization option `concretizer:unify:when_possible`. When this option is used, Spack will concretize specs in the environment separately, but will optimize for minimal differences in overlapping packages.
* Add a level of indirection to root specs
This commit introduce the "literal" atom, which comes with
a few different "arities". The unary "literal" contains an
integer that id the ID of a spec literal. Other "literals"
contain information on the requests made by literal ID. For
instance zlib@1.2.11 generates the following facts:
literal(0,"root","zlib").
literal(0,"node","zlib").
literal(0,"node_version_satisfies","zlib","1.2.11").
This should help with solving large environments "together
where possible" since later literals can be now solved
together in batches.
* Add a mechanism to relax the number of literals being solved
* Modify spack solve to display the new criteria
Since the new criteria is above all the build criteria,
we need to modify the way we display the output.
Originally done by Greg in #27964 and cherry-picked
to this branch by the co-author of the commit.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* Inject reusable specs into the solve
Instead of coupling the PyclingoDriver() object with
spack.config, inject the concrete specs that can be
reused.
A method level function takes care of reading from
the store and the buildcache.
* spack solve: show output of multi-rounds
* add tests for best-effort coconcretization
* Enforce having at least a literal being solved
Co-authored-by: Greg Becker <becker33@llnl.gov>
With the original DAG hash, we did not store build dependencies in the database, but
with the full DAG hash, we do. Previously, we'd never tell the concretizer about build
dependencies of things used by hash, because we never had them. Now, we have to avoid
telling the concretizer about them, or they'll unnecessarily constrain build
dependencies for new concretizations.
- [x] Make database track all dependencies included in the `dag_hash`
- [x] Modify spec_clauses so that build dependency information is optional
and off by default.
- [x] `spack diff` asks `spec_clauses` for build dependencies for completeness
- [x] Modify `concretize.lp` so that reuse optimization doesn't affect fresh
installations.
- [x] Modify concretizer setup so that it does *not* prioritize installed versions
over package versions. We don't need this with reuse, so they're low priority.
- [x] Fix `test_installed_deps` for full hash and new concretizer (does not work
for old concretizer with full hash -- leave this for later if we need it)
- [x] Move `test_installed_deps` mock packages to `builtin.mock` for easier debugging
with `spack -m`.
- [x] Fix `test_reuse_installed_packages_when_package_def_changes` for full hash
This is an amended version of https://github.com/spack/spack/pull/24894 (reverted in https://github.com/spack/spack/pull/29603). https://github.com/spack/spack/pull/24894
broke all instances of `spack external find` (namely when it is invoked without arguments/options)
because it was mandating the presence of a file which most systems would not have.
This allows `spack external find` to proceed if that file is not present and adds tests for this.
- [x] Add a test which confirms that `spack external find` successfully reads a manifest file
if present in the default manifest path
--- Original commit message ---
Adds `spack external read-cray-manifest`, which reads a json file that describes a
set of package DAGs. The parsed results are stored directly in the database. A user
can see these installed specs with `spack find` (like any installed spec). The easiest
way to use them right now as dependencies is to run
`spack spec ... ^/hash-of-external-package`.
Changes include:
* `spack external read-cray-manifest --file <path/to/file>` will add all specs described
in the file to Spack's installation DB and will also install described compilers to the
compilers configuration (the expected format of the file is described in this PR as well including examples of the file)
* Database records now may include an "origin" (the command added in this PR
registers the origin as "external-db"). In the future, it is assumed users may want
to be able to treat installs registered with this command differently (e.g. they may
want to uninstall all specs added with this command)
* Hash properties are now always preserved when copying specs if the source spec
is concrete
* I don't think the hashes of installed-and-concrete specs should change and this
was the easiest way to handle that
* also specs that are concrete preserve their `.normal` property when copied
(external specs may mention compilers that are not registered, and without this
change they would fail in `normalize` when calling `validate_or_raise`)
* it might be this should only be the case if the spec was installed
- [x] Improve testing
- [x] Specifically mark DB records added with this command (so that users can do
something like "uninstall all packages added with `spack read-external-db`)
* This is now possible with `spack uninstall --all --origin=external-db` (this will
remove all specs added from manifest files)
- [x] Strip variants that are listed in json entries but don't actually exist for the package
* Allow packages to add a 'submodules' property that determines when ad-hoc Git-commit-based versions should initialize submodules
* add support for ad-hoc git-commit-based versions to instantiate submodules if the associated package has a 'submodules' property and it indicates this should happen for the associated spec
* allow Package-level submodule request to influence all explicitly-defined version() in the Package
* skip test on windows which fails because of long paths
Spack added support in #24639 for ad-hoc Git-commit-hash-based
versions: A user can install a package x@hash, where X is a package
that stores its source code in a Git repository, and the hash refers
to a commit in that repository which is not recorded as an explicit
version in the package.py file for X.
A couple issues were found relating to this:
* If an environment defines an alternative package repo (i.e. with
repos.yaml), and spack.yaml contains user Specs with ad-hoc
Git-commit-hash-based versions for packages in that repo,
then as part of retrieving the data needed for version comparisons
it will attempt to retrieve the package before the environment's
configuration is instantiated.
* The bookkeeping information added to compare ad-hoc git versions was
being stripped from Specs during concretization (such that user
Specs which succeeded before concretizing would then fail after)
This addresses the issues:
* The first issue is resolved by deferring access to the associated
Package until the versions are actually compared to one another.
* The second issue is resolved by ensuring that the Git bookkeeping
information is explicitly applied to Specs after they are concretized.
This also:
* Resolves an ambiguity in the mock_git_version_info fixture used to
create a tree of Git commits and provide a list where each index
maps to a known commit.
* Isolates the cache used for Git repositories in tests using the
mock_git_version_info fixture
* Adds a TODO which points out that if the remote Git repository
overwrites tags, that Spack will then fail when using
ad-hoc Git-commit-hash-based versions
Allow declaring possible values for variants with an associated condition. If the variant takes one of those values, the condition is imposed as a further constraint.
The idea of this PR is to implement part of the mechanisms needed for modeling [packages with multiple build-systems]( https://github.com/spack/seps/pull/3). After this PR the build-system directive can be implemented as:
```python
variant(
'build-system',
default='cmake',
values=(
'autotools',
conditional('cmake', when='@X.Y:')
),
description='...',
)
```
Modifications:
- [x] Allow conditional possible values in variants
- [x] Add a unit-test for the feature
- [x] Add documentation
* tests for rewiring pure specs to spliced specs
* relocate text, binaries, and links
* using llnl.util.symlink for windows compat.
Note: This does not include CLI hooks for relocation.
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
Reduces the number of stat calls to a bare minimum:
- Single pass over src prefixes
- Handle projection clashes in memory
Symlinked directories in the src prefixes are now conditionally
transformed into directories with symlinks in the dst dir. Notably
`intel-mkl`, `cuda` and `qt` has top-level symlinked directories that
previously resulted in empty directories in the view. We now avoid
cycles and possible exponential blowup by only expanding symlinks that:
- point to dirs deeper in the folder structure;
- are a fixed depth of 2.
The number of commit characters in patch files fetched from GitHub can change,
so we should use `full_index=1` to enforce full commit hashes (and a stable
patch `sha256`).
Similarly, URLs for branches like `master` don't give us stable patch files,
because branches are moving targets. Use specific tags or commits for those.
- [x] update all github patch URLs to use `full_index=1`
- [x] don't use `master` or other branches for patches
- [x] add an audit check and a test for `?full_index=1`
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Adds `spack external read-cray-manifest`, which reads a json file that describes a set of package DAGs. The parsed results are stored directly in the database. A user can see these installed specs with `spack find` (like any installed spec). The easiest way to use them right now as dependencies is to run `spack spec ... ^/hash-of-external-package`.
Changes include:
* `spack external read-cray-manifest --file <path/to/file>` will add all specs described in the file to Spack's installation DB and will also install described compilers to the compilers configuration (the expected format of the file is described in this PR as well including examples of the file)
* Database records now may include an "origin" (the command added in this PR registers the origin as "external-db"). In the future, it is assumed users may want to be able to treat installs registered with this command differently (e.g. they may want to uninstall all specs added with this command)
* Hash properties are now always preserved when copying specs if the source spec is concrete
* I don't think the hashes of installed-and-concrete specs should change and this was the easiest way to handle that
* also specs that are concrete preserve their `.normal` property when copied (external specs may mention compilers that are not registered, and without this change they would fail in `normalize` when calling `validate_or_raise`)
* it might be this should only be the case if the spec was installed
- [x] Improve testing
- [x] Specifically mark DB records added with this command (so that users can do something like "uninstall all packages added with `spack read-external-db`)
* This is now possible with `spack uninstall --all --origin=external-db` (this will remove all specs added from manifest files)
- [x] Strip variants that are listed in json entries but don't actually exist for the package
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
CMake - Windows Bootstrap (#25825)
Remove hardcoded cmake compiler (#26410)
Revert breaking cmake changes
Ensure no autotools on Windows
Perl on Windows (#26612)
Python source build windows (#26313)
Reconfigure sysconf for Windows
Python2.6 compatibility
Fxixup new sbang tests for windows
Ruby support (#28287)
Add NASM support (#28319)
Add mock Ninja package for testing
fixes#29446
The new setup_*_environment functions have been falling back
to calling the old functions and warn the user since #11115.
This commit removes the fallback behavior and any use of:
- setup_environment
- setup_dependent_environment
in the codebase
* Add sticky variants
* Add unit tests for sticky variants
* Add documentation for sticky variants
* Revert "Revert 19736 because conflicts are avoided by clingo by default (#26721)"
This reverts commit 33ef7d57c1.
* Add stickiness to "allow-unsupported-compiler"
* Use pip to bootstrap pip
* Bootstrap wheel from source
* Update PythonPackage to install using pip
* Update several packages
* Add wheel as base class dep
* Build phase no longer exists
* Add py-poetry package, fix py-flit-core bootstrapping
* Fix isort build
* Clean up many more packages
* Remove unused import
* Fix unit tests
* Don't directly run setup.py
* Typo fix
* Remove unused imports
* Fix issues caught by CI
* Remove custom setup.py file handling
* Use PythonPackage for installing wheels
* Remove custom phases in PythonPackages
* Remove <phase>_args methods
* Remove unused import
* Fix various packages
* Try to test Python packages directly in CI
* Actually run the pipeline
* Fix more packages
* Fix mappings, fix packages
* Fix dep version
* Work around bug in concretizer
* Various concretization fixes
* Fix gitlab yaml, packages
* Fix typo in gitlab yaml
* Skip more packages that fail to concretize
* Fix? jupyter ecosystem concretization issues
* Solve Jupyter concretization issues
* Prevent duplicate entries in PYTHONPATH
* Skip fenics-dolfinx
* Build fewer Python packages
* Fix missing npm dep
* Specify image
* More package fixes
* Add backends for every from-source package
* Fix version arg
* Remove GitLab CI stuff, add py-installer package
* Remove test deps, re-add install_options
* Function declaration syntax fix
* More build fixes
* Update spack create template
* Update PythonPackage documentation
* Fix documentation build
* Fix unit tests
* Remove pip flag added only in newer pip
* flux: add explicit dependency on jsonschema
* Update packages that have been added since this was branched off of develop
* Move Python 2 deprecation to a separate PR
* py-neurolab: add build dep on py-setuptools
* Use wheels for pip/wheel
* Allow use of pre-installed pip for external Python
* pip -> python -m pip
* Use python -m pip for all packages
* Fix py-wrapt
* Add both platlib and purelib to PYTHONPATH
* py-pyyaml: setuptools is needed for all versions
* py-pyyaml: link flags aren't needed
* Appease spack audit packages
* Some build backend is required for all versions, distutils -> setuptools
* Correctly handle different setup.py filename
* Use wheels for py-tomli to avoid circular dep on py-flit-core
* Fix busco installation procedure
* Clarify things in spack create template
* Test other Python build backends
* Undo changes to busco
* Various fixes
* Don't test other backends
A common question from users has been how to model variants
that are new in new versions of a package, or variants that are
dependent on other variants. Our stock answer so far has been
an unsatisfying combination of "just have it do nothing in the old
version" and "tell Spack it conflicts".
This PR enables conditional variants, on any spec condition. The
syntax is straightforward, and matches that of previous features.
When relocating a binary distribution, Spack only checks files to see
if they are a link that needs to be relocated. Directories can be
such links as well, however, and need to undergo the same checks
and potential relocation.
* Speed-up environment concretization with a process pool
We can exploit the fact that the environment is concretized
separately and use a pool of processes to concretize it.
* Add module spack.util.parallel
Module includes `pool` and `parallel_map` abstractions,
along with implementation details for both.
* Add a new hash type to pass specs across processes
* Add tty msg with concretization time
Using the Spec.constrain method doesn't work since it might
trigger a repository lookup which could break our directives
and triggers a circular import error.
To fix that we introduce a function to merge abstract anonymous
specs, based only on package names, which does not perform any
lookup in the repository.
The buildcache is now extracted in a temporary folder within the current store,
moved to its final place and relocated.
"spack clean -s" has been extended to also clean the temporary extraction directory.
Add hardlinks with absolute paths for libraries in the corge, garply and quux packages
to detect incorrect handling of hardlinks in tests.
The ASP-based solver maximizes the number of values in multi-valued
variants (if other higher order constraints are met), to avoid cases
where only a subset of the values that have been specified on the
command line or imposed by another constraint are selected.
Here we swap the priority of this optimization target with the
selection of the default providers, to avoid unexpected results
like the one in #26598
The `spack.architecture` module contains an `Arch` class that is very similar to `spack.spec.ArchSpec` but points to platform, operating system and target objects rather than "names". There's a TODO in the class since 2016:
abb0f6e27c/lib/spack/spack/architecture.py (L70-L75)
and this PR basically addresses that. Since there are just a few places where the `Arch` class was used, here we query the relevant platform objects where they are needed directly from `spack.platforms`. This permits to clean the code from vestigial logic.
Modifications:
- [x] Remove the `spack.architecture` module and replace its use by `spack.platforms`
- [x] Remove unneeded tests
* Use gnuconfig package for config file replacement
Currently the autotools build system tries to pick up config.sub and
config.guess files from the system (in /usr/share) on arm and power.
This is introduces an implicit system dependency which we can avoid by
distributing config.guess and config.sub files in a separate package,
such as the new `gnuconfig` package which is very lightweight/text only
(unlike automake where we previously pulled these files from as a
backup). This PR adds `gnuconfig` as an unconditional build dependency
for arm and power archs.
In case the user needs a system version of config.sub and config.guess,
they are free to mark `gnuconfig` as an external package with the prefix
pointing to the directory containing the config files:
```yaml
gnuconfig:
externals:
- spec: gnuconfig@master
prefix: /tmp/tmp.ooBlkyAKdw/lol
buildable: false
```
Apart from that, this PR gives some better instructions for users when
replacing config files goes wrong.
* Mock needs this package too now, because autotools adds a depends_on
* Add documentation
* Make patch_config_files a prop, fix the docs, add integrations tests
* Make macOS happy
This will allow a user to (from anywhere a Spec is parsed including both name and version) refer to a git commit in lieu of
a package version, and be able to make comparisons with releases in the history based on commits (or with other commits). We do this by way of:
- Adding a property, is_commit, to a version, meaning I can always check if a version is a commit and then change some action.
- Adding an attribute to the Version object which can lookup commits from a git repo and find the last known version before that commit, and the distance
- Construct new Version comparators, which are tuples. For normal versions, they are unchanged. For commits with a previous version x.y.z, d commits away, the comparator is (x, y, z, '', d). For commits with no previous version, the comparator is ('', d) where d is the distance from the first commit in the repo.
- Metadata on git commits is cached in the misc_cache, for quick lookup later.
- Git repos are cached as bare repos in `~/.spack/git_repos`
- In both caches, git repo urls are turned into file paths within the cache
If a commit cannot be found in the cached git repo, we fetch from the repo. If a commit is found in the cached metadata, we do not recompare to newly downloaded tags (assuming repo structure does not change). The cached metadata may be thrown out by using the `spack clean -m` option if you know the repo structure has changed in a way that invalidates existing entries. Future work will include automatic updates.
# Finding previous versions
Spack will search the repo for any tags that match the string of a version given by the `version` directive. Spack will also search for any tags that match `v + string` for any version string. Beyond that, Spack will search for tags that match a SEMVER regex (i.e., tags of the form x.y.z) and interpret those tags as valid versions as well. Future work will increase the breadth of tags understood by Spack
For each tag, Spack queries git to determine whether the tag is an ancestor of the commit in question or not. Spack then sorts the tags that are ancestors of the commit by commit-distance in the repo, and takes the nearest ancestor. The version represented by that tag is listed as the previous version for the commit.
Not all commits will find a previous version, depending on the package workflow. Future work may enable more tangential relationships between commits and versions to be discovered, but many commits in real world git repos require human knowledge to associate with a most recent previous version. Future work will also allow packages to specify commit/tag/version relationships manually for such situations.
# Version comparisons.
The empty string is a valid component of a Spack version tuple, and is in fact the lowest-valued component. It cannot be generated as part of any valid version. These two characteristics make it perfect for delineating previous versions from distances. For any version x.y.z, (x, y, z, '', _) will be less than any "real" version beginning x.y.z. This ensures that no distance from a release will cause the commit to be interpreted as "greater than" a version which is not an ancestor of it.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This is a major rework of Spack's core core `spec.yaml` metadata format. It moves from `spec.yaml` to `spec.json` for speed, and it changes the format in several ways. Specifically:
1. The spec format now has a `_meta` section with a version (now set to version `2`). This will simplify major changes like this one in the future.
2. The node list in spec dictionaries is no longer keyed by name. Instead, it is a list of records with no required key. The name, hash, etc. are fields in the dictionary records like any other.
3. Dependencies can be keyed by any hash (`hash`, `full_hash`, `build_hash`).
4. `build_spec` provenance from #20262 is included in the spec format. This means that, for spliced specs, we preserve the *full* provenance of how to build, and we can reproduce a spliced spec from the original builds that produced it.
**NOTE**: Because we have switched the spec format, this PR changes Spack's hashing algorithm. This means that after this commit, Spack will think a lot of things need rebuilds.
There are two major benefits this PR provides:
* The switch to JSON format speeds up Spack significantly, as Python's builtin JSON implementation is orders of magnitude faster than YAML.
* The new Spec format will soon allow us to represent DAGs with potentially multiple versions of the same dependency -- e.g., for build dependencies or for compilers-as-dependencies. This PR lays the necessary groundwork for those features.
The old `spec.yaml` format continues to be supported, but is now considered a legacy format, and Spack will opportunistically convert these to the new `spec.json` format.
* tests: make `spack url [stats|summary]` work on mock packages
Mock packages have historically had mock hashes, but this means they're also invalid
as far as Spack's hash detection is concerned.
- [x] convert all hashes in mock package to md5 or sha256
- [x] ensure that all mock packages have a URL
- [x] ignore some special cases with multiple VCS fetchers
* url stats: add `--show-issues` option
`spack url stats` tells us how many URLs are using what protocol, type of checksum,
etc., but it previously did not tell us which packages and URLs had the issues. This
adds a `--show-issues` option to show URLs with insecure (`http`) URLs or `md5` hashes
(which are now deprecated by NIST).
This commit adds a regression test for version selection
with preferences in `packages.yaml`. Before PR 25585 we
used negative weights in a minimization to select the
optimal version. This may lead to situations where a
dependency may make the version score of dependents
"better" if it is preferred in packages.yaml.
Preferred providers had a non-zero weight because in an earlier formulation of the logic program that was needed to prefer external providers over default providers. With the current formulation for externals this is not needed anymore, so we can give a weight of zero to both default choices and providers that are externals. _Using zero ensures that we don't introduce any drift towards having less providers, which was happening when minimizing positive weights_.
Modifications:
- [x] Default weight for providers starts at 0 (instead of 10, needed before to prefer externals)
- [x] Rules to compute the `provider_weight` have been refactored. There are multiple possible weights for a given `Virtual`. Only one gets selected by the solver (the one that minimizes the objective function).
- [x] `provider_weight` are now accounting for each different `Virtual`. Before there was a single weight per provider, even if the package was providing multiple virtuals.
* Give preferred providers a weight of zero
Preferred providers had a non-zero weight because in an earlier
formulation of the logic program that was needed to prefer
external providers over default providers.
With the current formulation for externals this is not needed anymore,
so we can give a weight of zero to default choices. Using zero
ensures that we don't introduce any drift towards having
less providers, which was happening when minimizing positive weights.
* Simplify how we compute weights for providers
Rewrite rules so that specific events (i.e. being
an external) unlock the possibility to use certain
weights. The weight being considered is then selected
by the minimization process to be the one that gives
the best score.
* Allow providers to have different weights for different virtuals
Before this change we didn't differentiate providers based on
the virtual they provide, which meant that packages providing
more than one virtual had nonetheless a single weight.
With this change there will be a weight per virtual.
* fix remaining flake8 errors
* imports: sort imports everywhere in Spack
We enabled import order checking in #23947, but fixing things manually drives
people crazy. This used `spack style --fix --all` from #24071 to automatically
sort everything in Spack so PR submitters won't have to deal with it.
This should go in after #24071, as it assumes we're using `isort`, not
`flake8-import-order` to order things. `isort` seems to be more flexible and
allows `llnl` mports to be in their own group before `spack` ones, so this
seems like a good switch.
This PR adds a context manager that permit to group the common part of a `when=` argument and add that to the context:
```python
class Gcc(AutotoolsPackage):
with when('+nvptx'):
depends_on('cuda')
conflicts('@:6', msg='NVPTX only supported in gcc 7 and above')
conflicts('languages=ada')
conflicts('languages=brig')
conflicts('languages=go')
```
The above snippet is equivalent to:
```python
class Gcc(AutotoolsPackage):
depends_on('cuda', when='+nvptx')
conflicts('@:6', when='+nvptx', msg='NVPTX only supported in gcc 7 and above')
conflicts('languages=ada', when='+nvptx')
conflicts('languages=brig', when='+nvptx')
conflicts('languages=go', when='+nvptx')
```
which needs a repetition of the `when='+nvptx'` argument. The context manager might help improving readability and permits to group together directives related to the same semantic aspect (e.g. all the directives needed to model the behavior of `gcc` when `+nvptx` is active).
Modifications:
- [x] Added a `when` context manager to be used with package directives
- [x] Add unit tests and documentation for the new feature
- [x] Modified `cp2k` and `gcc` to show the use of the context manager
This commit fixes a subtle bug that may occur when
a package is a "possible_provider" of a virtual but
no "provides_virtual" can be deduced. In that case
the cardinality constraint on "provides_virtual"
may arbitrarily assign a package the role of provider
even if the constraints for it to be one are not fulfilled.
The fix reworks the logic around three concepts:
- "possible_provider": a package may provide a virtual if some constraints are met
- "provides_virtual": a package meet the constraints to provide a virtual
- "provider": a package selected to provide a virtual
Spack packages can now fetch versions from CVS repositories. Note
this fetch mechanism is unsafe unless using :extssh:. Most public
CVS repositories use an insecure protocol implemented as part of CVS.
Here we are adding an install_times.json into the spack install metadata folder.
We record a total, global time, along with the times for each phase. The type
of phase or install start / end is included (e.g., build or fail)
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Minimizing compiler mismatches in the DAG and preferring newer
versions of packages are now higher priority than trying to use as
many default values as possible in multi-valued variants.
fixes#22351
The ASP-based solver now accounts for the presence
in the DAG of deprecated versions and tries to minimize
their number at highest priority.
Variants explicitly set in an abstract root spec are considered
as defaults for the package they refer to, and they override
what is in packages.yaml and in package.py. This is relevant
only for multi-valued variants, where a constraint may extend
an already default value.
fixes#22565
This change enforces the uniqueness of the version_weight
atom per node(Package) in the DAG. It does so by applying
FTSE and adding an extra layer of indirection with the
possible_version_weight/2 atom.
Before this change it may have happened that for the same
node two different version_weight/2 were in the answer set,
each of which referred to a different spec with the same
version, and their weights would sum up.
This lead to unexpected result like preferring to build a
new version of an external if the external version was
older.
* ASP-based solver: avoid adding values to variants when they're set
fixes#22533fixes#21911
Added a rule that prevents any value to slip in a variant when the
variant is set explicitly. This is relevant for multi-valued variants,
in particular for those that have disjoint sets of values.
* Ensure disjoint sets have a clear semantics for external packages
When using an external package with the old concretizer, all
dependencies of that external package were severed. This was not
performed bidirectionally though, so for an external package W with
a dependency on Z, if some other package Y depended on Z, Z could
still pull properties (e.g. compiler) from W since it was not
severed as a parent dependency.
This performs the severing bidirectionally, and adds tests to
confirm expected behavior when using config from DAG-adjacent
packages during concretization.
* Spec.splice feature
Construct a new spec with a dependency swapped out. Currently can only swap dependencies of the same name, and can only apply to concrete specs.
This feature is not yet attached to any install functionality, but will eventually allow us to "rewire" a package to depend on a different set of dependencies.
Docstring is reformatted for git below
Splices dependency "other" into this ("target") Spec, and return the result as a concrete Spec.
If transitive, then other and its dependencies will be extrapolated to a list of Specs and spliced in accordingly.
For example, let there exist a dependency graph as follows:
T
| \
Z<-H
In this example, Spec T depends on H and Z, and H also depends on Z.
Suppose, however, that we wish to use a differently-built H, known as H'. This function will splice in the new H' in one of two ways:
1. transitively, where H' depends on the Z' it was built with, and the new T* also directly depends on this new Z', or
2. intransitively, where the new T* and H' both depend on the original Z.
Since the Spec returned by this splicing function is no longer deployed the same way it was built, any such changes are tracked by setting the build_spec to point to the corresponding dependency from the original Spec.
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
* Improve error message for inconsistencies in package.py
Sometimes directives refer to variants that do not exist.
Make it such that:
1. The name of the variant
2. The name of the package which is supposed to have
such variant
3. The name of the package making this assumption
are all printed in the error message for easier debugging.
* Add unit tests
Keep spack.store.store and spack.store.db consistent in unit tests
* Remove calls to monkeypatch for spack.store.store and spack.store.db:
tests that used these called one or the other, which lead to
inconsistencies (the tests passed regardless but were fragile as a
result)
* Fixtures making use of monkeypatch with mock_store now use the
updated use_store function, which sets store.store and store.db
consistently
* subprocess_context.TestState now transfers the serializes and
restores spack.store.store (without the monkeypatch changes this
would have created inconsistencies)
* sbang pushed back to callers;
star moved to util.lang
* updated unit test
* sbang test moved; local tests pass
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
fixes#20736
Before this one line fix we were erroneously deducing
that dependency conditions hold even if a package
was external.
This may result in answer sets that contain imposed
conditions on a node without the node being present
in the DAG, hence #20736.
- [x] add `concretize.lp`, `spack.yaml`, etc. to licensed files
- [x] update all licensed files to say 2013-2021 using
`spack license update-copyright-year`
- [x] appease mypy with some additions to package.py that needed
for oneapi.py
Track all the variant values mentioned when emitting constraints, validate them
and emit a fact that allows them as possible values.
This modification ensures that open-ended variants (variants accepting any string
or any integer) are projected to the finite set of values that are relevant for this
concretization.
* [cmd versions] add spack versions --new flag to only fetch new versions
format
[cmd versions] rename --latest to --newest and add --remote-only
[cmd versions] add tests for --remote-only and --new
format
[cmd versions] update shell tab completion
[cmd versions] remove test for --remote-only --new which gives empty output
[cmd versions] final rename
format
* add brillig mock package
* add test for spack versions --new
* [brillig] format
* [versions] increase test coverage
* Update lib/spack/spack/cmd/versions.py
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* Update lib/spack/spack/cmd/versions.py
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>