This PR supports the creation of securely signed binaries built from spack
develop as well as release branches and tags. Specifically:
- remove internal pr mirror url generation logic in favor of buildcache destination
on command line
- with a single mirror url specified in the spack.yaml, this makes it clearer where
binaries from various pipelines are pushed
- designate some tags as reserved: ['public', 'protected', 'notary']
- these tags are stripped from all jobs by default and provisioned internally
based on pipeline type
- update gitlab ci yaml to include pipelines on more protected branches than just
develop (so include releases and tags)
- binaries from all protected pipelines are pushed into mirrors including the
branch name so releases, tags, and develop binaries are kept separate
- update rebuild jobs running on protected pipelines to run on special runners
provisioned with an intermediate signing key
- protected rebuild jobs no longer use "SPACK_SIGNING_KEY" env var to
obtain signing key (in fact, final signing key is nowhere available to rebuild jobs)
- these intermediate signatures are verified at the end of each pipeline by a new
signing job to ensure binaries were produced by a protected pipeline
- optionallly schedule a signing/notary job at the end of the pipeline to sign all
packges in the mirror
- add signing-job-attributes to gitlab-ci section of spack environment to allow
configuration
- signing job runs on special runner (separate from protected rebuild runners)
provisioned with public intermediate key and secret signing key
This PR builds on #28392 by adding a convenience command to create a local mirror that can be used to bootstrap Spack. This is to overcome the inconvenience in setting up this mirror manually, which has been reported when trying to setup Spack on air-gapped systems.
Using this PR the user can create a bootstrapping mirror, on a machine with internet access, by:
% spack bootstrap mirror --binary-packages /opt/bootstrap
==> Adding "clingo-bootstrap@spack+python %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "gnupg@2.3: %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "patchelf@0.13.1:0.13.99 %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding binary packages from "https://github.com/alalazo/spack-bootstrap-mirrors/releases/download/v0.1-rc.2/bootstrap-buildcache.tar.gz" to the mirror at /opt/bootstrap/local-mirror
To register the mirror on the platform where it's supposed to be used run the following command(s):
% spack bootstrap add --trust local-sources /opt/bootstrap/metadata/sources
% spack bootstrap add --trust local-binaries /opt/bootstrap/metadata/binaries
The mirror has to be moved over to the air-gapped system, and registered using the commands shown at prompt. The command has options to:
1. Add pre-built binaries downloaded from Github (default is not to add them)
2. Add development dependencies for Spack (currently the Python packages needed to use spack style)
* bootstrap: refactor bootstrap.yaml to move sources metadata out
* bootstrap: allow adding/removing custom bootstrapping sources
This operation can be performed from the command line since
new subcommands have been added to `spack bootstrap`
* Add --trust argument to spack bootstrap add
* Add a command to generate a local mirror for bootstrapping
* Add a unit test for mirror creation
Error messages for the clingo concretizer have proven challenging. The current messages are incredibly vague and often don't help users at all. Unsat cores in clingo are not guaranteed to be minimal, and lead to cores that are either not useful or need to be post-processed for hours to reach a minimal core.
Following up on an idea from a slack conversation with kwryankrattiger on slack, this PR takes a new approach. We eliminate most integrity constraints and minima/maxima on choice rules in clingo, and instead force invalid states to imply an error predicate. The error predicate can include context on the cause of the error (Package, Version, etc). These error predicates are then heavily optimized against, to ensure that we do not include error facts in the solution when a solution with no error facts could be generated. When post-processing the clingo solution to construct specs, any error facts cause the program to raise an exception. This leads to much more legible error messages. Each error predicate includes a priority and an error message. The error message is formatted by the remaining arguments to produce the error message. The priority is used to ensure that when clingo has a choice of which rules to violate, it chooses the one which will be most informative to the user.
Performance:
"fresh" concretizations appear to suffer a ~20% performance penalty under this branch, while "reuse" concretizations see a speedup of around 33%.
Possible optimizations if users still see unhelpful messages:
There are currently 3 levels of priority of the error messages. Additional priorities are possible, and can allow us finer granularity to ensure more informative error messages are provided in lieu of less informative ones.
Future work:
Improve tests to ensure that every possible rule implying an error message is exercised
This removes all but one usage of runtime hash. The runtime hash was being used to write
historical lockfiles for tests, but we don't need it for that; we can just save those
lockfiles.
- [x] add legacy lockfiles for v1, v2, v3
- [x] fix bugs with v1 lockfile tests (the dummy lockfile we were writing was not actually
a v1 lockfile because it used the new spec file format).
- [x] remove all but one runtime_hash usage -- that one needs a small rework of the
concretizer to really fix, as it's about separate concretization of build
dependencies.
- [x] Document the history of the lockfile format in `environment/__init__.py`
`make` solves a lot of headaches that would otherwise have to be implemented in Spack:
1. Parallelism over packages through multiple `spack install` processes
2. Orderly output of parallel package installs thanks to `make --sync-output=recurse` or `make -Orecurse` (works well in GNU Make 4.3; macOS is unfortunately on a 16 years old 3.x version, but it's one `spack install gmake` away...)
3. Shared jobserver across packages, which means a single `-j` to rule them all, instead of manually finding a balance between `#spack install processes` & `#jobs per package` (See #30302).
This pr adds the `spack env depfile` command that generates a Makefile with dag hashes as
targets, and dag hashes of dependencies as prerequisites, and a command
along the lines of `spack install --only=packages /hash` to just install
a single package.
It exposes two convenient phony targets: `all`, `fetch-all`. The former installs the environment, the latter just fetches all sources. So one can either use `make all -j16` directly or run `make fetch-all -j16` on a login node and `make all -j16` on a compute node.
Example:
```yaml
spack:
specs: [perl]
view: false
```
running
```
$ spack -e . env depfile --make-target-prefix env | tee Makefile
```
generates
```Makefile
SPACK ?= spack
.PHONY: env/all env/fetch-all env/clean
env/all: env/env
env/fetch-all: env/fetch
env/env: env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww
@touch $@
env/fetch: env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc
@touch $@
env/dirs:
@mkdir -p env/.fetch env/.install
env/.fetch/%: | env/dirs
$(info Fetching $(SPEC))
$(SPACK) -e '/tmp/tmp.7PHPSIRACv' fetch $(SPACK_FETCH_FLAGS) /$(notdir $@) && touch $@
env/.install/%: env/.fetch/%
$(info Installing $(SPEC))
+$(SPACK) -e '/tmp/tmp.7PHPSIRACv' install $(SPACK_INSTALL_FLAGS) --only-concrete --only=package --no-add /$(notdir $@) && touch $@
# Set the human-readable spec for each target
env/%/cdqldivylyxocqymwnfzmzc5sx2zwvww: SPEC = perl@5.34.1%gcc@10.3.0+cpanm+shared+threads arch=linux-ubuntu20.04-zen2
env/%/gv5kin2xnn33uxyfte6k4a3bynhmtxze: SPEC = berkeley-db@18.1.40%gcc@10.3.0+cxx~docs+stl patches=b231fcc arch=linux-ubuntu20.04-zen2
env/%/cuymc7e5gupwyu7vza5d4vrbuslk277p: SPEC = bzip2@1.0.8%gcc@10.3.0~debug~pic+shared arch=linux-ubuntu20.04-zen2
env/%/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: SPEC = diffutils@3.8%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws: SPEC = libiconv@1.16%gcc@10.3.0 libs=shared,static arch=linux-ubuntu20.04-zen2
env/%/yfz2agazed7ohevqvnrmm7jfkmsgwjao: SPEC = gdbm@1.19%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/73t7ndb5w72hrat5hsax4caox2sgumzu: SPEC = readline@8.1%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/trvdyncxzfozxofpm3cwgq4vecpxixzs: SPEC = ncurses@6.2%gcc@10.3.0~symlinks+termlib abi=none arch=linux-ubuntu20.04-zen2
env/%/sbzszb7v557ohyd6c2ekirx2t3ctxfxp: SPEC = pkgconf@1.8.0%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/c4go4gxlcznh5p5nklpjm644epuh3pzc: SPEC = zlib@1.2.12%gcc@10.3.0+optimize+pic+shared patches=0d38234 arch=linux-ubuntu20.04-zen2
# Install dependencies
env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww: env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p: env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk
env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws
env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao: env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu
env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu: env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs
env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs: env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp
env/clean:
rm -f -- env/env env/fetch env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
```
Then with `make -O` you get very nice orderly output when packages are built in parallel:
```console
$ make -Orecurse -j16
spack -e . install --only-concrete --only=package /c4go4gxlcznh5p5nklpjm644epuh3pzc && touch c4go4gxlcznh5p5nklpjm644epuh3pzc
==> Installing zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
...
Fetch: 0.00s. Build: 0.88s. Total: 0.88s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
spack -e . install --only-concrete --only=package /sbzszb7v557ohyd6c2ekirx2t3ctxfxp && touch sbzszb7v557ohyd6c2ekirx2t3ctxfxp
==> Installing pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
...
Fetch: 0.00s. Build: 3.96s. Total: 3.96s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
```
For Perl, at least for me, using `make -j16` versus `spack -e . install -j16` speeds up the builds from 3m32.623s to 2m22.775s, as some configure scripts run in parallel.
Another nice feature is you can do Makefile "metaprogramming" and depend on packages built by Spack. This example fetches all sources (in parallel) first, print a message, and only then build packages (in parallel).
```Makefile
SPACK ?= spack
.PHONY: env
all: env
spack.lock: spack.yaml
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-target-prefix spack
fetch: spack/fetch
@echo Fetched all packages && touch $@
env: fetch spack/env
@echo This executes after the environment has been installed
clean:
rm -rf spack/ env.mk spack.lock
ifeq (,$(filter clean,$(MAKECMDGOALS)))
include env.mk
endif
```
This is an amended version of https://github.com/spack/spack/pull/24894 (reverted in https://github.com/spack/spack/pull/29603). https://github.com/spack/spack/pull/24894
broke all instances of `spack external find` (namely when it is invoked without arguments/options)
because it was mandating the presence of a file which most systems would not have.
This allows `spack external find` to proceed if that file is not present and adds tests for this.
- [x] Add a test which confirms that `spack external find` successfully reads a manifest file
if present in the default manifest path
--- Original commit message ---
Adds `spack external read-cray-manifest`, which reads a json file that describes a
set of package DAGs. The parsed results are stored directly in the database. A user
can see these installed specs with `spack find` (like any installed spec). The easiest
way to use them right now as dependencies is to run
`spack spec ... ^/hash-of-external-package`.
Changes include:
* `spack external read-cray-manifest --file <path/to/file>` will add all specs described
in the file to Spack's installation DB and will also install described compilers to the
compilers configuration (the expected format of the file is described in this PR as well including examples of the file)
* Database records now may include an "origin" (the command added in this PR
registers the origin as "external-db"). In the future, it is assumed users may want
to be able to treat installs registered with this command differently (e.g. they may
want to uninstall all specs added with this command)
* Hash properties are now always preserved when copying specs if the source spec
is concrete
* I don't think the hashes of installed-and-concrete specs should change and this
was the easiest way to handle that
* also specs that are concrete preserve their `.normal` property when copied
(external specs may mention compilers that are not registered, and without this
change they would fail in `normalize` when calling `validate_or_raise`)
* it might be this should only be the case if the spec was installed
- [x] Improve testing
- [x] Specifically mark DB records added with this command (so that users can do
something like "uninstall all packages added with `spack read-external-db`)
* This is now possible with `spack uninstall --all --origin=external-db` (this will
remove all specs added from manifest files)
- [x] Strip variants that are listed in json entries but don't actually exist for the package
gitlab ci: Remove code for relating CDash builds
Relating CDash builds to their dependencies was a seldom used feature. Removing
it will make it easier for us to reorganize our CDash projects & build groups in the
future by eliminating the needs to keep track of CDash build ids in our binary mirrors.
Add output of build- and install-time tests to info command
Enable dependencies, variants, and versions by default (i.e., provide --no*
options; add gcc to test_info_fields to increase coverage for c_names->v_names
Adds `spack external read-cray-manifest`, which reads a json file that describes a set of package DAGs. The parsed results are stored directly in the database. A user can see these installed specs with `spack find` (like any installed spec). The easiest way to use them right now as dependencies is to run `spack spec ... ^/hash-of-external-package`.
Changes include:
* `spack external read-cray-manifest --file <path/to/file>` will add all specs described in the file to Spack's installation DB and will also install described compilers to the compilers configuration (the expected format of the file is described in this PR as well including examples of the file)
* Database records now may include an "origin" (the command added in this PR registers the origin as "external-db"). In the future, it is assumed users may want to be able to treat installs registered with this command differently (e.g. they may want to uninstall all specs added with this command)
* Hash properties are now always preserved when copying specs if the source spec is concrete
* I don't think the hashes of installed-and-concrete specs should change and this was the easiest way to handle that
* also specs that are concrete preserve their `.normal` property when copied (external specs may mention compilers that are not registered, and without this change they would fail in `normalize` when calling `validate_or_raise`)
* it might be this should only be the case if the spec was installed
- [x] Improve testing
- [x] Specifically mark DB records added with this command (so that users can do something like "uninstall all packages added with `spack read-external-db`)
* This is now possible with `spack uninstall --all --origin=external-db` (this will remove all specs added from manifest files)
- [x] Strip variants that are listed in json entries but don't actually exist for the package
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
* Add 'make-installer' command for Windows
* Add '--bat' arg to env activate, env deactivate and unload commands
* An equivalent script to setup-env on linux: spack_cmd.bat. This script
has a wrapper to evaluate cd, load/unload, env activate/deactivate.(#21734)
* Add spacktivate and config editor (#22049)
* spack_cmd: will find python and spack on its own. It preferentially
tries to use python on your PATH (#22414)
* Ignore Windows python installer if found (#23134)
* Bundle git in windows installer (#23597)
* Add Windows section to Getting Started document
(#23131), (#23295), (#24240)
Co-authored-by: Stephen Crowell <stephen.crowell@kitware.com>
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
Co-authored-by: Jared Popelar <jpopelar@txcorp.com>
Co-authored-by: Ben Cowan <benc@txcorp.com>
Update Installer CI
Co-authored-by: John Parent <john.parent@kitware.com>
We can see what is in the bootstrap store with `spack find -b`, and you can clean it with `spack
clean -b`, but we can't do much else with it, and if there are bootstrap issues they can be hard to
debug.
We already have `spack --mock`, which allows you to swap in the mock packages from the command
line. This PR introduces `spack -b` / `spack --bootstrap`, which runs all of spack with
`ensure_bootstrap_configuration()` set. This means that you can run `spack -b find`, `spack -b
install`, `spack -b spec`, etc. to see what *would* happen with bootstrap configuration, to remove
specific bootstrap packages, etc. This will hopefully make developers' lives easier as they deal
with bootstrap packages.
This PR also uses a `nullcontext` context manager. `nullcontext` has been implemented in several
other places in Spack, and this PR consolidates them to `llnl.util.lang`, with a note that we can
delete the function if we ever reqyire a new enough Python.
- [x] introduce `spack --bootstrap` option
- [x] consolidated all `nullcontext` usages to `llnl.util.lang`
See https://github.com/spack/spack/issues/25353#issuecomment-1041868116
This commit changes the default behavior of
```
$ spack external find
```
from searching all the possible packages Spack knows about to
search only for the ones tagged as being a "build-tool".
It also introduces a `--all` option to restore the old behavior.
Since Spack does not install external packages, this commit skips them by
default when running stand-alone tests. The assumption is that such packages
have likely undergone an acceptance test process.
However, the tests can be run against installed externals using
```
% spack test run --externals ...
```
`--reuse` was previously handled individually by each command that
needed it. We are growing more concretization options, and they'll
need their own section for commands that support them.
Now there are two concretization options:
* `--reuse`: Attempt to reuse packages from installs and buildcaches.
* `--fresh`: Opposite of reuse -- traditional spack install.
To handle thes, this PR adds a `ConfigSetAction` for `argparse`, so
that you can write argparse code like this:
```
subgroup.add_argument(
'--reuse', action=ConfigSetAction, dest="concretizer:reuse",
const=True, default=None,
help='reuse installed dependencies/buildcaches when possible'
)
```
With this, you don't need to add logic to pull the argument out and
handle it; the `ConfigSetAction` just does it for you. This can probably
be used to clean up some other commands later, as well.
Code that was previously passing `reuse=True` around everywhere has
been refactored to use config, and config is set from the CLI using
a new `add_concretizer_args()` function in `spack.cmd.common.arguments`.
- [x] Add `ConfigSetAction` to simplify concretizer config on the CLI
- [x] Refactor code so that it does not pass `reuse=True` to every function.
- [x] Refactor commands to use `add_concretizer_args()` and to pass
concretizer config using the config system.
To make it easier to see how package hashes change and how they are computed, add two
commands:
* `spack pkg source <spec>`: dumps source code for a package to the terminal
* `spack pkg source --canonical <spec>`: dumps canonicalized source code for a
package to the terminal. It strips comments, directives, and known-unused
multimethods from the package. It is used to generate package hashes.
* `spack pkg hash <spec>`: This gives the package hash for a particular spec.
It is generated from the canonical source code for the spec.
- [x] `add spack pkg source` and `spack pkg hash`
- [x] add tests
- [x] fix bug in multimethod resolution with boolean `@when` values
Co-authored-by: Greg Becker <becker33@llnl.gov>
This command pokes the environment, Python interpreter
and bootstrap store to check if dependencies needed by
Spack are available.
If any are missing, it shows a comprehensible message.
spack monitor now requires authentication as each build must be associated
with a user, so it does not make sense to allow the --monitor-no-auth flag
and this commit will remove it
This commit introduces the command
spack module tcl setdefault <package>
similar to the one already available for lmod
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
This PR is meant to move code with "business logic" from `spack.cmd.buildcache` to appropriate core modules[^1].
Modifications:
- [x] Add `spack.binary_distribution.push` to create a binary package from a spec and push it to a mirror
- [x] Add `spack.binary_distribution.install_root_node` to install only the root node of a concrete spec from a buildcache (may check the sha256 sum if it is passed in as input)
- [x] Add `spack.binary_distribution.install_single_spec` to install a single concrete spec from a buildcache
- [x] Add `spack.binary_distribution.download_single_spec` to download a single concrete spec from a buildcache to a local destination
- [x] Add `Spec.from_specfile` that construct a spec given the path of a JSON or YAML spec file
- [x] Removed logic from `spack.cmd.buildcache`
- [x] Removed calls to `spack.cmd.buildcache` in `spack.bootstrap`
- [x] Deprecate `spack buildcache copy` with a message that says it will be removed in v0.19.0
[^1]: The rationale is that commands should be lightweight wrappers of the core API, since that helps with both testing and scripting (easier mocking and no need to invoke `SpackCommand`s in a script).
* Add connection specification to mirror creation
This allows each mirror to contain information about the credentials
used to access it.
Update command and tests based on comments
Switch to only "long form" flags for the s3 connection information.
Use the "any" function instead of checking for an empty list when looking
for s3 connection information.
Split test to use the access token separately from the access id and key.
Use long flag form in test.
Add endpoint_url to available S3 options.
Extend the special parameters for an S3 mirror to accept the
endpoint_url parameter.
Add a test.
* Add connection information per URL not per mirror
Expand the mirror-based connection information to be per-URL.
This will allow a user to specify different S3 connection information
for both the fetch and the push URLs.
Add a parameter for "profile", another way of storing the id/secret pair.
* Switch from "access_profile" to "profile"
See #25249 and https://github.com/spack/spack/pull/27159#issuecomment-958163679.
This adds `spack load --list` as an alias for `spack find --loaded`. The new command is
not as powerful as `spack find --loaded`, as you can't combine it with all the queries or
formats that `spack find` provides. However, it is more intuitively located in the command
structure in that it appears in the output of `spack load --help`.
The idea here is that people can use `spack load --list` for simple stuff but fall back to
`spack find --loaded` if they need more.
- add help to `spack load --list` that references `spack find`
- factor some parts of `spack find` out to be called from `spack load`
- add shell tests
- update docs
Co-authored-by: Peter Josef Scheibel <scheibel1@llnl.gov>
Co-authored-by: Richarda Butler <39577672+RikkiButler20@users.noreply.github.com>
* GnuPG: allow bootstrapping from buildcache and sources
* Add a test to bootstrap GnuPG from binaries
* Disable bootstrapping in tests
* Add e2e test to bootstrap GnuPG from sources on Ubuntu
* Add e2e test to bootstrap GnuPG on macOS
The `--generic` argument allows printing the best generic target for the
current machine. This can be quite handy when wanting to find the
generic architecture to use when building a shared software stack for
multiple machines.
This PR adds a "spack tags" command to output package tags or
(available) packages with those tags. It also ensures each package
is listed in the tag cache ONLY ONCE per tag.
Currently spack is a bit of a bad actor as a zsh plugin, and it was my
fault. The autoload and compinit should really be handled by the user,
as was made abundantly clear when I found spack was doing completion
initialization for *all* of my plugins due to a deferred setup that was
getting messed up by it.
Making this conditional took spack load time from 1.5 seconds (with
module loading disabled) to 0.029 seconds. I can actually afford to load
spack by default with this change in.
Hopefully someday we'll do proper zsh completion support, but for now
this helps a lot.
* use zsh hist expansion in place of dirname
* only run (bash)compinit if compdef/complete missing
* add zsh compiled files to .gitignore
* move changes to .in file, because spack
This PR permits to specify the `url` and `ref` of the Spack instance used in a container recipe simply by expanding the YAML schema as outlined in #20442:
```yaml
container:
images:
os: amazonlinux:2
spack:
ref: develop
resolve_sha: true
```
The `resolve_sha` option, if true, verifies the `ref` by cloning the Spack repository in a temporary directory and transforming any tag or branch name to a commit sha. When this new ability is leveraged an additional "bootstrap" stage is added, which builds an image with Spack setup and ready to install software. The Spack repository to be used can be customized with the `url` keyword under `spack`.
Modifications:
- [x] Permit to pin the version of Spack, either by branch or tag or sha
- [x] Added a few new OSes (centos:8, amazonlinux:2, ubuntu:20.04, alpine:3, cuda:11.2.1)
- [x] Permit to print the bootstrap image as a standalone
- [x] Add documentation on the new part of the schema
- [x] Add unit tests for different use cases
Creates an environment in a temporary directory and activates it, which
is useful for a quick ephemeral environment:
```
$ spack env activate -p --temp
[spack-1a203lyg] $ spack add zlib
==> Adding zlib to environment /tmp/spack-1a203lyg
==> Updating view at /tmp/spack-1a203lyg/.spack-env/view
```