* Add options for sparse checkout in GitFetcher
Newer versions of git have a beta feature called sparse checkout
that allow users to check out a portion of a large repo.
This feature will be ideal for monolithic repo projects that want to
model their infrastructure via spack. This PR implements an addition
to the GitFetcher that allows users to add a `git_sparse_paths`
attribute to package classes or versions which will then use sparse
checkout on those directories/files for the package.
* Style
* Split git clone into multiple functions
* Add sparse-checkout impl
* Internalize src clone functions
* Docs
* Adding sparse clone test
* Add test for partial clone
* [@spackbot] updating style on behalf of psakievich
* Small fixes
* Restore default branch status
* Fix attributes for package
* Update lib/spack/docs/packaging_guide.rst
Co-authored-by: Matthew Mosby <44072882+mdmosby@users.noreply.github.com>
* Extend unit test to multiple git versions
* style
---------
Co-authored-by: psakievich <psakievich@users.noreply.github.com>
Co-authored-by: Matthew Mosby <44072882+mdmosby@users.noreply.github.com>
"spack buildcache push" for partially installed environments pushes all it
can by default, and only dumps errors towards the end.
If --fail-fast is provided, error out before pushing anything if any
of the packages is uninstalled
oci build caches using parallel push now use futures to ensure pushing
goes in best-effort style.
Remove support for `cray` as a separate platform.
Any platform previously detected as `cray` is now detected as `linux`.
Users who still need platform=cray have to stick to Spack 0.22
Add the ability to include any number of (potentially nested) concrete environments, e.g.:
```yaml
spack:
specs: []
concretizer:
unify: true
include_concrete:
- /path/to/environment1
- /path/to/environment2
```
or, from the CLI:
```console
$ spack env create myenv
$ spack -e myenv add python
$ spack -e myenv concretize
$ spack env create --include-concrete myenv included_env
```
The contents of included concrete environments' spack.lock files are
included in the environment's lock file at creation time. Any changes
to included concrete environments are only reflected after the environment
is re-concretized from the re-concretized included environments.
- [x] Concretize included envs
- [x] Save concrete specs in memory by hash
- [x] Add included envs to combined env's lock file
- [x] Add test
- [x] Update documentation
Co-authored-by: Kayla Butler <<butler59@llnl.gov>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.co
m>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
This commit adds a layer of indirection to improve build isolation with
and without external Python, as well as usability of environment views.
It adds `python-venv` as a dependency to all packages that `extends("python")`,
which has the following advantages:
1. Build isolation: only `PYTHONPATH` is considered in builds, not
user / system packages
2. Stable install layout: fixes the problem on Debian, RHEL and Fedora where
external / system python produces `bin/local` subdirs in Spack install prefixes.
3. Environment views are Python virtual environments (and if you add
`py-pip` things like `pip list` work)
Views work whether they're symlink, hardlink or copy type.
This commit additionally makes `spec["python"].command` return
`spec["python-venv"].command`. The rationale is that packages in repos we do
not own do not pass the underlying python to the build system, which could still
result in incorrectly computed install layouts.
Other attributes like `libs`, `headers` should be on `python` anyways and need no change.
This creates shared infrastructure for compiler packages to implement the
detailed search capabilities from the `spack compiler find` command for the
`spack external find` command.
After this commit, `spack compiler find` can be replaced with
`spack external find --tag compiler`, with the exception of mixed toolchains.
A named env cannot contain `.` and `/`.
So when a user runs `spack env create ./here` do not error but treat it
as `spack env create -d ./here`.
Also fix help string of `spack env create`, which seems to have been
copied from `activate` incorrectly.
We recently switched to using the new ReadTheDocs with "addons". That includes its own
analytics, which is nice, but we also want to continue using our GA4 analytics.
Adding GA4 is no longer supported by RTD, so we have to add it manually.
- [x] re-add the gtag to all pages, manually
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Adds a pre-concretization check for the Windows SDK and WGL (Windows
GL) packages as non-buildable externals.
This is a redo of https://github.com/spack/spack/pull/43459, but makes
sure to modify the configuration scope outside of the bootstrap scope:
whichever is highest-precedence in the user's environment at the time
the concretization runs, which should either be an env scope or the
~ scope.
Adds pytest fixture mocking the check for WGL and WSDK as if they were
present.
This PR gives users finer control over which specs are reused during concretization.
The value of the `concretizer:reuse` config option now can take an object with the following properties:
- `roots`: true if reusing roots, false if reusing just dependencies
- `exclude`: list of constraints used to select reusable specs
- `include`: list of constraints used to select reusable specs
- `from`: allows to select the sources of reused specs
### Examples
#### Reuse only specs compiled with GCC
```yaml
concretizer:
reuse:
roots: true
include:
- "%gcc"
```
#### `openmpi` must be used from externals, and it must be the only external used
```yaml
concretizer:
reuse:
roots: true
from:
- type: local
exclude:
- "openmpi"
- type: buildcache
exclude:
- "openmpi"
- type: external
include:
- "openmpi"
```