I know that it's just an example, but I was trying to figure out what was going on and it wasn't making sense....
`tput sgr0` resets the terminal state (http://linuxcommand.org/lc3_adv_tput.php) and I can't see any reason to do it twice. Deleting the second occurrence doesn't seem to break the fancy prompt effect.
Packages can implement “detect_version” to support detection
of external instances of a package. This is generally easier
than implementing “determine_spec_details”. The API for
determine_version is similar: for example you can return
“None” to indicate that an executable is not an instance
of a package.
Users may implement a “determine_variants” method for a package.
When doing external detection, executables are grouped by version
and each group results in a single invocation of “determine_variants”
for the associated spec. The method returns a string specifying
the variants for the package. The method may additionally return
a dictionary representing extra attributes for the package.
These will be stored in the spec yaml and can be retrieved
from self.spec.extra_attributes
The Spack GCC package has been updated with an implementation
of “determine_variants” which adds the following extra
attributes to the package: c, cxx, fortran
The YAML config for paths and modules of external packages has
changed: the new format allows a single spec to load multiple
modules. Spack will automatically convert from the old format
when reading the configs (the updates do not add new essential
properties, so this change in Spack is backwards-compatible).
With this update, Spack cannot modify existing configs/environments
without updating them (e.g. “spack config add” will fail if the
configuration is in a format that predates this PR). The user is
prompted to do this explicitly and commands are provided. All
config scopes can be updated at once. Each environment must be
updated one at a time.
* Run Python2.6 unit tests on Github Actions
* Skip url tests on Python 2.6 to reduce waiting times
* Skip foreground background tests on Python 2.6 to reduce waiting times
* Removed references to Travis in the documentation
* Deleted install_patchelf.sh (can be installed from repo on CentOS 6)
We got rid of `master` after #17377, but users still want a way to get
the latest stable release without knowing its number.
We've added a `releases/latest` tag to replace what was once `master`.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
- [x] Remove references to `master` branch
- [x] Document how release branches are structured
- [x] Document how to make a major release
- [x] Document how to make a point release
- [x] Document how to do work in our release projects
[george.hartzell@172-16-193-97 spack-explore-docker]$ spack containerize
Running `spack containerize` with the example `spack.yaml` file fails
with an error that ends like so:
```
[...]
File "/local_scratch/hartzell/tmp/spack-explore-docker/lib/spack/external/ruamel/yaml/scanner.py", line 165, in need_more_tokens
self.stale_possible_simple_keys()
File "/local_scratch/hartzell/tmp/spack-explore-docker/lib/spack/external/ruamel/yaml/scanner.py", line 309, in stale_possible_simple_keys
"could not find expected ':'", self.get_mark())
ruamel.yaml.scanner.ScannerError: while scanning a simple key
in "/local_scratch/hartzell/tmp/spack-explore-docker/spack.yaml", line 26, column 1
could not find expected ':'
in "/local_scratch/hartzell/tmp/spack-explore-docker/spack.yaml", line 28, column 5
```
Indenting the block string fixes the problem for me.
CentOS 7,
```
$ spack --version
0.14.2-1529-ec58f28c2
```
* env: no automatic activation
* Ensure ci rebuild jobs activate the environment (no longer automagic)
Co-authored-by: Scott Wittenburg <scott.wittenburg@kitware.com>
* Separate Apple Clang from LLVM Clang
Apple Clang is a compiler of its own. All places
referring to "-apple" suffix have been updated.
* Hack to use a dash in 'apple-clang'
To be able to use autodoc from Sphinx we need
a valid Python name for the module that contains
Apple's Clang code.
* Updated packages to account for the existence of apple-clang
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* Added unit test for XCode related functions
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This change also adds a code path through the spack ci pipelines
infrastructure which supports PR testing on the Spack repository.
Gitlab pipelines run as a result of a PR (either creation or pushing
to a PR branch) will only verify that the packages in the environment
build without error. When the PR branch is merged to develop,
another pipeline will run which results in the generated binaries
getting pushed to the binary mirror.
Packages built with lmod core_compiler are placed in `Core`.
Other packages may belong in `Core`. For example, python may be built with a proprietary compiler for performance, but belong on the `Core` directory.
With this PR, lmod config can include a `core_specs` list. Any package that satisfies a spec in that list is placed in `Core`, regardless of its compiler or dependencies.
This improves the documentation for `spack external find` in several ways:
* Provide a code example of implementing `determine_spec_details` for a package
* Explain how to define executables to look for (and also e.g. that they are treated as regular expressions and so can pull in unexpected files).
* Add the "why" for a couple of constraints (i.e. explain that this logic only works for build/run deps because it examines `PATH` for executables)
* Spread the docs between build customization and packaging sections
* Add cross-references
* Add a label so that `spack external find` is linked from the command reference.
Add a `spack external find` command that tries to populate
`packages.yaml` with external packages from the user's `$PATH`. This
focuses on finding build dependencies. Currently, support has only been
added for `cmake`.
For a package to be discoverable with `spack external find`, it must define:
* an `executables` class attribute containing a list of
regular expressions that match executable names.
* a `determine_spec_details(prefix, specs_in_prefix)` method
Spack will call `determine_spec_details()` once for each prefix where
executables are found, passing in the path to the prefix and the path to
all found executables. The package is responsible for invoking the
executables and figuring out what type of installation(s) are in the
prefix, and returning one or more specs (each with version, variants or
whatever else the user decides to include in the spec).
The found specs and prefixes will be added to the user's `packages.yaml`
file. Providing the `--not-buildable` option will mark all generated
entries in `packages.yaml` as `buildable: False`
Since #9481 Python's None is not permitted as a value for
MV variants. The string 'none' is used instead.
Add the same fix for the amgx and lammps packages
To specify an environment for a comment, the user can specify
"spack -e <env>". The documentation incorrectly specified "-E" (which
is actually used to ignore any implicit use of environments).
Since #16132, we've consolidated the setting of FORCE_UNSAFE_CONFIGURE to
`autotools.py`, so we don't need to use it in packages like `coreutils`,
in our commands, or in our container recipes.
- [x] Remove FORCE_UNSAFE_CONFIGURE from packages
- [x] Remove FORCE_UNSAFE_CONFIGURE from container recipes
- [x] Remove FORCE_UNSAFE_CONFIGURE from `spack ci` command
* Moved link to the right place in the docs
* Fixed a few minor issues in extensions docs
Fixed a typo, added a subsubsection for better
navigation, reworded "modules in Python" as
"Python packages"
Currently, to force Spack to use an external MPI, you have to specify `buildable: False`
for every MPI provider in Spack in your packages.yaml file. This is both tedious and
fragile, as new MPI providers can be added and break your workflow when you do a
git pull.
This PR allows you to specify an entire virtual dependency as non-buildable, and
specify particular implementations to be built:
```
packages:
all:
providers:
mpi: [mpich]
mpi:
buildable: false
paths:
mpich@3.2 %gcc@7.3.0: /usr/packages/mpich-3.2-gcc-7.3.0
```
will force all Spack builds to use the specified `mpich` install.
* try extend path to solve PyQt5.sip not found issue
* disable private sip installation in sippackage class
* undo manual PyQt5 dir creation in py-sip site-packages dir
* fix typo
* fix typo
* also apply fix to PyQt4
* tidy up
* flake8 and tidy up
* tidy and undo hardcoding of python_include_dir
* replace hardcoded python inc dir
* fix minor issues
* rethink include dir variable name
* improve style
* add new versions
* implement new sip setup to qsci installation
* set sip-incdir correctly for the new setup
* setup extend_path thing before qsci python bindings
* take care of conflict
* flake8
* also extend for PyQt4
* improve style
* improve style
* SipPackage build sys should depend on py-sip
* consolidate extend_path fixes into SipPackage
* fix typo
* fix bugs
* flake8
* revert sip doc to pre-resource setup
* import os module
* flake8
Co-authored-by: Sinan81 <sbulut@3vgeomatics.com>
Add a 'define_from_variant` helper function to CMake-based Spack
packages to convert package variants into CMake arguments. For
example:
args.append('-DFOO=%s' % ('ON' if '+foo' in self.spec else 'OFF'))
can be replaced with:
args.append(self.define_from_variant('foo'))
The following conversions are handled automatically:
* Flag variants will be converted to CMake booleans
* Multivalued variants will be converted to semicolon-separated strings
* Other variant values are converted to CMake string arguments
This also adds a 'define' helper method to convert any variable to
a CMake argument. It has the same conversion rules as
'define_from_variant' (but operates directly on values rather than
requiring the user to supply the name of a package variant).