The idea is to go from most to least used: backward compat -> forward compat -> pinning on major or major.minor version -> pinning specific, concrete versions.
Further, the following
```python
# backward compatibility with Python
depends_on("python@3.8:")
depends_on("python@3.9:", when="@1.2:")
depends_on("python@3.10:", when="@1.4:")
# forward compatibility with Python
depends_on("python@:3.12", when="@:1.10")
depends_on("python@:3.13", when="@:1.12")
depends_on("python@:3.14")
```
is better than disjoint when ranges causing repetition of the rules on dependencies, and requiring frequent editing of existing lines after new releases are done:
```python
depends_on("python@3.8:3.12", when="@:1.1")
depends_on("python@3.9:3.12", when="@1.2:1.3")
depends_on("python@3.10:3.12", when="@1.4:1.10")
depends_on("python@3.10:3.13", when="@1.11:1.12")
depends_on("python@3.10:3.14", when="@1.13:")
Currently the order in which hooks are run is arbitrary.
This can be fixed by sorted(list_modules(...)) but I think it is much
more clear to just have a static list.
Hooks are not extensible other than modifying Spack code, which
means it's unlikely people maintain custom hooks since they'd have
to fork Spack. And if they fork Spack, they might as well add an entry
to the list when they're continuously rebasing.
ci: Remove deprecated logic from the ci module
Remove the following from the ci module, schema, and tests:
- deprecated ci stack and handling of old ci config
- deprecated mirror handling logic
- support for artifacts buildcache
- support for temporary storage url
Remove the constraint for concrete specs and simply take the
max(version) if a version is not given. This should default to the
highest infinity version which is also the logical best guess for
doing development.
* Remove concrete verision constriant for develop, set docs
* Add unit-test
* Update lib/spack/docs/environments.rst
Co-authored-by: kwryankrattiger <80296582+kwryankrattiger@users.noreply.github.com>
* Update lib/spack/spack/cmd/develop.py
Co-authored-by: Greg Becker <becker33@llnl.gov>
* Consolidate env collection in cmd
* Style
---------
Co-authored-by: kwryankrattiger <80296582+kwryankrattiger@users.noreply.github.com>
Co-authored-by: Greg Becker <becker33@llnl.gov>
This PR allows users to configure explicit splicing replacement of an abstract spec in the concretizer.
concretizer:
splice:
explicit:
- target: mpi
replacement: mpich/abcdef
transitive: true
This config block would mean "for any spec that concretizes to use mpi, splice in mpich/abcdef in place of the mpi it would naturally concretize to use. See #20262, #26873, #27919, and #46382 for PRs enabling splicing in the Spec object. This PR will be the first place the splice method is used in a user-facing manner. See https://spack.readthedocs.io/en/latest/spack.html#spack.spec.Spec.splice for more information on splicing.
This will allow users to reuse generic public binaries while splicing in the performant local mpi implementation on their system.
In the config file, the target may be any abstract spec. The replacement must be a spec that includes an abstract hash `/abcdef`. The transitive key is optional, defaulting to true if left out.
Two important items to note:
1. When writing explicit splice config, the user is in charge of ensuring that the replacement specs they use are binary compatible with whatever targets they replace. In practice, this will likely require either specific knowledge of what packages will be installed by the user's workflow, or somewhat more specific abstract "target" specs for splicing, to ensure binary compatibility.
2. Explicit splices can cause the output of the concretizer not to satisfy the input. For example, using the config above and consider a package in a binary cache `hdf5/xyzabc` that depends on mvapich2. Then the command `spack install hdf5/xyzabc` will instead install the result of splicing `mpich/abcdef` into `hdf5/xyzabc` in place of whatever mvapich2 spec it previously depended on. When this occurs, a warning message is printed `Warning: explicit splice configuration has caused the the concretized spec {concrete_spec} not to satisfy the input spec {input_spec}".
Highlighted technical details of implementation:
1. This PR required modifying the installer to have two separate types of Tasks, `RewireTask` and `BuildTask`. Spliced specs are queued as `RewireTask` and standard specs are queued as `BuildTask`. Each spliced spec retains a pointer to its build_spec for provenance. If a RewireTask is dequeued and the associated `build_spec` is neither available in the install_tree nor from a binary cache, the RewireTask is requeued with a new dependency on a BuildTask for the build_spec, and BuildTasks are queued for the build spec and its dependencies.
2. Relocation is modified so that a spack binary can be simultaneously installed and rewired. This ensures that installing the build_spec is not necessary when splicing from a binary cache.
3. The splicing model is modified to more accurately represent build dependencies -- that is, spliced specs do not have build dependencies, as spliced specs are never built. Their build_specs retain the build dependencies, as they may be built as part of installing the spliced spec.
4. There were vestiges of the compiler bootstrapping logic that were not removed in #46237 because I asked alalazo to leave them in to avoid making the rebase for this PR harder than it needed to be. Those last remains are removed in this PR.
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Tamara Dahlgren <dahlgren1@llnl.gov>
Updated the terminology for the two types of environments to be
consistent with that used in the tutorial for the last three years.
Additionally:
* changed 'anonymous' to 'independent in environment command+test for consistency.
* CI: Add documentation for adding new stacks and runners
* More docs for runner registration
---------
Co-authored-by: Zack Galbreath <zack.galbreath@kitware.com>
Co-authored-by: Bernhard Kaindl <contact@bernhard.kaindl.dev>
The `spack.target.Target` class is a weird entity, that is just needed to:
1. Sort microarchitectures in lists deterministically
2. Being able to use microarchitectures in hashed containers
This PR removes it, and uses `archspec.cpu.Microarchitecture` directly. To sort lists, we use a proper `key=` when needed. Being able to use `Microarchitecture` objects in sets is achieved by updating the external `archspec`.
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
While the existing getting started guide does in fact reference the
powershell support, it's a footnote and easily missed. This PR adds
explicit, upfront mentions of the powershell support. Additionally
this PR adds notes about some of the issues with certain components
of the spec syntax when using CMD.
The option config:install_missing_compilers is currently buggy,
and has been for a while. Remove it, since it won't be needed
when compilers are treated as dependencies.
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
`spack reindex` relies on projections from configuration to locate
installed specs and prefixes. This is problematic because config can
change over time, and we have reasons to do so when turning compilers
into depedencies (removing `{compiler.name}-{compiler.version}` from
projections)
This commit makes reindex recursively search for .spack/ metadirs.
* Add options for sparse checkout in GitFetcher
Newer versions of git have a beta feature called sparse checkout
that allow users to check out a portion of a large repo.
This feature will be ideal for monolithic repo projects that want to
model their infrastructure via spack. This PR implements an addition
to the GitFetcher that allows users to add a `git_sparse_paths`
attribute to package classes or versions which will then use sparse
checkout on those directories/files for the package.
* Style
* Split git clone into multiple functions
* Add sparse-checkout impl
* Internalize src clone functions
* Docs
* Adding sparse clone test
* Add test for partial clone
* [@spackbot] updating style on behalf of psakievich
* Small fixes
* Restore default branch status
* Fix attributes for package
* Update lib/spack/docs/packaging_guide.rst
Co-authored-by: Matthew Mosby <44072882+mdmosby@users.noreply.github.com>
* Extend unit test to multiple git versions
* style
---------
Co-authored-by: psakievich <psakievich@users.noreply.github.com>
Co-authored-by: Matthew Mosby <44072882+mdmosby@users.noreply.github.com>
"spack buildcache push" for partially installed environments pushes all it
can by default, and only dumps errors towards the end.
If --fail-fast is provided, error out before pushing anything if any
of the packages is uninstalled
oci build caches using parallel push now use futures to ensure pushing
goes in best-effort style.
Remove support for `cray` as a separate platform.
Any platform previously detected as `cray` is now detected as `linux`.
Users who still need platform=cray have to stick to Spack 0.22
Add the ability to include any number of (potentially nested) concrete environments, e.g.:
```yaml
spack:
specs: []
concretizer:
unify: true
include_concrete:
- /path/to/environment1
- /path/to/environment2
```
or, from the CLI:
```console
$ spack env create myenv
$ spack -e myenv add python
$ spack -e myenv concretize
$ spack env create --include-concrete myenv included_env
```
The contents of included concrete environments' spack.lock files are
included in the environment's lock file at creation time. Any changes
to included concrete environments are only reflected after the environment
is re-concretized from the re-concretized included environments.
- [x] Concretize included envs
- [x] Save concrete specs in memory by hash
- [x] Add included envs to combined env's lock file
- [x] Add test
- [x] Update documentation
Co-authored-by: Kayla Butler <<butler59@llnl.gov>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.co
m>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
This commit adds a layer of indirection to improve build isolation with
and without external Python, as well as usability of environment views.
It adds `python-venv` as a dependency to all packages that `extends("python")`,
which has the following advantages:
1. Build isolation: only `PYTHONPATH` is considered in builds, not
user / system packages
2. Stable install layout: fixes the problem on Debian, RHEL and Fedora where
external / system python produces `bin/local` subdirs in Spack install prefixes.
3. Environment views are Python virtual environments (and if you add
`py-pip` things like `pip list` work)
Views work whether they're symlink, hardlink or copy type.
This commit additionally makes `spec["python"].command` return
`spec["python-venv"].command`. The rationale is that packages in repos we do
not own do not pass the underlying python to the build system, which could still
result in incorrectly computed install layouts.
Other attributes like `libs`, `headers` should be on `python` anyways and need no change.
This creates shared infrastructure for compiler packages to implement the
detailed search capabilities from the `spack compiler find` command for the
`spack external find` command.
After this commit, `spack compiler find` can be replaced with
`spack external find --tag compiler`, with the exception of mixed toolchains.
A named env cannot contain `.` and `/`.
So when a user runs `spack env create ./here` do not error but treat it
as `spack env create -d ./here`.
Also fix help string of `spack env create`, which seems to have been
copied from `activate` incorrectly.
We recently switched to using the new ReadTheDocs with "addons". That includes its own
analytics, which is nice, but we also want to continue using our GA4 analytics.
Adding GA4 is no longer supported by RTD, so we have to add it manually.
- [x] re-add the gtag to all pages, manually
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Adds a pre-concretization check for the Windows SDK and WGL (Windows
GL) packages as non-buildable externals.
This is a redo of https://github.com/spack/spack/pull/43459, but makes
sure to modify the configuration scope outside of the bootstrap scope:
whichever is highest-precedence in the user's environment at the time
the concretization runs, which should either be an env scope or the
~ scope.
Adds pytest fixture mocking the check for WGL and WSDK as if they were
present.
This PR gives users finer control over which specs are reused during concretization.
The value of the `concretizer:reuse` config option now can take an object with the following properties:
- `roots`: true if reusing roots, false if reusing just dependencies
- `exclude`: list of constraints used to select reusable specs
- `include`: list of constraints used to select reusable specs
- `from`: allows to select the sources of reused specs
### Examples
#### Reuse only specs compiled with GCC
```yaml
concretizer:
reuse:
roots: true
include:
- "%gcc"
```
#### `openmpi` must be used from externals, and it must be the only external used
```yaml
concretizer:
reuse:
roots: true
from:
- type: local
exclude:
- "openmpi"
- type: buildcache
exclude:
- "openmpi"
- type: external
include:
- "openmpi"
```
On Windows, bootstrapping logic now searches for and adds the win-sdk
and wgl packages to the user's top scope as externals if they are not
present.
These packages are generally required to install most packages with
Spack on Windows, and are only available as externals, so it is
assumed that doing this automatically would be useful and avoid
a mandatory manual step for each new Spack instance.
Note this is the first case of bootstrapping logic modifying
configuration other than the bootstrap configuration.
This commit adds a property `autopush` to mirrors. When true, every source build is immediately followed by a push to the build cache. This is useful in ephemeral environments such as CI / containers.
To enable autopush on existing build caches, use `spack mirror set --autopush <name>`. The same flag can be used in `spack mirror add`.
This PR allows the user to specify a path to a custom cert file (or directory) in
Spack's config:
```yaml
# This is where custom certs for proxy/firewall are stored.
# It can be a path or environment variable. To match ssl env configuration
# the default is the environment variable SSL_CERT_FILE
ssl_certs: $SSL_CERT_FILE
```
`config:ssl_certs` can be a path to a file or a directory, or it can be and environment
variable that resolves to one of those. When it posts to something valid, Spack will
update the ssl context to include custom certs, and fetching via `urllib` and `curl`
will trust the provided certs.
This should resolve many issues with fetching behind corporate firewalls.
---------
Co-authored-by: psakievich <psakievich@users.noreply.github.com>
Co-authored-by: Alec Scott <alec@bcs.sh>
This adds support for prereleases. Alpha, beta and release candidate
suffixes are ordered in the intuitive way:
```
1.2.0-alpha < 1.2.0-alpha.1 < 1.2.0-beta.2 < 1.2.0-rc.3 < 1.2.0 < 1.2.0-xyz
```
Alpha, beta and rc prereleases are defined as follows: split the version
string into components like before (on delimiters and string boundaries).
If there's a string component `alpha`, `beta` or `rc` followed by an optional
numeric component at the end, then the version is prerelease.
So `1.2.0-alpha.1 == 1.2.0alpha1 == 1.2.0.alpha1` are all the same, as usual.
The strings `alpha`, `beta` and `rc` are chosen because they match semver,
they are sufficiently long to be unambiguous, and and all contain at least
one non-hex character so distinguish them from shasum/digest type suffixes.
The comparison key is now stored as `(release_tuple, prerelease_tuple)`, so in
the above example:
```
((1,2,0),(ALPHA,)) < ((1,2,0),(ALPHA,1)) < ((1,2,0),(BETA,2)) < ((1,2,0),(RC,3)) < ((1,2,0),(FINAL,)) < ((1,2,0,"xyz"), (FINAL,))
```
The version ranges `@1.2.0:` and `@:1.1` do *not* include prereleases of
`1.2.0`.
So for packaging, if the `1.2.0alpha` and `1.2.0` versions have the same constraints on
dependencies, it's best to write
```python
depends_on("x@1:", when="@1.2.0alpha:")
```
However, `@1.2:` does include `1.2.0alpha`. This is because Spack considers
`1.2 < 1.2.0` as distinct versions, with `1.2 < 1.2.0alpha < 1.2.0` as a consequence.
Alternatively, the above `depends_on` statement can thus be written
```python
depends_on("x@1:", when="@1.2:")
```
which can be useful too. A short-hand to include prereleases, but you
can still be explicit to exclude the prerelease by specifying the patch version
number.
### Concretization
Concretization uses a different version order than `<`. Prereleases are ordered
between final releases and develop versions. That way, users should not
have to set `preferred=True` on every final release if they add just one
prerelease to a package. The concretizer is unlikely to pick a prerelease when
final releases are possible.
### Limitations
1. You can't express a range that includes all alpha release but excludes all beta
releases. Only alternative is good old repeated nines: `@:1.2.0alpha99`.
2. The Python ecosystem defaults to `a`, `b`, `rc` strings, so translation of Python versions to
Spack versions requires expansion to `alpha`, `beta`, `rc`. It's mildly annoying, because
this means we may need to compute URLs differently (not done in this commit).
### Hash
Care is taken not to break hashes of versions that do not have a prerelease
suffix.
Closes#43052.
Maybe moving the argument to the `find` subcommand is a good idea, but I
just wanted to get the docs fix out.
Co-authored-by: Patrice Peterson <patrice.peterson@itz.uni-halle.de>
This PR adds the ability to load spack extensions through `importlib.metadata` entry
points, in addition to the regular configuration variable.
It requires Python 3.8 or greater to be properly supported.