* Procedure to deprecate old versions of software
* Add documentation
* Fix bug in logic
* Update tab completion
* Deprecate legacy packages
* Deprecate old mxnet as well
* More explicit docs
This adds a -i option to "spack python" which allows use of the
IPython interpreter; it can be used with "spack python -i ipython".
This assumes it is available in the Python instance used to run
Spack (i.e. that you can "import IPython").
- [x] add `concretize.lp`, `spack.yaml`, etc. to licensed files
- [x] update all licensed files to say 2013-2021 using
`spack license update-copyright-year`
- [x] appease mypy with some additions to package.py that needed
for oneapi.py
I lost my mind a bit after getting the completion stuff working and
decided to get Mypy working for spack as well. This adds a
`.mypy.ini` that checks all of the spack and llnl modules, though
not yet packages, and fixes all of the identified missing types and
type issues for the spack library.
In addition to these changes, this includes:
* rename `spack flake8` to `spack style`
Aliases flake8 to style, and just runs flake8 as before, but with
a warning. The style command runs both `flake8` and `mypy`,
in sequence. Added --no-<tool> options to turn off one or the
other, they are on by default. Fixed two issues caught by the tools.
* stub typing module for python2.x
We don't support typing in Spack for python 2.x. To allow 2.x to
support `import typing` and `from typing import ...` without a
try/except dance to support old versions, this adds a stub module
*just* for python 2.x. Doing it this way means we can only reliably
use all type hints in python3.7+, and mypi.ini has been updated to
reflect that.
* add non-default black check to spack style
This is a first step to requiring black. It doesn't enforce it by
default, but it will check it if requested. Currently enforcing the
line length of 79 since that's what flake8 requires, but it's a bit odd
for a black formatted project to be quite that narrow. All settings are
in the style command since spack has no pyproject.toml and I don't
want to add one until more discussion happens. Also re-format
`style.py` since it no longer passed the black style check
with the new length.
* use style check in github action
Update the style and docs action to use `spack style`, adding in mypy
and black to the action even if it isn't running black right now.
This adds a new `mark` command that can be used to mark packages as either
explicitly or implicitly installed. Apart from fixing the package
database after installing a dependency manually, it can be used to
implement upgrade workflows as outlined in #13385.
The following commands demonstrate how the `mark` and `gc` commands can be
used to only keep the current version of a package installed:
```console
$ spack install pkgA
$ spack install pkgB
$ git pull # Imagine new versions for pkgA and/or pkgB are introduced
$ spack mark -i -a
$ spack install pkgA
$ spack install pkgB
$ spack gc
```
If there is no new version for a package, `install` will simply mark it as
explicitly installed and `gc` will not remove it.
Co-authored-by: Greg Becker <becker33@llnl.gov>
Users can add test() methods to their packages to run smoke tests on
installations with the new `spack test` command (the old `spack test` is
now `spack unit-test`). spack test is environment-aware, so you can
`spack install` an environment and then run `spack test run` to run smoke
tests on all of its packages. Historical test logs can be perused with
`spack test results`. Generic smoke tests for MPI implementations, C,
C++, and Fortran compilers as well as specific smoke tests for 18
packages.
Inside the test method, individual tests can be run separately (and
continue to run best-effort after a test failure) using the `run_test`
method. The `run_test` method encapsulates finding test executables,
running and checking return codes, checking output, and error handling.
This handles the following trickier aspects of testing with direct
support in Spack's package API:
- [x] Caching source or intermediate build files at build time for
use at test time.
- [x] Test dependencies,
- [x] packages that require a compiler for testing (such as library only
packages).
See the packaging guide for more details on using Spack testing support.
Included is support for package.py files for virtual packages. This does
not change the Spack interface, but is a major change in internals.
Co-authored-by: Tamara Dahlgren <dahlgren1@llnl.gov>
Co-authored-by: wspear <wjspear@gmail.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
As of #18260, `spack load` and `spack env activate` now use
`prefix_inspections` from the modules configuration to decide
how to modify environment variables.
This updates the modules configuration documentation to describe
how to update environment variables with the `prefix_inspections`
section. This also updates the `spack load` and environments
documentation to refer to the new `prefix_inspections` documentation.
This PR reworks a few attributes in the container subsection of
spack.yaml to permit the injection of custom base images when
generating containers with Spack. In more detail, users can still
specify the base operating system and Spack version they want to use:
spack:
container:
images:
os: ubuntu:18.04
spack: develop
in which case the generated recipe will use one of the Spack images
built on Docker Hub for the build stage and the base OS image in the
final stage. Alternatively, they can specify explicitly the two
base images:
spack:
container:
images:
build: spack/ubuntu-bionic:latest
final: ubuntu:18.04
and it will be up to them to ensure their consistency.
Additional changes:
* This commit adds documentation on the two approaches.
* Users can now specify OS packages to install (e.g. with apt or yum)
prior to the build (previously this was only available for the
finalized image).
* Handles to avoid an update of the available system packages have been
added to the configuration to facilitate the generation of recipes
permitting deterministic builds.
As of #13100, Spack installs the dependencies of a _single_ spec in parallel.
Environments, when installed, can only get parallelism from each individual
spec, as they're installed in order. This PR makes entire environments build
in parallel by extending Spack's package installer to accept multiple root
specs. The install command and Environment class have been updated to use
the new parallel install method.
The specs and kwargs for each *uninstalled* package (when not force-replacing
installations) of an environment are collected, passed to the `PackageInstaller`,
and processed using a single build queue.
This introduces a `BuildRequest` class to track install arguments, and it
significantly cleans up the code used to track package ids during installation.
Package ids in the build queue are now just DAG hashes as you would expect,
Other tasks:
- [x] Finish updating the unit tests based on `PackageInstaller`'s use of
`BuildRequest` and the associated changes
- [x] Change `environment.py`'s `install_all` to use the `PackageInstaller` directly
- [x] Change the `install` command to leverage the new installation process for multiple specs
- [x] Change install output messages for external packages, e.g.:
`[+] /usr` -> `[+] /usr (external bzip2-1.0.8-<dag-hash>`
- [x] Fix incomplete environment install's view setup/update and not confirming all
packages are installed (?)
- [x] Ensure externally installed package dependencies are properly accounted for in
remaining build tasks
- [x] Add tests for coverage (if insufficient and can identity the appropriate, uncovered non-comment lines)
- [x] Add documentation
- [x] Resolve multi-compiler environment install issues
- [x] Fix issue with environment installation reporting (restore CDash/JUnit reports)
Previously, we hardcoded a list of Spack versions which could be used by the containerize command.
This PR removes that list. It's a maintenance burden when cutting a release, and prevents older versions of Spack from creating containers to be used by newer versions.
fixes#15183
- Moved the container related content from
workflows.rst into containers.rst
- Deleted the docker_for_developers.rst file,
since it describes an outdated procedure
Co-authored-by: Axel Huebl <a.huebl@hzdr.de>
Co-authored-by: Omar Padron <omar.padron@kitware.com>
Shell integration no longer requires setting `SPACK_ROOT`, so we can
simplify the documentation on it. The docs on shell support and using
packages are getting a bit old, and information on `spack load` (which
seems to be everyone's most common way of using packages) is hard to
find.
This PR simplifies the shell documentation to remove SPACK_ROOT, and also
moves some sections around for clearer organization.
- [x] make docs on sourcing setup scripts clearer and simpler
- [x] introduce `spack load` early in the basic usage guide instead of
burying it in the module docs
- [x] clean up module docs so that spack module tcl loads comes later
- [x] be clear about the different ways to use packages so that the users
can find the docs better.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
The package list at https://spack.readthedocs.io/en/latest/package_list.html claims "it is automatically generated based on the packages in the latest Spack release" but it is actually based on the develop branch. This leads to confusion when users find that e.g. herwigpp is included in the list, but it cannot be found when they install the latest release. That latest release has a package list at https://spack.readthedocs.io/en/stable/package_list.html which does indeed not include herwigpp.
Changing the language from "the latest Spack release" to "this Spack version" might make that clearer. Maybe.
Update pipelines documentation to describe how 'tags', 'variables',
'image', 'before_script', 'script', and 'after_script' can be
supplied at the top level, to be used by any of the runner mappings,
and also overridden by any of the runner mappings.
Also show an example of capturing the custom spack SHA at pipeline
generation time, so all jobs are sure to run with the same version
of spack, as a means to illustrate the $env:VARIABLE_NAME syntax.
I know that it's just an example, but I was trying to figure out what was going on and it wasn't making sense....
`tput sgr0` resets the terminal state (http://linuxcommand.org/lc3_adv_tput.php) and I can't see any reason to do it twice. Deleting the second occurrence doesn't seem to break the fancy prompt effect.
Packages can implement “detect_version” to support detection
of external instances of a package. This is generally easier
than implementing “determine_spec_details”. The API for
determine_version is similar: for example you can return
“None” to indicate that an executable is not an instance
of a package.
Users may implement a “determine_variants” method for a package.
When doing external detection, executables are grouped by version
and each group results in a single invocation of “determine_variants”
for the associated spec. The method returns a string specifying
the variants for the package. The method may additionally return
a dictionary representing extra attributes for the package.
These will be stored in the spec yaml and can be retrieved
from self.spec.extra_attributes
The Spack GCC package has been updated with an implementation
of “determine_variants” which adds the following extra
attributes to the package: c, cxx, fortran
The YAML config for paths and modules of external packages has
changed: the new format allows a single spec to load multiple
modules. Spack will automatically convert from the old format
when reading the configs (the updates do not add new essential
properties, so this change in Spack is backwards-compatible).
With this update, Spack cannot modify existing configs/environments
without updating them (e.g. “spack config add” will fail if the
configuration is in a format that predates this PR). The user is
prompted to do this explicitly and commands are provided. All
config scopes can be updated at once. Each environment must be
updated one at a time.
* Run Python2.6 unit tests on Github Actions
* Skip url tests on Python 2.6 to reduce waiting times
* Skip foreground background tests on Python 2.6 to reduce waiting times
* Removed references to Travis in the documentation
* Deleted install_patchelf.sh (can be installed from repo on CentOS 6)
We got rid of `master` after #17377, but users still want a way to get
the latest stable release without knowing its number.
We've added a `releases/latest` tag to replace what was once `master`.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
- [x] Remove references to `master` branch
- [x] Document how release branches are structured
- [x] Document how to make a major release
- [x] Document how to make a point release
- [x] Document how to do work in our release projects
[george.hartzell@172-16-193-97 spack-explore-docker]$ spack containerize
Running `spack containerize` with the example `spack.yaml` file fails
with an error that ends like so:
```
[...]
File "/local_scratch/hartzell/tmp/spack-explore-docker/lib/spack/external/ruamel/yaml/scanner.py", line 165, in need_more_tokens
self.stale_possible_simple_keys()
File "/local_scratch/hartzell/tmp/spack-explore-docker/lib/spack/external/ruamel/yaml/scanner.py", line 309, in stale_possible_simple_keys
"could not find expected ':'", self.get_mark())
ruamel.yaml.scanner.ScannerError: while scanning a simple key
in "/local_scratch/hartzell/tmp/spack-explore-docker/spack.yaml", line 26, column 1
could not find expected ':'
in "/local_scratch/hartzell/tmp/spack-explore-docker/spack.yaml", line 28, column 5
```
Indenting the block string fixes the problem for me.
CentOS 7,
```
$ spack --version
0.14.2-1529-ec58f28c2
```
* env: no automatic activation
* Ensure ci rebuild jobs activate the environment (no longer automagic)
Co-authored-by: Scott Wittenburg <scott.wittenburg@kitware.com>
* Separate Apple Clang from LLVM Clang
Apple Clang is a compiler of its own. All places
referring to "-apple" suffix have been updated.
* Hack to use a dash in 'apple-clang'
To be able to use autodoc from Sphinx we need
a valid Python name for the module that contains
Apple's Clang code.
* Updated packages to account for the existence of apple-clang
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* Added unit test for XCode related functions
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This change also adds a code path through the spack ci pipelines
infrastructure which supports PR testing on the Spack repository.
Gitlab pipelines run as a result of a PR (either creation or pushing
to a PR branch) will only verify that the packages in the environment
build without error. When the PR branch is merged to develop,
another pipeline will run which results in the generated binaries
getting pushed to the binary mirror.
Packages built with lmod core_compiler are placed in `Core`.
Other packages may belong in `Core`. For example, python may be built with a proprietary compiler for performance, but belong on the `Core` directory.
With this PR, lmod config can include a `core_specs` list. Any package that satisfies a spec in that list is placed in `Core`, regardless of its compiler or dependencies.
This improves the documentation for `spack external find` in several ways:
* Provide a code example of implementing `determine_spec_details` for a package
* Explain how to define executables to look for (and also e.g. that they are treated as regular expressions and so can pull in unexpected files).
* Add the "why" for a couple of constraints (i.e. explain that this logic only works for build/run deps because it examines `PATH` for executables)
* Spread the docs between build customization and packaging sections
* Add cross-references
* Add a label so that `spack external find` is linked from the command reference.
Add a `spack external find` command that tries to populate
`packages.yaml` with external packages from the user's `$PATH`. This
focuses on finding build dependencies. Currently, support has only been
added for `cmake`.
For a package to be discoverable with `spack external find`, it must define:
* an `executables` class attribute containing a list of
regular expressions that match executable names.
* a `determine_spec_details(prefix, specs_in_prefix)` method
Spack will call `determine_spec_details()` once for each prefix where
executables are found, passing in the path to the prefix and the path to
all found executables. The package is responsible for invoking the
executables and figuring out what type of installation(s) are in the
prefix, and returning one or more specs (each with version, variants or
whatever else the user decides to include in the spec).
The found specs and prefixes will be added to the user's `packages.yaml`
file. Providing the `--not-buildable` option will mark all generated
entries in `packages.yaml` as `buildable: False`
Since #9481 Python's None is not permitted as a value for
MV variants. The string 'none' is used instead.
Add the same fix for the amgx and lammps packages
To specify an environment for a comment, the user can specify
"spack -e <env>". The documentation incorrectly specified "-E" (which
is actually used to ignore any implicit use of environments).
Since #16132, we've consolidated the setting of FORCE_UNSAFE_CONFIGURE to
`autotools.py`, so we don't need to use it in packages like `coreutils`,
in our commands, or in our container recipes.
- [x] Remove FORCE_UNSAFE_CONFIGURE from packages
- [x] Remove FORCE_UNSAFE_CONFIGURE from container recipes
- [x] Remove FORCE_UNSAFE_CONFIGURE from `spack ci` command
* Moved link to the right place in the docs
* Fixed a few minor issues in extensions docs
Fixed a typo, added a subsubsection for better
navigation, reworded "modules in Python" as
"Python packages"
Currently, to force Spack to use an external MPI, you have to specify `buildable: False`
for every MPI provider in Spack in your packages.yaml file. This is both tedious and
fragile, as new MPI providers can be added and break your workflow when you do a
git pull.
This PR allows you to specify an entire virtual dependency as non-buildable, and
specify particular implementations to be built:
```
packages:
all:
providers:
mpi: [mpich]
mpi:
buildable: false
paths:
mpich@3.2 %gcc@7.3.0: /usr/packages/mpich-3.2-gcc-7.3.0
```
will force all Spack builds to use the specified `mpich` install.
* try extend path to solve PyQt5.sip not found issue
* disable private sip installation in sippackage class
* undo manual PyQt5 dir creation in py-sip site-packages dir
* fix typo
* fix typo
* also apply fix to PyQt4
* tidy up
* flake8 and tidy up
* tidy and undo hardcoding of python_include_dir
* replace hardcoded python inc dir
* fix minor issues
* rethink include dir variable name
* improve style
* add new versions
* implement new sip setup to qsci installation
* set sip-incdir correctly for the new setup
* setup extend_path thing before qsci python bindings
* take care of conflict
* flake8
* also extend for PyQt4
* improve style
* improve style
* SipPackage build sys should depend on py-sip
* consolidate extend_path fixes into SipPackage
* fix typo
* fix bugs
* flake8
* revert sip doc to pre-resource setup
* import os module
* flake8
Co-authored-by: Sinan81 <sbulut@3vgeomatics.com>
Add a 'define_from_variant` helper function to CMake-based Spack
packages to convert package variants into CMake arguments. For
example:
args.append('-DFOO=%s' % ('ON' if '+foo' in self.spec else 'OFF'))
can be replaced with:
args.append(self.define_from_variant('foo'))
The following conversions are handled automatically:
* Flag variants will be converted to CMake booleans
* Multivalued variants will be converted to semicolon-separated strings
* Other variant values are converted to CMake string arguments
This also adds a 'define' helper method to convert any variable to
a CMake argument. It has the same conversion rules as
'define_from_variant' (but operates directly on values rather than
requiring the user to supply the name of a package variant).