Openmpi provider statements were changed in #46102. The package change
was fine in and of itself, but apparently one of our tests depends on
the precise constraints used in those statements. I updated the test
to remove the checks for constraints that were removed.
* CUDA: support Grace Hopper 9.0a compute capability
* Fix other packages
* Add type annotations
* Support ancient Python versions
* isort
* spec -> self.spec
Co-authored-by: Andrew W Elble <aweits@rit.edu>
* [@spackbot] updating style on behalf of adamjstewart
---------
Co-authored-by: Andrew W Elble <aweits@rit.edu>
Co-authored-by: adamjstewart <adamjstewart@users.noreply.github.com>
The option config:install_missing_compilers is currently buggy,
and has been for a while. Remove it, since it won't be needed
when compilers are treated as dependencies.
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
`spack reindex` relies on projections from configuration to locate
installed specs and prefixes. This is problematic because config can
change over time, and we have reasons to do so when turning compilers
into depedencies (removing `{compiler.name}-{compiler.version}` from
projections)
This commit makes reindex recursively search for .spack/ metadirs.
When a package is running `setup_dependent_package` on a parent, ensure
that module variables like `spack_cc` are available. This was often
true prior to this commit, but externals were an exception.
---------
Co-authored-by: John Parent <john.parent@kitware.com>
Allow flags from different sources (compilers, `require:`, command-line
specs, and `depends_on`) to be merged together, and enforce a consistent
order among them.
The order is based on the sources, e.g. flags on specs from the command
line always come last. Some flag order consistency issues are fixed:
1. Flags from `compilers.yaml` and the command line were always intra- and
inter-source order consistent.
2. Flags from dependents and packages.yaml (introduced via `require:`)
were not: for `-a -b` from one source and `-c` from another, the final
result might rearrange `-a -b`, and would also be inconsistent in terms
of whether `-c` came before or after.
(1) is/was handled by going back to the original source, i.e., flags are
retrieved directly from the command line spec rather than the solver.
(2) is addressed by:
* Keeping track of grouped flags in the solver
* Keeping track of flag sources in the solver on a per-flag basis
The latter info is used in this PR to enforce DAG ordering on flags
applied from multiple dependents to the same package, e.g., for this
graph:
```
a
/|\
b | c
\|/
d
```
If `a`, `b`, and `c` impose flags on `d`, the combined flags on `d` will
contain the flags of `a`, `b`, and `c` -- in that order.
Conflicting flags are allowed (e.g. -O2 and -O3). `Spec.satisifes()` has
been updated such that X satisfies Y as long as X has *at least* all of
the flags that Y has. This is also true in the solver constraints.
`.satisfies` does not account for how order can change behavior (so
`-O2 -O3` can satisfy `-O3 -O2`); it is expected that this can be
addressed later (e.g. by prohibiting flag conflicts).
`Spec.constrain` and `.intersects` have been updated to be consistent
with this new definition of `.satisfies`.
Spack can now bootstrap two new dependencies on Windows: GnuPG, and file.
These dependencies are modeled as a separate package, and they install a cross-compiled binary.
Details on how they binaries are built are in https://github.com/spack/windows-bootstrap-resources
* Allow deprecating more than one property in config
This internal change allows the customization of errors
and warnings to be printed when deprecating a property.
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* fix
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* Use a list comprehension for "issues"
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
---------
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
fixes#40791
Currently stacks behave differently if used in unify:false
environments, which leads to inconsistencies during concretization.
For instance, we might have two abstract user specs that do not
intersect with each other map to the same concrete spec in the
environment. This is clearly wrong.
This PR removes the best effort expansion, so that user specs
are always applied strictly.
This PR simplifies the code doing external spec detection by removing
the `DetectedPackage` class. Now, functions accepting or returning lists
of `DetectedPackage`, will accept or return list of specs.
Performance doesn't seem to change if we use `Spec.__reduce__` instead
of `DetectionPackage.__reduce__`.
Change the signature of Spec.from_detection to set the
external prefix, and the external modules, if they are
present.
Delete "spack.package_prefs.spec_externals" since it
is unused.