Adds another post install hook that loops over the install prefix, looking for shared libraries type of ELF files, and sets the soname to their own absolute paths.
The idea being, whenever somebody links against those libraries, the linker copies the soname (which is the absolute path to the library) as a "needed" library, so that at runtime the dynamic loader realizes the needed library is a path which should be loaded directly without searching.
As a result:
1. rpaths are not used for the fixed/static list of needed libraries in the dynamic section (only for _actually_ dynamically loaded libraries through `dlopen`), which largely solves the issue that Spack's rpaths are a heuristic (`<prefix>/lib` and `<prefix>/lib64` might not be where libraries really are...)
2. improved startup times (no library search required)
Currently, compiler flags and variants are inconsistent: compiler flags set for a
package are inherited by its dependencies, while variants are not. We should have these
be consistent by allowing for inheritance to be enabled or disabled for both variants
and compiler flags.
- [x] Make new (spec language) operators
- [x] Apply operators to variants and compiler flags
- [x] Conflicts currently result in an unsatisfiable spec
(i.e., you can't propagate two conflicting values)
What I propose is using two of the currently used sigils to symbolized that the variant
or compiler flag will be inherited:
Example syntax:
- `package ++variant`
enabled variant that will be propagated to dependencies
- `package +variant`
enabled variant that will NOT be propagated to dependencies
- `package ~~variant`
disabled variant that will be propagated to dependencies
- `package ~variant`
disabled variant that will NOT be propagated to dependencies
- `package cflags==True`
`cflags` will be propagated to dependencies
- `package cflags=True`
`cflags` will NOT be propagated to dependencies
Syntax for string-valued variants is similar to compiler flags.
The `spack info <package>` command does not show the `Virtual Packages:` output unless the `--virtuals` command option is passed. Before this changes, the information that the command is supposed to be illustrating is not shown in the example and is confusing.
This commit extends the DSL that can be used in packages
to allow declaring that a package uses different build-systems
under different conditions.
It requires each spec to have a `build_system` single valued
variant. The variant can be used in many context to query, manipulate
or select the build system associated with a concrete spec.
The knowledge to build a package has been moved out of the
PackageBase hierarchy, into a new Builder hierarchy. Customization
of the default behavior for a given builder can be obtained by
coding a new derived builder in package.py.
The "run_after" and "run_before" decorators are now applied to
methods on the builder. They can also incorporate a "when="
argument to specify that a method is run only when certain
conditions apply.
For packages that do not define their own builder, forwarding logic
is added between the builder and package (methods not found in one
will be retrieved from the other); this PR is expected to be fully
backwards compatible with unmodified packages that use a single
build system.
* Docs: Getting Started Dependencies
Finally document what one needs to install to use Spack on
Linux and Mac :-)
With <3 for minimal container users and my colleagues with
their fancy Macs.
* Debian Update Packages: GCC, Python
- build-essential: includes gcc, g++ (thx Cory)
- Python: add python3-venv, python3-distutils (thx Pradyun)
* Add RHEL8 Dependencies
fixes#31484
Before this change if anything was matching an external
condition, it was considered "external" and thus something
to be "built".
This was happening in particular to external packages
that were re-read from the DB, which then couldn't be
reused, causing the problems shown in #31484.
This PR fixes the issue by excluding specs with a
"hash" from being considered "external"
* Test that users have a way to select a virtual
This ought to be solved by extending the "require"
attribute to virtual packages, so that one can:
```yaml
mpi:
require: 'multi-provider-mpi'
```
* Prevent conflicts to be enforced on specs that can be reused.
* Rename the "external_only" fact to "buildable_false", to better reflect its origin
* Preliminary support for include URLs in spack.yaml (environment) files
This commit adds support in environments for external configuration files obtained from a URL with a preference for grabbing raw text from GitHub and gitlab for efficient downloads of the relevant files. The URL can also be a link to a directory that contains multiple configuration files.
Remote configuration files are retrieved and cached for the environment. Configuration files with the same name will not be overwritten once cached.
Extend the semantics of package requirements to
allow using them also under a virtual package
attribute in packages.yaml
These requirements are enforced whenever that
virtual spec is present in the DAG.
Allow users to express default requirements in packages.yaml.
These requirements are overridden if more specific requirements
are present for a given package.
Spack doesn't have an easy way to say something like "If I build
package X, then I *need* version Y":
* If you specify something on the command line, then you ensure
that the constraints are applied, but the package is always built
* Likewise if you `spack add X...`` to your environment, the
constraints are guaranteed to hold, but the environment always
builds the package
* You can add preferences to packages.yaml, but these are not
guaranteed to hold (Spack can choose other settings)
This commit adds a 'require' subsection to packages.yaml: the
specs added there are guaranteed to hold. The commit includes
documentation for the feature.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
All PRs are failing the docs build on account of an error with
pygments. These errors coincide with a new release of pygments
(2.13.0) and restricting to < 2.13 allows the doc tests to pass,
so this commit enforces that constraint for the docs build.
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
`LD_LIBRARY_PATH` can break system executables (e.g., when an enviornment is loaded) and isn't necessary thanks to `RPATH`s. Packages that require `LD_LIBRARY_PATH` can set this in `setup_run_environment`.
- [x] Prefix inspections no longer set `LD_LIBRARY_PATH` by default
- [x] Document changes and workarounds for people who want `LD_LIBRARY_PATH`
For a long time the module configuration has had a few settings that use
`blacklist`/`whitelist` terminology. We've been asked by some of our users to replace
this with more inclusive language. In addition to being non-inclusive, `blacklist` and
`whitelist` are inconsistent with the rest of Spack, which uses `include` and `exclude`
for the same concepts.
- [x] Deprecate `blacklist`, `whitelist`, `blacklist_implicits` and `environment_blacklist`
in favor of `exclude`, `include`, `exclude_implicits` and `exclude_env_vars` in module
configuration, to be removed in Spack v0.20.
- [x] Print deprecation warnings if any of the deprecated names are in module config.
- [x] Update tests to test old and new names.
- [x] Update docs.
- [x] Update `spack config update` to fix this automatically, and include a note in the error
that you can use this command.