Change default naming scheme for tcl modules for a more user-friendly
experience.
Change from flat projection to "per software name" projection.
Flat naming scheme restrains module selection capabilities. The
`{name}/{version}...` scheme make possible to use user-friendly
mechanisms:
* implicit defaults (`module load git`)
* extended default (`module load git/2`)
* advanced version specifiers (`module load git@2:`)
If a user does not explicitly `--force` the concretization of an entire environment,
Spack will try to reuse the concrete specs that are already in the lockfile.
---------
Co-authored-by: becker33 <becker33@users.noreply.github.com>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This is a refactor of Spack's stand-alone test process to be more spack- and pytest-like.
It is more spack-like in that test parts are no longer "hidden" in a package's run_test()
method and pytest-like in that any package method whose name starts test_
(i.e., a "test" method) is a test part. We also support the ability to embed test parts in a
test method when that makes sense.
Test methods are now implicit test parts. The docstring is the purpose for the test part.
The name of the method is the name of the test part. The working directory is the active
spec's test stage directory. You can embed test parts using the test_part context manager.
Functionality added by this commit:
* Adds support for multiple test_* stand-alone package test methods, each of which is
an implicit test_part for execution and reporting purposes;
* Deprecates package use of run_test();
* Exposes some functionality from run_test() as optional helper methods;
* Adds a SkipTest exception that can be used to flag stand-alone tests as being skipped;
* Updates the packaging guide section on stand-alone tests to provide more examples;
* Restores the ability to run tests "inherited" from provided virtual packages;
* Prints the test log path (like we currently do for build log paths);
* Times and reports the post-install process (since it can include post-install tests);
* Corrects context-related error message to distinguish test recipes from build recipes.
Add a "require" directive to packages, which functions exactly like
requirements specified in packages.yaml (uses the same fact-generation
logic); update both to allow making the requirement conditional.
* Packages may now use "require" to add constraints. This can be useful
for something like "require(%gcc)" (where before we had to add a
conflict for every compiler except gcc).
* Requirements (in packages.yaml or in a "require" directive) can be
conditional on a spec, e.g. "require(%gcc, when=@1.0.0)" (version
1.0.0 can only build with gcc).
* Requirements may include a message which clarifies why they are needed.
The concretizer assigns a high priority to errors which generate these
messages (in particular over errors for unsatisfied requirements that
do not produce messages, but also over a number of more-generic
errors).
## Version types, parsing and printing
- The version classes have changed: `VersionBase` is removed, there is now a
`ConcreteVersion` base class. `StandardVersion` and `GitVersion` both inherit
from this.
- The public api (`Version`, `VersionRange`, `ver`) has changed a bit:
1. `Version` produces either `StandardVersion` or `GitVersion` instances.
2. `VersionRange` produces a `ClosedOpenRange`, but this shouldn't affect the user.
3. `ver` produces any of `VersionList`, `ClosedOpenRange`, `StandardVersion`
or `GitVersion`.
- No unexpected type promotion, so that the following is no longer an identity:
`Version(x) != VersionRange(x, x)`.
- `VersionList.concrete` now returns a version if it contains only a single element
subtyping `ConcreteVersion` (i.e. `StandardVersion(...)` or `GitVersion(...)`)
- In version lists, the parser turns `@x` into `VersionRange(x, x)` instead
of `Version(x)`.
- The above also means that `ver("x")` produces a range, whereas
`ver("=x")` produces a `StandardVersion`. The `=` is part of _VersionList_
syntax.
- `VersionList.__str__` now outputs `=x.y.z` for specific version entries,
and `x.y.z` as a short-hand for ranges `x.y.z:x.y.z`.
- `Spec.format` no longer aliases `{version}` to `{versions}`, but pulls the
concrete version out of the list and prints that -- except when the list is
is not concrete, then is falls back to `{versions}` to avoid a pedantic error.
For projections of concrete specs, `{version}` should be used to render
`1.2.3` instead of `=1.2.3` (which you would get with `{versions}`).
The default `Spec` format string used in `Spec.__str__` now uses
`{versions}` so that `str(Spec(string)) == string` holds.
## Changes to `GitVersion`
- `GitVersion` is a small wrapper around `StandardVersion` which enriches it
with a git ref. It no longer inherits from it.
- `GitVersion` _always_ needs to be able to look up an associated Spack version
if it was not assigned (yet). It throws a `VersionLookupError` whenever `ref_version`
is accessed but it has no means to look up the ref; in the past Spack would
not error and use the commit sha as a literal version, which was incorrect.
- `GitVersion` is never equal to `StandardVersion`, nor is satisfied by it. This
is such that we don't lose transitivity. This fixes the following bug on `develop`
where `git_version_a == standard_version == git_version_b` does not imply
`git_version_a == git_version_b`. It also ensures equality always implies equal
hash, which is also currently broken on develop; inclusion tests of a set of
versions + git versions would behave differently from inclusion tests of a
list of the same objects.
- The above means `ver("ref=1.2.3) != ver("=1.2.3")` could break packages that branch
on specific versions, but that was brittle already, since the same happens with
externals: `pkg@1.2.3-external` suffixes wouldn't be exactly equal either. Instead,
those checks should be `x.satisfies("@1.2.3")` which works both for git versions and
custom version suffixes.
- `GitVersion` from commit will now print as `<hash>=<version>` once the
git ref is resolved to a spack version. This is for reliability -- version is frozen
when added to the database and queried later. It also improves performance
since there is no need to clone all repos of all git versions after `spack clean -m`
is run and something queries the database, triggering version comparison, such
as potentially reuse concretization.
- The "empty VerstionStrComponent trick" for `GitVerison` is dropped since it wasn't
representable as a version string (by design). Instead, it's replaced by `git`,
so you get `1.2.3.git.4` (which reads 4 commits after a tag 1.2.3). This means
that there's an edge case for version schemes `1.1.1`, `1.1.1a`, since the
generated git version `1.1.1.git.1` (1 commit after `1.1.1`) compares larger
than `1.1.1a`, since `a < git` are compared as strings. This is currently a
wont-fix edge case, but if really required, could be fixed by special casing
the `git` string.
- Saved, concrete specs (database, lock file, ...) that only had a git sha as their
version, but have no means to look the effective Spack version anymore, will
now see their version mapped to `hash=develop`. Previously these specs
would always have their sha literally interpreted as a version string (even when
it _could_ be looked up). This only applies to databases, lock files and spec.json
files created before Spack 0.20; after this PR, we always have a Spack version
associated to the relevant GitVersion).
- Fixes a bug where previously `to_dict` / `from_dict` (de)serialization would not
reattach the repo to the GitVersion, causing the git hash to be used as a literal
(bogus) version instead of the resolved version. This was in particularly breaking
version comparison in the build process on macOS/Windows.
## Installing or matching specific versions
- In the past, `spack install pkg@3.2` would install `pkg@=3.2` if it was a
known specific version defined in the package, even when newer patch releases
`3.2.1`, `3.2.2`, `...` were available. This behavior was only there because
there was no syntax to distinguish between `3.2` and `3.2.1`. Since there is
syntax for this now through `pkg@=3.2`, the old exact matching behavior is
removed. This means that `spack install pkg@3.2` constrains the `pkg` version
to the range `3.2`, and `spack install pkg@=3.2` constrains it to the specific
version `3.2`.
- Also in directives such as `depends_on("pkg@2.3")` and their when
conditions `conflicts("...", when="@2.3")` ranges are ranges, and specific
version matches require `@=2.3.`.
- No matching version: in the case `pkg@3.2` matches nothing, concretization
errors. However, if you run `spack install pkg@=3.2` and this version
doesn't exist, Spack will define it; this allows you to install non-registered
versions.
- For consistency, you can now do `%gcc@10` and let it match a configured
`10.x.y` compiler. It errors when there is no matching compiler.
In the past it was interpreted like a specific `gcc@=10` version, which
would get bootstrapped.
- When compiler _bootstrapping_ is enabled, `%gcc@=10.2.0` can be used to
bootstrap a specific compiler version.
## Other changes
- Externals, compilers, and develop spec definitions are backwards compatible.
They are typically defined as `pkg@3.2.1` even though they should be
saying `pkg@=3.2.1`. Spack now transforms `pkg@3` into `pkg@=3` in those cases.
- Finally, fix strictness of `version(...)` directive/declaration. It just does a simple
type check, and now requires strings/integers. Floats are not allowed because
they are ambiguous `str(3.10) == "3.1"`.
`spack buildcache create` is a misnomer cause it's the only way to push to
an existing buildcache (and it in fact calls binary_distribution.push).
Also we have `spack buildcache update-index` but for create the flag is
`--rebuild-index`, which is confusing (and also... why "rebuild"
something if the command is "create" in the first place, that implies it
wasn't there to begin with).
So, after this PR, you can use either
```
spack buildcache create --rebuild-index
```
or
```
spack buildcache push --update-index
```
Also, alias `spack buildcache rebuild-index` to `spack buildcache
update-index`.
- [x] Replace `version(ver, checksum=None, **kwargs)` signature with
`version(ver, checksum=None, *, sha256=..., ...)` explicitly listing all arguments.
- [x] Fix various issues in packages:
- `tags` instead of `tag`
- `default` instead of `preferred`
- `sha26` instead of `sha256`
- etc
Also, use `sha256=...` consistently.
Note: setting `sha256` currently doesn't validate the checksum length, so you could do
`sha256="a"*32` and it would get checked as `md5`... but that's something for another PR.
Other tools like git support `GIT_EDITOR` which takes higher precedence than the
standard `VISUAL` or `EDITOR` variables. This adds similar support for Spack, in the
`SPACK_EDITOR` env var.
- [x] consolidate editor code from hooks into `spack.util.editor`
- [x] add more editor tests
- [x] add support for `SPACK_EDITOR`
- [x] add a documentation section for controlling the editor and reference it
Other tools like git support `GIT_EDITOR` which takes higher precedence than the
standard `VISUAL` or `EDITOR` variables. This adds similar support for Spack, in the
`SPACK_EDITOR` env var.
- [x] consolidate editor code from hooks into `spack.util.editor`
- [x] add more editor tests
- [x] add support for `SPACK_EDITOR`
- [x] add a documentation section for controlling the editor and reference it
* CI: Fixup docs for bootstrap.
* CI: Add compatibility shim
* Add an update method for CI
Update requires manually renaming section to `ci`. After
this patch, updating and using the deprecated `gitlab-ci` section
should be possible.
* Fix typos in generate warnings
* Fixup CI schema validation
* Add unit tests for legacy CI
* Add deprecated CI stack for continuous testing
* Allow updating gitlab-ci section directly with env update
* Make warning give good advice for updating gitlab-ci
* Fix typo in CI name
* Remove white space
* Remove unneeded component of deprected-ci
- Update default image to Ubuntu 22.04 (previously was still Ubuntu 18.04)
- Optionally use depfiles to install the environment within the container
- Allow extending Dockerfile Jinja2 template
- Allow extending Singularity definition file Jinja2 template
- Deprecate previous options to add extra instructions
Since environment-modules has support for autoloading since 4.2,
and Spack-builds of it enable it by default, use the same autoload
default for tcl as lmod.
The `ignore` parameter was only used for `spack activate/deactivate`, and it isn't used
by Spack Environments which have their own handling of file conflicts. We should remove it.
Everything that handles `ignore=` was removed in #29317 and included in 0.19, when we
removed `spack activate` and `spack deactivate` in favor of environments. So all of these
usages removed here were already being ignored by Spack.
* CI configuration boilerplate reduction and refactor
Configuration:
- New notation for list concatenation (prepend/append)
- New notation for string concatenation (prepend/append)
- Break out configuration files for: ci.yaml, cdash.yaml, view.yaml
- Spack CI section refactored to improve self-consistency and
composability
- Scripts are now lists of lists and/or lists of strings
- Job attributes are now listed under precedence ordered list that are
composed/merged using Spack config merge rules.
- "service-jobs" are identified explicitly rather than as a batch
CI:
- Consolidate common, platform, and architecture configurations for all CI stacks into composable configuration files
- Make padding consistent across all stacks (256)
- Merge all package -> runner mappings to be consistent across all
stacks
Unit Test:
- Refactor CI module unit-tests for refactor configuration
Docs:
- Add docs for new notations in configuration.rst
- Rewrite docs on CI pipelines to be consistent with refactored CI
workflow
* Script verbose environ, dev bootstrap
* Port #35409
* Allow users to specify root env dir
Environments managed by spack have some advantages over anonymous Environments
but they are tucked away inside spack's directory tree. This PR gives
users the ability to specify where the environments should live.
See #32823
This is also taken as an opportunity to ensure that all references are to "managed environments",
rather than "named environments". Prior to this PR some references to the latter persisted.
Co-authored-by: Tom Scogland <scogland1@llnl.gov>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
* Style: black 23, skip magic trailing commas
* isort should use same line length as black
* Fix unused import
* Update version of black used in CI
* Update new packages
* Update new packages
fixes#34879
This commit adds a new maintainer directive,
which by default extend the list of maintainers
for a given package.
The directive is backward compatible with the current
practice of having a "maintainers" list declared at
the class level.
All packages with explicit Windows support can be found with
`spack list --tags=windows`.
This also removes the documentation which explicitly lists
supported packages on Windows (which is currently out of date and
is now unnecessary with the added tags).
Note that if a package does not appear in this list, it *may*
still build on Windows, but it likely means that no explicit
attempt has been made to support it.
Since SPACK_PACKAGE_IDS is now also "namespaced" with <prefix>, it makes
more sense to call the flag `--make-prefix` and alias the old flag
`--make-target-prefix` to it.
With the new variable [prefix/]SPACK_PACKAGE_IDS you can conveniently execute
things after each successful install.
For example push just-built packages to a buildcache
```
SPACK ?= spack
export SPACK_COLOR = always
MAKEFLAGS += -Orecurse
MY_BUILDCACHE := $(CURDIR)/cache
.PHONY: all clean
all: push
ifeq (,$(filter clean,$(MAKECMDGOALS)))
include env.mk
endif
# the relevant part: push has *all* example/push/<pkg identifier> as prereqs
push: $(addprefix example/push/,$(example/SPACK_PACKAGE_IDS))
$(SPACK) -e . buildcache update-index --directory $(MY_BUILDCACHE)
$(info Pushed everything, yay!)
# and each example/push/<pkg identifier> has the install target as prereq,
# and the body can use target local $(HASH) and $(SPEC) variables to do
# things, such as pushing to a build cache
example/push/%: example/install/%
@mkdir -p $(dir $@)
$(SPACK) -e . buildcache create --allow-root --only=package --unsigned --directory $(MY_BUILDCACHE) /$(HASH) # push $(SPEC)
@touch $@
spack.lock: spack.yaml
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-target-prefix example
clean:
rm -rf spack.lock env.mk example/
``
With this change we get the invariant that `mirror.fetch_url` and
`mirror.push_url` return valid URLs, even when the backing config
file is actually using (relative) paths with potentially `$spack` and
`$env` like variables.
Secondly it avoids expanding mirror path / URLs too early,
so if I say `spack mirror add name ./path`, it stays `./path` in my
config. When it's retrieved through MirrorCollection() we
exand it to say `file://<env dir>/path` if `./path` was set in an
environment scope.
Thirdly, the interface is simplified for the relevant buildcache
commands, so it's more like `git push`:
```
spack buildcache create [mirror] [specs...]
```
`mirror` is either a mirror name, a path, or a URL.
Resolving the relevant mirror goes as follows:
- If it contains either / or \ it is used as an anonymous mirror with
path or url.
- Otherwise, it's interpreted as a named mirror, which must exist.
This helps to guard against typos, e.g. typing `my-mirror` when there
is no such named mirror now errors with:
```
$ spack -e . buildcache create my-mirror
==> Error: no mirror named "my-mirror". Did you mean ./my-mirror?
```
instead of creating a directory in the current working directory. I
think this is reasonable, as the alternative (requiring that a local dir
exists) feels a bit pendantic in the general case -- spack is happy to
create the build cache dir when needed, saving a `mkdir`.
The old (now deprecated) format will still be available in Spack 0.20,
but is scheduled to be removed in 0.21:
```
spack buildcache create (--directory | --mirror-url | --mirror-name) [specs...]
```
This PR also touches `tmp_scope` in tests, because it didn't really
work for me, since spack fixes the possible --scope values once and
for all across tests, so tests failed when run out of order.
`spack graph` has been reworked to use:
- Jinja templates
- builder objects to construct the template context when DOT graphs are requested.
This allowed to add a new colored output for DOT graphs that highlights both
the dependency types and the nodes that are needed at runtime for a given spec.
Currently, the Spack docs show documentation for submodules *before* documentation for
submodules on package doc pages. This means that if you put docs in `__init__.py` in
some package, the docs in there will be shown *after* the docs for all submodules of the
package instead of at the top as an intro to the package. See, e.g.,
[the lockfile docs](https://spack.readthedocs.io/en/latest/spack.environment.html#module-spack.environment),
which should be at the
[top of that page](https://spack.readthedocs.io/en/latest/spack.environment.html).
- [x] add the `--module-first` option to sphinx so that it generates module docs at top of page.
## Motivation
Our parser grew to be quite complex, with a 2-state lexer and logic in the parser
that has up to 5 levels of nested conditionals. In the future, to turn compilers into
proper dependencies, we'll have to increase the complexity further as we foresee
the need to add:
1. Edge attributes
2. Spec nesting
to the spec syntax (see https://github.com/spack/seps/pull/5 for an initial discussion of
those changes). The main attempt here is thus to _simplify the existing code_ before
we start extending it later. We try to do that by adopting a different token granularity,
and by using more complex regexes for tokenization. This allow us to a have a "flatter"
encoding for the parser. i.e., it has fewer nested conditionals and a near-trivial lexer.
There are places, namely in `VERSION`, where we have to use negative lookahead judiciously
to avoid ambiguity. Specifically, this parse is ambiguous without `(?!\s*=)` in `VERSION_RANGE`
and an extra final `\b` in `VERSION`:
```
@ 1.2.3 : develop # This is a version range 1.2.3:develop
@ 1.2.3 : develop=foo # This is a version range 1.2.3: followed by a key-value pair
```
## Differences with the previous parser
~There are currently 2 known differences with the previous parser, which have been added on purpose:~
- ~No spaces allowed after a sigil (e.g. `foo @ 1.2.3` is invalid while `foo @1.2.3` is valid)~
- ~`/<hash> @1.2.3` can be parsed as a concrete spec followed by an anonymous spec (before was invalid)~
~We can recover the previous behavior on both ones but, especially for the second one, it seems the current behavior in the PR is more consistent.~
The parser is currently 100% backward compatible.
## Error handling
Being based on more complex regexes, we can possibly improve error
handling by adding regexes for common issues and hint users on that.
I'll leave that for a following PR, but there's a stub for this approach in the PR.
## Performance
To be sure we don't add any performance penalty with this new encoding, I measured:
```console
$ spack python -m timeit -s "import spack.spec" -c "spack.spec.Spec(<spec>)"
```
for different specs on my machine:
* **Spack:** 0.20.0.dev0 (c9db4e50ba045f5697816187accaf2451cb1aae7)
* **Python:** 3.8.10
* **Platform:** linux-ubuntu20.04-icelake
* **Concretizer:** clingo
results are:
| Spec | develop | this PR |
| ------------- | ------------- | ------- |
| `trilinos` | 28.9 usec | 13.1 usec |
| `trilinos @1.2.10:1.4.20,2.0.1` | 131 usec | 120 usec |
| `trilinos %gcc` | 44.9 usec | 20.9 usec |
| `trilinos +foo` | 44.1 usec | 21.3 usec |
| `trilinos foo=bar` | 59.5 usec | 25.6 usec |
| `trilinos foo=bar ^ mpich foo=baz` | 120 usec | 82.1 usec |
so this new parser seems to be consistently faster than the previous one.
## Modifications
In this PR we just substituted the Spec parser, which means:
- [x] Deleted in `spec.py` the `SpecParser` and `SpecLexer` classes. deleted `spack/parse.py`
- [x] Added a new parser in `spack/parser.py`
- [x] Hooked the new parser in all the places the previous one was used
- [x] Adapted unit tests in `test/spec_syntax.py`
## Possible future improvements
Random thoughts while working on the PR:
- Currently we transform hashes and files into specs during parsing. I think
we might want to introduce an additional step and parse special objects like
a `FileSpec` etc. in-between parsing and concretization.
* Enable hdf5 build (including +mpi) on Windows
* This includes updates to hdf5 dependencies openssl (minor edit) and
bzip2 (more-extensive edits)
* Add binary-based installation of msmpi (this is currently the only
supported MPI implementation in Spack for Windows). Note that this
does not install to the Spack-specified prefix. This implementation
will be replaced with a source-based implementation
Co-authored-by: John Parent <john.parent@kitware.com>
I'm finding I often want the date in my paths and it would be nice if spack had a config variable for this.
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
* Remove CI jobs related to Python 2.7
* Remove Python 2.7 specific code from Spack core
* Remove externals for Python 2 only
* Remove llnl.util.compat
Environments and environment views have taken over the role of `spack activate/deactivate`, and we should deprecate these commands for several reasons:
- Global activation is a really poor idea:
- Install prefixes should be immutable; since they can have multiple, unrelated dependents; see below
- Added complexity elsewhere: verification of installations, tarballs for build caches, creation of environment views of packages with unrelated extensions "globally activated"... by removing the feature, it gets easier for people to contribute, and we'd end up with fewer bugs due to edge cases.
- Environment accomplish the same thing for non-global "activation" i.e. `spack view`, but better.
Also we write in the docs:
```
However, Spack global activations have two potential drawbacks:
#. Activated packages that involve compiled C extensions may still
need their dependencies to be loaded manually. For example,
``spack load openblas`` might be required to make ``py-numpy``
work.
#. Global activations "break" a core feature of Spack, which is that
multiple versions of a package can co-exist side-by-side. For example,
suppose you wish to run a Python package in two different
environments but the same basic Python --- one with
``py-numpy@1.7`` and one with ``py-numpy@1.8``. Spack extensions
will not support this potential debugging use case.
```
Now that environments are established and views can take over the role of activation
non-destructively, we can remove global activation/deactivation.
`spack env create` enables a view by default (in a weird hidden
directory, but well...). This is asking for trouble with the other
default of `concretizer:unify:false`, since having different flavors of
the same spec in an environment, leads to collision errors when
generating the view.
A change of defaults would improve user experience:
However, `unify:true` makes most sense, since any time the issue is
brought up in Slack, the user changes the concretization config, since
it wasn't the intention to have different flavors of the same spec, and
install times are decreased.
Further we improve the docs and drop the duplicate root spec limitation
Argparse started raising ArgumentError exceptions
when the same parser is added twice. Therefore, we
perform the addition only if the parser is not there
already
Port match syntax to our unparser
A user may want to set some attributes on a package without actually modifying the package (e.g. if they want to git pull updates to the package without conflicts). This PR adds a per-package configuration section called "set", which is a dictionary of attribute names to desired values. For example:
packages:
openblas:
package_attributes:
submodules: true
git: "https://github.com/myfork/openblas"
in this case, the package will always retrieve git submodules, and will use an alternate location for the git repo.
While git, url, and submodules are the attributes for which we envision the most usage, this allows any attribute to be overridden, and the acceptable values are any value parseable from yaml.
Adds another post install hook that loops over the install prefix, looking for shared libraries type of ELF files, and sets the soname to their own absolute paths.
The idea being, whenever somebody links against those libraries, the linker copies the soname (which is the absolute path to the library) as a "needed" library, so that at runtime the dynamic loader realizes the needed library is a path which should be loaded directly without searching.
As a result:
1. rpaths are not used for the fixed/static list of needed libraries in the dynamic section (only for _actually_ dynamically loaded libraries through `dlopen`), which largely solves the issue that Spack's rpaths are a heuristic (`<prefix>/lib` and `<prefix>/lib64` might not be where libraries really are...)
2. improved startup times (no library search required)
Currently, compiler flags and variants are inconsistent: compiler flags set for a
package are inherited by its dependencies, while variants are not. We should have these
be consistent by allowing for inheritance to be enabled or disabled for both variants
and compiler flags.
- [x] Make new (spec language) operators
- [x] Apply operators to variants and compiler flags
- [x] Conflicts currently result in an unsatisfiable spec
(i.e., you can't propagate two conflicting values)
What I propose is using two of the currently used sigils to symbolized that the variant
or compiler flag will be inherited:
Example syntax:
- `package ++variant`
enabled variant that will be propagated to dependencies
- `package +variant`
enabled variant that will NOT be propagated to dependencies
- `package ~~variant`
disabled variant that will be propagated to dependencies
- `package ~variant`
disabled variant that will NOT be propagated to dependencies
- `package cflags==True`
`cflags` will be propagated to dependencies
- `package cflags=True`
`cflags` will NOT be propagated to dependencies
Syntax for string-valued variants is similar to compiler flags.
The `spack info <package>` command does not show the `Virtual Packages:` output unless the `--virtuals` command option is passed. Before this changes, the information that the command is supposed to be illustrating is not shown in the example and is confusing.
This commit extends the DSL that can be used in packages
to allow declaring that a package uses different build-systems
under different conditions.
It requires each spec to have a `build_system` single valued
variant. The variant can be used in many context to query, manipulate
or select the build system associated with a concrete spec.
The knowledge to build a package has been moved out of the
PackageBase hierarchy, into a new Builder hierarchy. Customization
of the default behavior for a given builder can be obtained by
coding a new derived builder in package.py.
The "run_after" and "run_before" decorators are now applied to
methods on the builder. They can also incorporate a "when="
argument to specify that a method is run only when certain
conditions apply.
For packages that do not define their own builder, forwarding logic
is added between the builder and package (methods not found in one
will be retrieved from the other); this PR is expected to be fully
backwards compatible with unmodified packages that use a single
build system.
* Docs: Getting Started Dependencies
Finally document what one needs to install to use Spack on
Linux and Mac :-)
With <3 for minimal container users and my colleagues with
their fancy Macs.
* Debian Update Packages: GCC, Python
- build-essential: includes gcc, g++ (thx Cory)
- Python: add python3-venv, python3-distutils (thx Pradyun)
* Add RHEL8 Dependencies
fixes#31484
Before this change if anything was matching an external
condition, it was considered "external" and thus something
to be "built".
This was happening in particular to external packages
that were re-read from the DB, which then couldn't be
reused, causing the problems shown in #31484.
This PR fixes the issue by excluding specs with a
"hash" from being considered "external"
* Test that users have a way to select a virtual
This ought to be solved by extending the "require"
attribute to virtual packages, so that one can:
```yaml
mpi:
require: 'multi-provider-mpi'
```
* Prevent conflicts to be enforced on specs that can be reused.
* Rename the "external_only" fact to "buildable_false", to better reflect its origin
* Preliminary support for include URLs in spack.yaml (environment) files
This commit adds support in environments for external configuration files obtained from a URL with a preference for grabbing raw text from GitHub and gitlab for efficient downloads of the relevant files. The URL can also be a link to a directory that contains multiple configuration files.
Remote configuration files are retrieved and cached for the environment. Configuration files with the same name will not be overwritten once cached.
Extend the semantics of package requirements to
allow using them also under a virtual package
attribute in packages.yaml
These requirements are enforced whenever that
virtual spec is present in the DAG.
Allow users to express default requirements in packages.yaml.
These requirements are overridden if more specific requirements
are present for a given package.
Spack doesn't have an easy way to say something like "If I build
package X, then I *need* version Y":
* If you specify something on the command line, then you ensure
that the constraints are applied, but the package is always built
* Likewise if you `spack add X...`` to your environment, the
constraints are guaranteed to hold, but the environment always
builds the package
* You can add preferences to packages.yaml, but these are not
guaranteed to hold (Spack can choose other settings)
This commit adds a 'require' subsection to packages.yaml: the
specs added there are guaranteed to hold. The commit includes
documentation for the feature.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
All PRs are failing the docs build on account of an error with
pygments. These errors coincide with a new release of pygments
(2.13.0) and restricting to < 2.13 allows the doc tests to pass,
so this commit enforces that constraint for the docs build.
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
`LD_LIBRARY_PATH` can break system executables (e.g., when an enviornment is loaded) and isn't necessary thanks to `RPATH`s. Packages that require `LD_LIBRARY_PATH` can set this in `setup_run_environment`.
- [x] Prefix inspections no longer set `LD_LIBRARY_PATH` by default
- [x] Document changes and workarounds for people who want `LD_LIBRARY_PATH`
For a long time the module configuration has had a few settings that use
`blacklist`/`whitelist` terminology. We've been asked by some of our users to replace
this with more inclusive language. In addition to being non-inclusive, `blacklist` and
`whitelist` are inconsistent with the rest of Spack, which uses `include` and `exclude`
for the same concepts.
- [x] Deprecate `blacklist`, `whitelist`, `blacklist_implicits` and `environment_blacklist`
in favor of `exclude`, `include`, `exclude_implicits` and `exclude_env_vars` in module
configuration, to be removed in Spack v0.20.
- [x] Print deprecation warnings if any of the deprecated names are in module config.
- [x] Update tests to test old and new names.
- [x] Update docs.
- [x] Update `spack config update` to fix this automatically, and include a note in the error
that you can use this command.
The "submodules" argument of the "version" directive can now accept
a callable that returns a list of submodules, in addition to the usual
Boolean values
Explicitly import package utilities in all packages, and corresponding fallout.
This includes:
* rename `spack.package` to `spack.package_base`
* rename `spack.pkgkit` to `spack.package`
* update all packages in builtin, builtin_mock and tutorials to include `from spack.package import *`
* update spack style
* ensure packages include the import
* automatically add the new import and remove any/all imports of `spack` and `spack.pkgkit`
from packages when using `--fix`
* add support for type-checking packages with mypy when SPACK_MYPY_CHECK_PACKAGES
is set in the environment
* fix all type checking errors in packages in spack upstream
* update spack create to include the new imports
* update spack repo to inject the new import, injection persists to allow for a deprecation period
Original message below:
As requested @adamjstewart, update all packages to use pkgkit. I ended up using isort to do this,
so repro is easy:
```console
$ isort -a 'from spack.pkgkit import *' --rm 'spack' ./var/spack/repos/builtin/packages/*/package.py
$ spack style --fix
```
There were several line spacing fixups caused either by space manipulation in isort or by packages
that haven't been touched since we added requirements, but there are no functional changes in here.
* [x] add config to isort to make sure this is maintained going forward
This PR builds on #28392 by adding a convenience command to create a local mirror that can be used to bootstrap Spack. This is to overcome the inconvenience in setting up this mirror manually, which has been reported when trying to setup Spack on air-gapped systems.
Using this PR the user can create a bootstrapping mirror, on a machine with internet access, by:
% spack bootstrap mirror --binary-packages /opt/bootstrap
==> Adding "clingo-bootstrap@spack+python %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "gnupg@2.3: %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "patchelf@0.13.1:0.13.99 %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding binary packages from "https://github.com/alalazo/spack-bootstrap-mirrors/releases/download/v0.1-rc.2/bootstrap-buildcache.tar.gz" to the mirror at /opt/bootstrap/local-mirror
To register the mirror on the platform where it's supposed to be used run the following command(s):
% spack bootstrap add --trust local-sources /opt/bootstrap/metadata/sources
% spack bootstrap add --trust local-binaries /opt/bootstrap/metadata/binaries
The mirror has to be moved over to the air-gapped system, and registered using the commands shown at prompt. The command has options to:
1. Add pre-built binaries downloaded from Github (default is not to add them)
2. Add development dependencies for Spack (currently the Python packages needed to use spack style)
* bootstrap: refactor bootstrap.yaml to move sources metadata out
* bootstrap: allow adding/removing custom bootstrapping sources
This operation can be performed from the command line since
new subcommands have been added to `spack bootstrap`
* Add --trust argument to spack bootstrap add
* Add a command to generate a local mirror for bootstrapping
* Add a unit test for mirror creation
Currently, environments can either be concretized fully together or fully separately. This works well for users who create environments for interoperable software and can use `concretizer:unify:true`. It does not allow environments with conflicting software to be concretized for maximal interoperability.
The primary use-case for this is facilities providing system software. Facilities provide multiple MPI implementations, but all software built against a given MPI ought to be interoperable.
This PR adds a concretization option `concretizer:unify:when_possible`. When this option is used, Spack will concretize specs in the environment separately, but will optimize for minimal differences in overlapping packages.
* Add a level of indirection to root specs
This commit introduce the "literal" atom, which comes with
a few different "arities". The unary "literal" contains an
integer that id the ID of a spec literal. Other "literals"
contain information on the requests made by literal ID. For
instance zlib@1.2.11 generates the following facts:
literal(0,"root","zlib").
literal(0,"node","zlib").
literal(0,"node_version_satisfies","zlib","1.2.11").
This should help with solving large environments "together
where possible" since later literals can be now solved
together in batches.
* Add a mechanism to relax the number of literals being solved
* Modify spack solve to display the new criteria
Since the new criteria is above all the build criteria,
we need to modify the way we display the output.
Originally done by Greg in #27964 and cherry-picked
to this branch by the co-author of the commit.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* Inject reusable specs into the solve
Instead of coupling the PyclingoDriver() object with
spack.config, inject the concrete specs that can be
reused.
A method level function takes care of reading from
the store and the buildcache.
* spack solve: show output of multi-rounds
* add tests for best-effort coconcretization
* Enforce having at least a literal being solved
Co-authored-by: Greg Becker <becker33@llnl.gov>
* Introduce concretizer:unify option to replace spack:concretization
* Deprecate concretization
* Make spack:concretization overrule concretize:unify for now
* Add environment update logic to move from spack:concretization to spack:concretizer:reuse
* Migrate spack:concretization to spack:concretize:unify in all locations
* For new environments make concretizer:unify explicit, so that defaults can be changed in 0.19
Reworking lua to allow easier substitution of the base lua implementation.
Also adding in a maintained version of luajit and re-factoring the entire stack
to use a custom build-system to centralize functionality like environment
variable management and luarocks installation.
The `lua-lang` virtual is now versioned so that a package that requires
Lua 5.1 semantics can get any lua, but one that requires 5.2 will only
get upstream lua.
The luaposix package requires lua-bit32, but only when built with a
lua conforming to version 5.1. This adds the package, and the
dependencies, but exposed a problem with luarocks dependency
detection. Since we're installing each package in its own "tree" and
there's no environment variable to list extra trees, spack now
generates a luarocks config file that lists all the trees of all the
dependencies, and references it by setting `LUAROCKS_CONFIG`
in the build environment of every LuaPackage. This allows luarocks
to find the spack installed dependencies correctly rather than
trying (and failing) to download them.
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Tom Scogland <tscogland@llnl.gov>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
`make` solves a lot of headaches that would otherwise have to be implemented in Spack:
1. Parallelism over packages through multiple `spack install` processes
2. Orderly output of parallel package installs thanks to `make --sync-output=recurse` or `make -Orecurse` (works well in GNU Make 4.3; macOS is unfortunately on a 16 years old 3.x version, but it's one `spack install gmake` away...)
3. Shared jobserver across packages, which means a single `-j` to rule them all, instead of manually finding a balance between `#spack install processes` & `#jobs per package` (See #30302).
This pr adds the `spack env depfile` command that generates a Makefile with dag hashes as
targets, and dag hashes of dependencies as prerequisites, and a command
along the lines of `spack install --only=packages /hash` to just install
a single package.
It exposes two convenient phony targets: `all`, `fetch-all`. The former installs the environment, the latter just fetches all sources. So one can either use `make all -j16` directly or run `make fetch-all -j16` on a login node and `make all -j16` on a compute node.
Example:
```yaml
spack:
specs: [perl]
view: false
```
running
```
$ spack -e . env depfile --make-target-prefix env | tee Makefile
```
generates
```Makefile
SPACK ?= spack
.PHONY: env/all env/fetch-all env/clean
env/all: env/env
env/fetch-all: env/fetch
env/env: env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww
@touch $@
env/fetch: env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc
@touch $@
env/dirs:
@mkdir -p env/.fetch env/.install
env/.fetch/%: | env/dirs
$(info Fetching $(SPEC))
$(SPACK) -e '/tmp/tmp.7PHPSIRACv' fetch $(SPACK_FETCH_FLAGS) /$(notdir $@) && touch $@
env/.install/%: env/.fetch/%
$(info Installing $(SPEC))
+$(SPACK) -e '/tmp/tmp.7PHPSIRACv' install $(SPACK_INSTALL_FLAGS) --only-concrete --only=package --no-add /$(notdir $@) && touch $@
# Set the human-readable spec for each target
env/%/cdqldivylyxocqymwnfzmzc5sx2zwvww: SPEC = perl@5.34.1%gcc@10.3.0+cpanm+shared+threads arch=linux-ubuntu20.04-zen2
env/%/gv5kin2xnn33uxyfte6k4a3bynhmtxze: SPEC = berkeley-db@18.1.40%gcc@10.3.0+cxx~docs+stl patches=b231fcc arch=linux-ubuntu20.04-zen2
env/%/cuymc7e5gupwyu7vza5d4vrbuslk277p: SPEC = bzip2@1.0.8%gcc@10.3.0~debug~pic+shared arch=linux-ubuntu20.04-zen2
env/%/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: SPEC = diffutils@3.8%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws: SPEC = libiconv@1.16%gcc@10.3.0 libs=shared,static arch=linux-ubuntu20.04-zen2
env/%/yfz2agazed7ohevqvnrmm7jfkmsgwjao: SPEC = gdbm@1.19%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/73t7ndb5w72hrat5hsax4caox2sgumzu: SPEC = readline@8.1%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/trvdyncxzfozxofpm3cwgq4vecpxixzs: SPEC = ncurses@6.2%gcc@10.3.0~symlinks+termlib abi=none arch=linux-ubuntu20.04-zen2
env/%/sbzszb7v557ohyd6c2ekirx2t3ctxfxp: SPEC = pkgconf@1.8.0%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/c4go4gxlcznh5p5nklpjm644epuh3pzc: SPEC = zlib@1.2.12%gcc@10.3.0+optimize+pic+shared patches=0d38234 arch=linux-ubuntu20.04-zen2
# Install dependencies
env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww: env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p: env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk
env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws
env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao: env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu
env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu: env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs
env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs: env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp
env/clean:
rm -f -- env/env env/fetch env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
```
Then with `make -O` you get very nice orderly output when packages are built in parallel:
```console
$ make -Orecurse -j16
spack -e . install --only-concrete --only=package /c4go4gxlcznh5p5nklpjm644epuh3pzc && touch c4go4gxlcznh5p5nklpjm644epuh3pzc
==> Installing zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
...
Fetch: 0.00s. Build: 0.88s. Total: 0.88s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
spack -e . install --only-concrete --only=package /sbzszb7v557ohyd6c2ekirx2t3ctxfxp && touch sbzszb7v557ohyd6c2ekirx2t3ctxfxp
==> Installing pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
...
Fetch: 0.00s. Build: 3.96s. Total: 3.96s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
```
For Perl, at least for me, using `make -j16` versus `spack -e . install -j16` speeds up the builds from 3m32.623s to 2m22.775s, as some configure scripts run in parallel.
Another nice feature is you can do Makefile "metaprogramming" and depend on packages built by Spack. This example fetches all sources (in parallel) first, print a message, and only then build packages (in parallel).
```Makefile
SPACK ?= spack
.PHONY: env
all: env
spack.lock: spack.yaml
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-target-prefix spack
fetch: spack/fetch
@echo Fetched all packages && touch $@
env: fetch spack/env
@echo This executes after the environment has been installed
clean:
rm -rf spack/ env.mk spack.lock
ifeq (,$(filter clean,$(MAKECMDGOALS)))
include env.mk
endif
```
* ASP-based solver: allow configuring target selection
This commit adds a new "concretizer:targets" configuration
section, and two options under it.
- "concretizer:targets:granularity" allows switching from
considering only generic targets to consider all possible
microarchitectures.
- "concretizer:targets:host_compatible" instead controls
whether we can concretize for microarchitectures that
are incompatible with the current host.
* Add documentation
* Add unit-tests
* Ignore top-level module config; add auto-update
In Spack 0.17 we got module sets (modules:[name]:[prop]), and for
backwards compat modules:[prop] was short for modules:default:[prop].
But this makes it awkward to define default config for the "default"
module set.
Since 0.17 is branched off, we can now deprecate top-level module config
(that is, just ignore it with a warning).
This PR does that, and it implements `spack config update modules` to
make upgrading easy (we should have added that to 0.17 already...)
It also removes references to `dotkit` stuff which was already
deprecated in 0.13 and could have been removed in 0.14.
Prefix inspections are the only exception, since the top-level prefix inspections
used for `spack load` and `spack env activate`.
* Extract the MetaPathFinder and Loaders for packages in their own classes
https://peps.python.org/pep-0451/
Currently, RepoPath and Repo implement the (deprecated) interface of
MetaPathFinder (find_module) and of Loader (load_module). This commit
extracts both of them and places the code in their own classes.
The MetaPathFinder interface is updated to contain both the deprecated
"find_module" (for Python 2.7 support) and the recommended "find_spec".
Update of the Loader interface is deferred at a subsequent commit.
* Move the lines to be prepended inside "RepoLoader"
Also adjust the naming of a few variables too
* Remove spack.util.imp, since code is only used in spack.repo
* Remove support from loading Python modules Python > 3 but < 3.5
* Remove `Repo._create_namespace`
This function was interacting badly with the MetaPathFinder
and causing issues with "normal" imports. Removing the
function allows to do things like:
```python
import spack.pkg.builtin.mpich
cls = spack.pkg.builtin.mpich.Mpich
```
* Remove code needed to trigger the Singleton evaluation
The finder is coded in a way to trigger the Singleton,
so we don't need external code now that we register it
at module level into `sys.meta_path`.
* Add unit tests
Allow declaring possible values for variants with an associated condition. If the variant takes one of those values, the condition is imposed as a further constraint.
The idea of this PR is to implement part of the mechanisms needed for modeling [packages with multiple build-systems]( https://github.com/spack/seps/pull/3). After this PR the build-system directive can be implemented as:
```python
variant(
'build-system',
default='cmake',
values=(
'autotools',
conditional('cmake', when='@X.Y:')
),
description='...',
)
```
Modifications:
- [x] Allow conditional possible values in variants
- [x] Add a unit-test for the feature
- [x] Add documentation
- Add variants for various common build flags, including support for both versions of the Racket VM environment.
- Prevent `-j` flags to `make`, which has been known to cause problems with Racket builds.
- Prefer the minimal release to improve install times. Bells and whistles carry their own runtime dependencies and should be installed via `raco`. An enterprising user may even create a `RacketPackage` class to make spack aware of `raco` installed packages.
- Match the official version numbering scheme.
* cmake: use CMAKE_INSTALL_RPATH_USE_LINK_PATH
Spack has a heuristic to add rpaths for packages it knows are required,
but it's really a heuristic, and it does not work when the dependencies
put their libraries in a different folder than `<prefix>/lib{64,}`.
CMake patches binaries after install with the "install rpaths", which by
default are provided by Spack and its heuristic through
`CMAKE_INSTALL_RPATH`.
CMake however knows better what libraries are effectively being linked
to, and has an option to include those in the install rpath too, through
`CMAKE_INSTALL_RPATH_USE_LINK_PATH`.
These two CMake options are complementary, repeated rpaths seem to be
filtered, and the "use link path" paths are appended to Spack's
heuristic "install rpath".
So, it seems like a good idea to enable "use link path" by default, so
that:
- `dlopen` by library name uses Spack's heuristic search paths
- linked libraries in non-standard locations within a prefix get an
rpath thanks to CMake.
* docs
Known issues reports only 2 issues, among the bugs reported on GitHub.
One of the two is also outdated, since the issue has been solved
with the new concretizer. Thus, this commit removes the section.
When you install Spack from a tarball, it will always show an exact
version for Spack itself, even when you don't download a tagged commit:
```
$ wget -q https://github.com/spack/spack/archive/refs/heads/develop.tar.gz
$ tar -xf develop.tar.gz
$ ./spack-develop/bin/spack --version
0.16.2
```
This PR sets the Spack version to `0.18.0.dev0` on develop, following [PEP440](https://github.com/spack/spack/pull/25267#issuecomment-896340234) as
suggested by Adam Stewart.
```
spack (fix/set-dev-version)$ spack --version
0.18.0.dev0 (git 0.17.1-1526-e270464ae0)
spack (fix/set-dev-version)$ mv .git .git_
spack $ spack --version
0.18.0.dev0
```
- [x] Update the release guide
- [x] Add __version__ to spack's __init__.py
- [x] Use PEP 440 canonical version strings
- [x] Make spack --version output [actual version] (git version)
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This PR removes a few outdated sections from the "Basics" part of the
documentation. It also makes a few topic under the environment section
more prominent by removing an unneeded spack.yaml subsection and
promoting everything under it.
* Incorporate new search location
* Add external user option
* proper doc string
* Explicit commands in getting started
* raise during chgrp on Win
recover installer changes
Notate admin privleges
Windows phase install hooks
Find external python and install ninja (#23496)
Allow external find python to find windows python and spack install ninja
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
CMake - Windows Bootstrap (#25825)
Remove hardcoded cmake compiler (#26410)
Revert breaking cmake changes
Ensure no autotools on Windows
Perl on Windows (#26612)
Python source build windows (#26313)
Reconfigure sysconf for Windows
Python2.6 compatibility
Fxixup new sbang tests for windows
Ruby support (#28287)
Add NASM support (#28319)
Add mock Ninja package for testing
MSVC's internal CMake and Ninja now detected by spack external find and added to packages.yaml
Saving progress on packaging zlib for Windows
Fixing the shared CMake flag
* Loading Intel's ifx Fortran compiler into MSVC; if there are multiple
versions of MSVC installed and detected, ifx will only be placed into
the first block written in compilers.yaml. The version number of ifx can
be detected using MSVC's version flag (instead of /QV) by using
ignore_version_errors. This commit also provides support for detection
of Intel compilers in their own compiler block by adding ifx.exe to the
fc/f77_name blocks inside intel.py
* Giving CMake a Fortran compiler argument
* Adding patch file for removing duplicated mangling header for versions 3.9.1 and older; static and shared now successfully building on Windows
* Have netlib-lapack depend on ninja@1.10
Co-authored-by: John R. Cary <cary@txcorp.com>
Co-authored-by: Jared Popelar <jpopelar@txcorp.com>
Making a default config.yaml for Windows
Small path length for build_stage
Provide more prerequisite details, mention default config.yaml
Killing an unnecessary setvars call
Replacing some lost changes, proofreading, updating windows-supported package list
Co-authored-by: John Parent <john.parent@kitware.com>
* Add 'make-installer' command for Windows
* Add '--bat' arg to env activate, env deactivate and unload commands
* An equivalent script to setup-env on linux: spack_cmd.bat. This script
has a wrapper to evaluate cd, load/unload, env activate/deactivate.(#21734)
* Add spacktivate and config editor (#22049)
* spack_cmd: will find python and spack on its own. It preferentially
tries to use python on your PATH (#22414)
* Ignore Windows python installer if found (#23134)
* Bundle git in windows installer (#23597)
* Add Windows section to Getting Started document
(#23131), (#23295), (#24240)
Co-authored-by: Stephen Crowell <stephen.crowell@kitware.com>
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
Co-authored-by: Jared Popelar <jpopelar@txcorp.com>
Co-authored-by: Ben Cowan <benc@txcorp.com>
Update Installer CI
Co-authored-by: John Parent <john.parent@kitware.com>
* environment.py: allow link:run
Some users want minimal views, excluding run-type dependencies, since
those type of dependencies are covered by rpaths and the symlinked
libraries in the view aren't used anyways.
With this change, an environment like this:
```
spack:
specs: ['py-flake8']
view:
default:
root: view
link: run
```
includes python packages and python, but no link type deps of python.
* extensions: allow multiple "extends" directives
This will allow multiple extends directives in a package as long as only one of
them is selected as a dependency in the concrete spec.
* document the option to have multiple extends
* Add 'stable' to the list of infinity version names.
Rename libunwind 1.5-head to 1.5-stable.
* Add stable to the infinite version list in packaging_guide.rst.
* Add sticky variants
* Add unit tests for sticky variants
* Add documentation for sticky variants
* Revert "Revert 19736 because conflicts are avoided by clingo by default (#26721)"
This reverts commit 33ef7d57c1.
* Add stickiness to "allow-unsupported-compiler"
* Use pip to bootstrap pip
* Bootstrap wheel from source
* Update PythonPackage to install using pip
* Update several packages
* Add wheel as base class dep
* Build phase no longer exists
* Add py-poetry package, fix py-flit-core bootstrapping
* Fix isort build
* Clean up many more packages
* Remove unused import
* Fix unit tests
* Don't directly run setup.py
* Typo fix
* Remove unused imports
* Fix issues caught by CI
* Remove custom setup.py file handling
* Use PythonPackage for installing wheels
* Remove custom phases in PythonPackages
* Remove <phase>_args methods
* Remove unused import
* Fix various packages
* Try to test Python packages directly in CI
* Actually run the pipeline
* Fix more packages
* Fix mappings, fix packages
* Fix dep version
* Work around bug in concretizer
* Various concretization fixes
* Fix gitlab yaml, packages
* Fix typo in gitlab yaml
* Skip more packages that fail to concretize
* Fix? jupyter ecosystem concretization issues
* Solve Jupyter concretization issues
* Prevent duplicate entries in PYTHONPATH
* Skip fenics-dolfinx
* Build fewer Python packages
* Fix missing npm dep
* Specify image
* More package fixes
* Add backends for every from-source package
* Fix version arg
* Remove GitLab CI stuff, add py-installer package
* Remove test deps, re-add install_options
* Function declaration syntax fix
* More build fixes
* Update spack create template
* Update PythonPackage documentation
* Fix documentation build
* Fix unit tests
* Remove pip flag added only in newer pip
* flux: add explicit dependency on jsonschema
* Update packages that have been added since this was branched off of develop
* Move Python 2 deprecation to a separate PR
* py-neurolab: add build dep on py-setuptools
* Use wheels for pip/wheel
* Allow use of pre-installed pip for external Python
* pip -> python -m pip
* Use python -m pip for all packages
* Fix py-wrapt
* Add both platlib and purelib to PYTHONPATH
* py-pyyaml: setuptools is needed for all versions
* py-pyyaml: link flags aren't needed
* Appease spack audit packages
* Some build backend is required for all versions, distutils -> setuptools
* Correctly handle different setup.py filename
* Use wheels for py-tomli to avoid circular dep on py-flit-core
* Fix busco installation procedure
* Clarify things in spack create template
* Test other Python build backends
* Undo changes to busco
* Various fixes
* Don't test other backends
When `spack compiler list` is run without being restricted to a
particular scope, and no compilers are found, say that none are
available, and hint that the use should run spack compiler find to
auto detect compilers.
* Improve docs
* Check if stdin is a tty
* add a test
Updates to installer.py did not account for spack monitor, so as currently implemented
there are three cases of failure that spack monitor will not account for. To fix this we add additional
hooks, including an on cancel and also do a custom action on concretization fail.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Modifications:
- [x] Removed `centos:6` unit test, adjusted vermin checks
- [x] Removed backport of `collections.OrderedDict`
- [x] Removed backport of `functools.total_ordering`
- [x] Removed Python 2.6 specific skip markers in unit tests
- [x] Fixed a few minor Python 2.6 related TODOs in code
Updating the vendored dependencies will be done in separate PRs
Currently Spack vendors `pytest` at a version which is three major
versions behind the latest (3.2.5 vs. 6.2.4). We do that since v3.2.5
is the latest version supporting Python 2.6. Remaining so much
behind the currently supported versions though might introduce
some incompatibilities and is surely a technical debt.
This PR modifies Spack to:
- Use the vendored `pytest@3.2.5` only as a fallback solution,
if the Python interpreter used for Spack doesn't provide a newer one
- Be able to parse `pytest --collect-only` in all the different output
formats from v3.2.5 to v6.2.4 and use it consistently for `spack unit-test --list-*`
- Updating the unit tests in Github Actions to use a more recent `pytest` version
See #25249 and https://github.com/spack/spack/pull/27159#issuecomment-958163679.
This adds `spack load --list` as an alias for `spack find --loaded`. The new command is
not as powerful as `spack find --loaded`, as you can't combine it with all the queries or
formats that `spack find` provides. However, it is more intuitively located in the command
structure in that it appears in the output of `spack load --help`.
The idea here is that people can use `spack load --list` for simple stuff but fall back to
`spack find --loaded` if they need more.
- add help to `spack load --list` that references `spack find`
- factor some parts of `spack find` out to be called from `spack load`
- add shell tests
- update docs
Co-authored-by: Peter Josef Scheibel <scheibel1@llnl.gov>
Co-authored-by: Richarda Butler <39577672+RikkiButler20@users.noreply.github.com>
A common question from users has been how to model variants
that are new in new versions of a package, or variants that are
dependent on other variants. Our stock answer so far has been
an unsatisfying combination of "just have it do nothing in the old
version" and "tell Spack it conflicts".
This PR enables conditional variants, on any spec condition. The
syntax is straightforward, and matches that of previous features.
There were some loose ends left in ##26735 that cause errors when
using `SPACK_DISABLE_LOCAL_CONFIG`.
- [x] Fix hard-coded `~/.spack` references in `install_test.py` and `monitor.py`
Also, if `SPACK_DISABLE_LOCAL_CONFIG` is used, there is the issue that
`$user_config_path`, when used in configuration files, makes no sense,
because there is no user config scope.
Since we already have `$user_cache_path` in configuration files, and since there
really shouldn't be *any* data stored in a configuration scope (which is what
you'd configure in `config.yaml`/`bootstrap.yaml`/etc., this just removes
`$user_config_path`.
There will *always* be a `$user_cache_path`, as Spack needs to write files, but
we shouldn't rely on the existence of a particular configuration scope in the
Spack code, as scopes are configurable, both in number and location.
- [x] Remove `$user_config_path` substitution.
- [x] Fix reference to `$user_config_path` in `etc/spack/deaults/bootstrap.yaml`
to refer to `$user_cache_path`, which is where it was intended to be.
Spack's `system` and `user` scopes provide ways for administrators and
users to set global defaults for all Spack instances, but for use cases
where one wants a clean Spack installation, these scopes can be undesirable.
For example, users may want to opt out of global system configuration, or
they may want to ignore their own home directory settings when running in
a continuous integration environment.
Spack also, by default, keeps various caches and user data in `~/.spack`,
but users may want to override these locations.
Spack provides three environment variables that allow you to override or
opt out of configuration locations:
* `SPACK_USER_CONFIG_PATH`: Override the path to use for the
`user` (`~/.spack`) scope.
* `SPACK_SYSTEM_CONFIG_PATH`: Override the path to use for the
`system` (`/etc/spack`) scope.
* `SPACK_DISABLE_LOCAL_CONFIG`: set this environment variable to completely
disable *both* the system and user configuration directories. Spack will
only consider its own defaults and `site` configuration locations.
And one that allows you to move the default cache location:
* `SPACK_USER_CACHE_PATH`: Override the default path to use for user data
(misc_cache, tests, reports, etc.)
With these settings, if you want to isolate Spack in a CI environment, you can do this:
export SPACK_DISABLE_LOCAL_CONFIG=true
export SPACK_USER_CACHE_PATH=/tmp/spack
This is a stop-gap approach until we have figured out how to deal with
the system and user config scopes more generally, as there are plans to
potentially / eventually get rid of them.
**User config**
Spack is a bit of a pain when you have:
- a shared $HOME folder across different systems.
- multiple Spack versions on the same system.
**System config**
- On shared systems with a versioned programming environment / toolkit,
system administrators want to provide config for each version (e.g.
21.09, 21.10) of the programming environment, and the user Spack
instance should be able to pick this up without a steep learning
curve.
- On shared systems the user should be able to opt out of the
hard-coded config scope in /etc/spack, since it may be incompatible
with their particular instance. Currently Spack can only opt out of all
config scopes through overrides with `"config:":`, `"packages:":`, but that
also drops the defaults config, which would have to be repeated, which
is undesirable, especially the lengthy packages.yaml.
An example use case is: having config in this folder:
```
/path/to/programming/environment/{version}/{compilers,packages}.yaml
```
and have `module load spack-system-config` set the variable
```
SPACK_SYSTEM_CONFIG_PATH=/path/to/programming/environment/{version}
```
where the user no longer has to worry about what `{version}` they are
on.
**Continuous integration**
Finally, there is the use case of continuous integration, which may
clone an arbitrary Spack version, which optimally should not pick up
system or user config from the previous run (like may happen in
classical bare metal non-containerized filesystem side effect ridden
jenkins pipelines). In fact this is very similar to how spack itself
tries to avoid picking up system dependencies during builds...
**But environments solve this?**
- You could do `include`s in environment files to get similar behavior
to the spack_system_config_path example, but environments require you
to:
1) require paths to individual config files, not directories.
2) fail if the listed config file does not exist
- They allow you to override config scopes, but this is generally too
rigurous, as it requires you to repeat the default config, in
particular packages.yaml, and just defies the point of layered config.
Co-authored-by: Tom Scogland <tscogland@llnl.gov>
Co-authored-by: Tim Fuller <tjfulle@sandia.gov>
Co-authored-by: Steve Leak <sleak@lbl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Any spec satisfying a default will be symlinked to `default`
If multiple specs have modulefiles in the same directory and satisfy
configured module defaults, then whichever was written last will be
default.
This PR permits to specify the `url` and `ref` of the Spack instance used in a container recipe simply by expanding the YAML schema as outlined in #20442:
```yaml
container:
images:
os: amazonlinux:2
spack:
ref: develop
resolve_sha: true
```
The `resolve_sha` option, if true, verifies the `ref` by cloning the Spack repository in a temporary directory and transforming any tag or branch name to a commit sha. When this new ability is leveraged an additional "bootstrap" stage is added, which builds an image with Spack setup and ready to install software. The Spack repository to be used can be customized with the `url` keyword under `spack`.
Modifications:
- [x] Permit to pin the version of Spack, either by branch or tag or sha
- [x] Added a few new OSes (centos:8, amazonlinux:2, ubuntu:20.04, alpine:3, cuda:11.2.1)
- [x] Permit to print the bootstrap image as a standalone
- [x] Add documentation on the new part of the schema
- [x] Add unit tests for different use cases
* downgrade_docutils_version
* invalid version
* Update requirements.txt
* Improve spelling and shorten the reference link
* Update spack.yaml
* update version requirement
* update version to maximum of 0.16
Co-authored-by: bernhardkaindl <43588962+bernhardkaindl@users.noreply.github.com>
Using the Spec.constrain method doesn't work since it might
trigger a repository lookup which could break our directives
and triggers a circular import error.
To fix that we introduce a function to merge abstract anonymous
specs, based only on package names, which does not perform any
lookup in the repository.
The `find` command was missing for the examples forcing colorized output. Without this (or another suitable) command, spack produces output that is not using any color. Thus, without the `find` command one does not see any difference between forced colorized and non-colorized output.
Installing packages with a lot of dependencies does not have an easy way
of judging the current progress (apart from running `spack spec -I pkg`
in another terminal). This change allows Spack to update the terminal's
title with status information, including its current progress as well as
information about the current and total number of packages.
The `spack.architecture` module contains an `Arch` class that is very similar to `spack.spec.ArchSpec` but points to platform, operating system and target objects rather than "names". There's a TODO in the class since 2016:
abb0f6e27c/lib/spack/spack/architecture.py (L70-L75)
and this PR basically addresses that. Since there are just a few places where the `Arch` class was used, here we query the relevant platform objects where they are needed directly from `spack.platforms`. This permits to clean the code from vestigial logic.
Modifications:
- [x] Remove the `spack.architecture` module and replace its use by `spack.platforms`
- [x] Remove unneeded tests
* Isolate bootstrap configuration from user configuration
* Search for build dependencies automatically if bootstrapping from sources
The bootstrapping logic will search for build dependencies
automatically if bootstrapping anything form sources. Any
external spec, if found, is written in a scope that is specific
to bootstrapping.
* Don't clean the bootstrap store with "spack clean -a"
* Copy bootstrap.yaml and config.yaml in the bootstrap area
* Use gnuconfig package for config file replacement
Currently the autotools build system tries to pick up config.sub and
config.guess files from the system (in /usr/share) on arm and power.
This is introduces an implicit system dependency which we can avoid by
distributing config.guess and config.sub files in a separate package,
such as the new `gnuconfig` package which is very lightweight/text only
(unlike automake where we previously pulled these files from as a
backup). This PR adds `gnuconfig` as an unconditional build dependency
for arm and power archs.
In case the user needs a system version of config.sub and config.guess,
they are free to mark `gnuconfig` as an external package with the prefix
pointing to the directory containing the config files:
```yaml
gnuconfig:
externals:
- spec: gnuconfig@master
prefix: /tmp/tmp.ooBlkyAKdw/lol
buildable: false
```
Apart from that, this PR gives some better instructions for users when
replacing config files goes wrong.
* Mock needs this package too now, because autotools adds a depends_on
* Add documentation
* Make patch_config_files a prop, fix the docs, add integrations tests
* Make macOS happy
* autotoolspackage.rst: No depends_on('m4') with depends_on('autoconf')
- Remove `m4` from the example depends_on() lines for the autoreconf phase.
- Change the branch used as example from develop to master as it is
far more common in the packages of spack's builtin repo.
- Fix the wrong info that libtoolize and aclocal are run explicitly
in the autoreconf phase by default. autoreconf calls these internally
as needed, thus autotools.py also does not call them directly.
- Add that autoreconf() also adds -I<aclocal-prefix>/share/aclocal.
- Add an example how to set autoreconf_extra_args.
- Add an example of a custom autoreconf phase for running autogen.sh.
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
Git 2.24 introduced a feature flag for repositories with many files, see:
https://github.blog/2019-11-03-highlights-from-git-2-24/#feature-macros
Since Spack's Git repository contains roughly 8,500 files, it can be
worthwhile to enable this, especially on slow file systems such as NFS:
```
$ hyperfine --warmup 3 'cd spack-default; git status' 'cd spack-manyfiles; git status'
Benchmark #1: cd spack-default; git status
Time (mean ± σ): 3.388 s ± 0.095 s [User: 256.2 ms, System: 625.8 ms]
Range (min … max): 3.168 s … 3.535 s 10 runs
Benchmark #2: cd spack-manyfiles; git status
Time (mean ± σ): 168.7 ms ± 10.9 ms [User: 98.6 ms, System: 126.1 ms]
Range (min … max): 144.8 ms … 188.0 ms 19 runs
Summary
'cd spack-manyfiles; git status' ran
20.09 ± 1.42 times faster than 'cd spack-default; git status'
```
* Refactor platform etc. to avoid circular dependencies
All the base classes in spack.architecture have been
moved to the corresponding specialized subpackages,
e.g. Platform is now defined within spack.platforms.
This resolves a circular dependency where spack.architecture
was both:
- Defining the base classes for spack.platforms, etc.
- Collecting derived classes from spack.platforms, etc.
Now it dopes only the latter.
* Move a few platform related functions to "spack.platforms"
* Removed spack.architecture.sys_type()
* Fixup for docs
* Rename Python modules according to review
* Bootstrap clingo from binaries
* Move information on clingo binaries to a JSON file
* Add support to bootstrap on Cray
Bootstrapping on Cray requires, at the moment, to
swap the platform when looking for binaries - due
to #22800.
* Add SHA256 verification for bootstrapped software
Use sha256 verification for binaries necessary to bootstrap
the concretizer and gpg for signature verification
* patchelf: use Spec._old_concretize() to bootstrap
As noted in #24450 we may happen to need the
concretizer when bootstrapping clingo. In that case
only the old concretizer is available.
* Add a schema for bootstrapping methods
Two fields have been added to bootstrap.yaml:
"sources" which lists the methods available for
bootstrapping software
"trusted" which records if a source is trusted or not
A subcommand has been added to "spack bootstrap" to list
the sources currently available.
* Methods used for bootstrapping are configurable from bootstrap:sources
The function that tries to ensure a given Python module
is importable now tries bootstrapping methods in the same
order as they are defined in `bootstrap.yaml`
* Permit to trust/untrust bootstrapping methods
* Add binary tests for MacOS, Ubuntu
* Add documentation
* Add a note on bash
The output order for `spack diff` is nondeterministic for larger diffs -- if you
ran it several times it will not put the fields in the spec in the same order on
successive invocations.
This makes a few fixes to `spack diff`:
- [x] Implement the change discussed in https://github.com/spack/spack/pull/22283#discussion_r598337448
to make `AspFunction` comparable in and of itself and to eliminate the need for `to_tuple()`
- [x] Sort the lists of diff properties so that the output is always in the same order.
- [x] Make the output for different fields the same as what we use in the solver. Previously, we
would use `Type(value)` for non-string values and `value` for strings. Now we just use
the value. So the output looks a little cleaner:
```
== Old ========================== == New ====================
@@ node_target @@ @@ node_target @@
- gdbm Target(x86_64) - gdbm x86_64
+ zlib Target(skylake) + zlib skylake
@@ variant_value @@ @@ variant_value @@
- ncurses symlinks bool(False) - ncurses symlinks False
+ zlib optimize bool(True) + zlib optimize True
@@ version @@ @@ version @@
- gdbm Version(1.18.1) - gdbm 1.18.1
+ zlib Version(1.2.11) + zlib 1.2.11
@@ node_os @@ @@ node_os @@
- gdbm catalina - gdbm catalina
+ zlib catalina + zlib catalina
```
I suppose if we want to use `repr()` in the output we could do that and could be
consistent but we don't do that elsewhere -- the types of things in Specs are
all stringifiable so the string and the name of the attribute (`version`, `node_os`,
etc.) are sufficient to know what they are.
A `spack diff` will take two specs, and then use the spack.solver.asp.SpackSolverSetup to generate
lists of facts about each (e.g., nodes, variants, etc.) and then take a set difference between the
two to show the user the differences.
Example output:
$ spack diff python@2.7.8 python@3.8.11
==> Warning: This interface is subject to change.
--- python@2.7.8/tsxdi6gl4lihp25qrm4d6nys3nypufbf
+++ python@3.8.11/yjtseru4nbpllbaxb46q7wfkyxbuvzxx
@@ variant_value @@
- python patches a8c52415a8b03c0e5f28b5d52ae498f7a7e602007db2b9554df28cd5685839b8
+ python patches 0d98e93189bc278fbc37a50ed7f183bd8aaf249a8e1670a465f0db6bb4f8cf87
@@ version @@
- openssl Version(1.0.2u)
+ openssl Version(1.1.1k)
- python Version(2.7.8)
+ python Version(3.8.11)
Currently this uses diff-like output but we will attempt to improve on this in the future.
One use case for `spack diff` is whenever a user has a disambiguate situation and cannot
remember how two different installs are different. The command can also output `--json` in
the case of a more analysis type use case where we want to save complete data with all
diffs and the intersection. However, the command is really more intended for a command
line use case, and we likely will have an analyzer more suited to saving data
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This uses our bootstrapping logic to automatically install dependencies for
`spack style`. Users should no longer have to pre-install all of the tools
(`isort`, `mypy`, `black`, `flake8`). The command will do it for them.
- [x] add logic to bootstrap specs with specific version requirements in `spack style`
- [x] remove style tools from CI requirements (to ensure we test bootstrapping)
- [x] rework dependencies for `mypy` and `py-typed-ast`
- `py-typed-ast` needs to be a link dependency
- it needs to be at 1.4.1 or higher to work with python 3.9
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
015e29efe1 that introduced this section to the
documentation said “two” here instead of the actual count, three.
9f54cea5c5 then added a fourth, BLAS/LAPACK.
Rather than trying to keep this leading count in sync, this change just replaces
the wording with something more generic/stable.
* fix remaining flake8 errors
* imports: sort imports everywhere in Spack
We enabled import order checking in #23947, but fixing things manually drives
people crazy. This used `spack style --fix --all` from #24071 to automatically
sort everything in Spack so PR submitters won't have to deal with it.
This should go in after #24071, as it assumes we're using `isort`, not
`flake8-import-order` to order things. `isort` seems to be more flexible and
allows `llnl` mports to be in their own group before `spack` ones, so this
seems like a good switch.
This PR adds a context manager that permit to group the common part of a `when=` argument and add that to the context:
```python
class Gcc(AutotoolsPackage):
with when('+nvptx'):
depends_on('cuda')
conflicts('@:6', msg='NVPTX only supported in gcc 7 and above')
conflicts('languages=ada')
conflicts('languages=brig')
conflicts('languages=go')
```
The above snippet is equivalent to:
```python
class Gcc(AutotoolsPackage):
depends_on('cuda', when='+nvptx')
conflicts('@:6', when='+nvptx', msg='NVPTX only supported in gcc 7 and above')
conflicts('languages=ada', when='+nvptx')
conflicts('languages=brig', when='+nvptx')
conflicts('languages=go', when='+nvptx')
```
which needs a repetition of the `when='+nvptx'` argument. The context manager might help improving readability and permits to group together directives related to the same semantic aspect (e.g. all the directives needed to model the behavior of `gcc` when `+nvptx` is active).
Modifications:
- [x] Added a `when` context manager to be used with package directives
- [x] Add unit tests and documentation for the new feature
- [x] Modified `cp2k` and `gcc` to show the use of the context manager
Spack packages can now fetch versions from CVS repositories. Note
this fetch mechanism is unsafe unless using :extssh:. Most public
CVS repositories use an insecure protocol implemented as part of CVS.
Add a new "spack audit" command. This command can check for issues
with configuration or with packages and is intended to help a
user debug a failed Spack build.
In some cases the reported issues are always errors but are too
costly to check for (e.g. packages that specify missing variants on
dependencies). In other cases the issues may be legitimate but
uncommon usage of Spack and we want to be sure the user intended the
behavior (e.g. duplicate compiler definitions).
Audits are grouped by theme, and for now the two themes are packages
and configuration. For example you can run all available audits
on packages with "spack audit packages". It is intended that in
the future users will be able to define their own audits.
The package audits are good candidates for running in package_sanity
(i.e. they could catch bugs in user-submitted packages before they
are merged) but that is left for a later PR.
This should get us most of the way there to support using monitor during a spack container build, for both Singularity and Docker. Some quick notes:
### Docker
Docker works by way of BUILDKIT and being able to specify --secret. What this means is that you can prefix a line with a mount of type secret as follows:
```bash
# Install the software, remove unnecessary deps
RUN --mount=type=secret,id=su --mount=type=secret,id=st cd /opt/spack-environment && spack env activate . && export SPACKMON_USER=$(cat /run/secrets/su) && export SPACKMON_TOKEN=$(cat /run/secrets/st) && spack install --monitor --fail-fast && spack gc -y
```
Where the id for one or more secrets corresponds to the file mounted at `/run/secrets/<name>`. So, for example, to build this container with su (spackmon user) and sv (spackmon token) defined I would export them on my host and do:
```bash
$ DOCKER_BUILDKIT=1 docker build --network="host" --secret id=st,env=SPACKMON_TOKEN --secret id=su,env=SPACKMON_USER -t spack/container .
```
And when we add `env` to the secret definition that tells the build to look for the secret with id "st" in the environment variable `SPACKMON_TOKEN` for example.
If the user is building locally with a local spack monitor, we also need to set the `--network` to be the host, otherwise you can't connect to it (a la isolation of course.)
## Singularity
Singularity doesn't have as nice an ability to clearly specify secrets, so (hoping this eventually gets implemented) what I'm doing now is providing the user instructions to write the credentials to a file, add it to the container to source, and remove when done.
## Tags
Note that the tags PR https://github.com/spack/spack/pull/23712 will need to be merged before `--monitor-tags` will actually work because I'm checking for the attribute (that doesn't exist yet):
```bash
"tags": getattr(args, "monitor_tags", None)
```
So when that PR is merged to update the argument group, it will work here, and I can either update the PR here to not check if the attribute is there (it will be) or open another one in the case this PR is already merged.
Finally, I added a bunch of documetation for how to use monitor with containerize. I say "mostly working" because I can't do a full test run with this new version until the container base is built with the updated spack (the request to the monitor server for an env install was missing so I had to add it here).
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
this will first support uploads for spack monitor, and eventually could be
used for other kinds of spack uploads
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
* extending example for buildcaches
I was attempting to create a local build cache from a directory, and I found the
docs for both buildcaches and mirrors, but did not connect the docs that the
url variable could be the local filesystem variable. I am extending the docs for
buildcaches with an example of creating and interacting with one on the filesystem
because I suspect other users will run into this need and possibly not find what
they are looking for.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
* adding as follows to spack mirror list
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
It is currently kind of confusing to the reader to distinguish spack buildcache install
and spack install, and it is not clear how to use a build cache once a mirror is added.
Hopefully this little big of description can help (and I hope I got it right!)
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
This PR allows users to `--export`, `--export-secret`, or both to export GPG keys
from Spack. The docs are updated that include a warning that this usually does not
need to be done.
This addresses an issue brought up in slack, and also represented in #14721.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Currently, module configurations are inconsistent because modulefiles are generated with the configs for the active environment, but are shared among all environments (and spack outside any environment).
This PR fixes that by allowing Spack environments (or other spack config scopes) to define additional sets of modules to generate. Each set of modules can enable either lmod or tcl modules, and contains all of the previously available module configuration. The user defines the name of each module set -- the set configured in Spack by default is named "default", and is the one returned by module manipulation commands in the absence of user intervention.
As part of this change, the module roots configuration moved from the config section to inside each module configuration.
Additionally, it adds a feature that the modulefiles for an environment can be configured to be relative to an environment view rather than the underlying prefix. This will not be enabled by default, as it should only be enabled within an environment and for non-default views constructed with separate projections per-spec.
### Overview
The goal of this PR is to make gitlab pipeline builds (especially build failures) more reproducible outside of the pipeline environment. The two key changes here which aim to improve reproducibility are:
1. Produce a `spack.lock` during pipeline generation which is passed to child jobs via artifacts. This concretized environment is used both by generated child jobs as well as uploaded as an artifact to be used when reproducing the build locally.
2. In the `spack ci rebuild` command, if a spec needs to be rebuilt from source, do this by generating and running an `install.sh` shell script which is then also uploaded as a job artifact to be run during local reproduction.
To make it easier to take advantage of improved build reproducibility, this PR also adds a new subcommand, `spack ci reproduce-build`, which, given a url to job artifacts:
- fetches and unzips the job artifacts to a local directory
- looks for the generated pipeline yaml and parses it to find details about the job to reproduce
- attempts to provide a copy of the same version of spack used in the ci build
- if the ci build used a docker image, the command prints a `docker run` command you can run to get an interactive shell for reproducing the build
#### Some highlights
One consequence of this change will be much smaller pipeline yaml files. By encoding the concrete environment in a `spack.lock` and passing to child jobs via artifacts, we will no longer need to encode the concrete root of each spec and write it into the job variables, greatly reducing the size of the generated pipeline yaml.
Additionally `spack ci rebuild` output (stdout/stderr) is no longer internally redirected to a log file, so job output will appear directly in the gitlab job trace. With debug logging turned on, this often results in log files getting truncated because they exceed the maximum amount of log output gitlab allows. If this is a problem, you still have the option to `tee` command output to a file in the within the artifacts directory, as now each generated job exposes a `user_data` directory as an artifact, which you can fill with whatever you want in your custom job scripts.
There are some changes to be aware of in how pipelines should be set up after this PR:
#### Pipeline generation
Because the pipeline generation job now writes a `spack.lock` artifact to be consumed by generated downstream jobs, `spack ci generate` takes a new option `--artifacts-root`, inside which it creates a `concrete_env` directory to place the lockfile. This artifacts root directory is also where the `user_data` directory will live, in case you want to generate any custom artifacts. If you do not provide `--artifacts-root`, the default is for it to create a `jobs_scratch_dir` within your `CI_PROJECT_DIR` (a gitlab predefined environment variable) or whatever is your current working directory if that variable isn't set. Here's the diff of the PR testing `.gitlab-ci.yml` taking advantage of the new option:
```
$ git diff develop..pipelines-reproducible-builds share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
diff --git a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
index 579d7b56f3..0247803a30 100644
--- a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
+++ b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
@@ -28,10 +28,11 @@ default:
- cd share/spack/gitlab/cloud_pipelines/stacks/${SPACK_CI_STACK_NAME}
- spack env activate --without-view .
- spack ci generate --check-index-only
+ --artifacts-root "${CI_PROJECT_DIR}/jobs_scratch_dir"
--output-file "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
artifacts:
paths:
- - "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
+ - "${CI_PROJECT_DIR}/jobs_scratch_dir"
tags: ["spack", "public", "medium", "x86_64"]
interruptible: true
```
Notice how we replaced the specific pointer to the generated pipeline file with its containing folder, the same folder we passed as `--artifacts-root`. This way anything in that directory (the generated pipeline yaml, as well as the concrete environment directory containing the `spack.lock`) will be uploaded as an artifact and available to the downstream jobs.
#### Rebuild jobs
Rebuild jobs now must activate the concrete environment created by `spack ci generate` and provided via artifacts. When the pipeline is generated, a directory called `concrete_environment` is created within the artifacts root directory, and this is where the `spack.lock` file is written to be passed to the generated rebuild jobs. The artifacts root directory can be specified using the `--artifacts-root` option to `spack ci generate`, otherwise, it is assumed to be `$CI_PROJECT_DIR`. The directory containing the concrete environment files (`spack.yaml` and `spack.lock`) is then passed to generated child jobs via the `SPACK_CONCRETE_ENV_DIR` variable in the generated pipeline yaml file.
When you don't provide custom `script` sections in your `mappings` within the `gitlab-ci` section of your `spack.yaml`, the default behavior of rebuild jobs is now to change into `SPACK_CONCRETE_ENV_DIR` and activate that environment. If you do provide custom rebuild scripts in your `spack.yaml`, be aware those scripts should do the same thing: assume `SPACK_CONCRETE_ENV_DIR` contains the concretized environment to activate. No other changes to existing custom rebuild scripts should be required as a result of this PR.
As mentioned above, one key change made in this PR is the generation of the `install.sh` script by the rebuild jobs, as that same script is both run by the CI rebuild job as well as exported as an artifact to aid in subsequent attempts to reproduce the build outside of CI. The generated `install.sh` script contains only a single `spack install` command with arguments computed by `spack ci rebuild`. If the install fails, the job trace in gitlab will contain instructions on how to reproduce the build locally:
```
To reproduce this build locally, run:
spack ci reproduce-build https://gitlab.next.spack.io/api/v4/projects/7/jobs/240607/artifacts [--working-dir <dir>]
If this project does not have public pipelines, you will need to first:
export GITLAB_PRIVATE_TOKEN=<generated_token>
... then follow the printed instructions.
```
When run locally, the `spack ci reproduce-build` command shown above will download and process the job artifacts from gitlab, then print out instructions you can copy-paste to run a local reproducer of the CI job.
This PR includes a few other changes to the way pipelines work, see the documentation on pipelines for more details.
This PR erelies on
~- [ ] #23194 to be able to refer to uninstalled specs by DAG hash~
EDIT: that is going to take longer to come to fruition, so for now, we will continue to install specs represented by a concrete `spec.yaml` file on disk.
- [x] #22657 to support install a single spec already present in the active, concrete environment
I would like to be able to export (and save and then load programatically)
spack blame metadata, so this commit adds a spack blame --json argument,
along with developer docs for it
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
This work will come in two phases. The first here is to allow saving of a local result
with spack monitor, and the second will add a spack monitor command so the user can
do spack monitor upload.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Bash has a builtin `fc` that will override the compiler if you use "fc",
so it's better to use the full spack-supplied compiler path.
Additionally, the filter regex in the docs was wrong: it replaced the
entire assignment operation with the RHS.