* Style: black 23, skip magic trailing commas
* isort should use same line length as black
* Fix unused import
* Update version of black used in CI
* Update new packages
* Update new packages
`spack graph` has been reworked to use:
- Jinja templates
- builder objects to construct the template context when DOT graphs are requested.
This allowed to add a new colored output for DOT graphs that highlights both
the dependency types and the nodes that are needed at runtime for a given spec.
Currently, the Spack docs show documentation for submodules *before* documentation for
submodules on package doc pages. This means that if you put docs in `__init__.py` in
some package, the docs in there will be shown *after* the docs for all submodules of the
package instead of at the top as an intro to the package. See, e.g.,
[the lockfile docs](https://spack.readthedocs.io/en/latest/spack.environment.html#module-spack.environment),
which should be at the
[top of that page](https://spack.readthedocs.io/en/latest/spack.environment.html).
- [x] add the `--module-first` option to sphinx so that it generates module docs at top of page.
* Remove CI jobs related to Python 2.7
* Remove Python 2.7 specific code from Spack core
* Remove externals for Python 2 only
* Remove llnl.util.compat
This commit extends the DSL that can be used in packages
to allow declaring that a package uses different build-systems
under different conditions.
It requires each spec to have a `build_system` single valued
variant. The variant can be used in many context to query, manipulate
or select the build system associated with a concrete spec.
The knowledge to build a package has been moved out of the
PackageBase hierarchy, into a new Builder hierarchy. Customization
of the default behavior for a given builder can be obtained by
coding a new derived builder in package.py.
The "run_after" and "run_before" decorators are now applied to
methods on the builder. They can also incorporate a "when="
argument to specify that a method is run only when certain
conditions apply.
For packages that do not define their own builder, forwarding logic
is added between the builder and package (methods not found in one
will be retrieved from the other); this PR is expected to be fully
backwards compatible with unmodified packages that use a single
build system.
* Docs: Getting Started Dependencies
Finally document what one needs to install to use Spack on
Linux and Mac :-)
With <3 for minimal container users and my colleagues with
their fancy Macs.
* Debian Update Packages: GCC, Python
- build-essential: includes gcc, g++ (thx Cory)
- Python: add python3-venv, python3-distutils (thx Pradyun)
* Add RHEL8 Dependencies
* Preliminary support for include URLs in spack.yaml (environment) files
This commit adds support in environments for external configuration files obtained from a URL with a preference for grabbing raw text from GitHub and gitlab for efficient downloads of the relevant files. The URL can also be a link to a directory that contains multiple configuration files.
Remote configuration files are retrieved and cached for the environment. Configuration files with the same name will not be overwritten once cached.
`make` solves a lot of headaches that would otherwise have to be implemented in Spack:
1. Parallelism over packages through multiple `spack install` processes
2. Orderly output of parallel package installs thanks to `make --sync-output=recurse` or `make -Orecurse` (works well in GNU Make 4.3; macOS is unfortunately on a 16 years old 3.x version, but it's one `spack install gmake` away...)
3. Shared jobserver across packages, which means a single `-j` to rule them all, instead of manually finding a balance between `#spack install processes` & `#jobs per package` (See #30302).
This pr adds the `spack env depfile` command that generates a Makefile with dag hashes as
targets, and dag hashes of dependencies as prerequisites, and a command
along the lines of `spack install --only=packages /hash` to just install
a single package.
It exposes two convenient phony targets: `all`, `fetch-all`. The former installs the environment, the latter just fetches all sources. So one can either use `make all -j16` directly or run `make fetch-all -j16` on a login node and `make all -j16` on a compute node.
Example:
```yaml
spack:
specs: [perl]
view: false
```
running
```
$ spack -e . env depfile --make-target-prefix env | tee Makefile
```
generates
```Makefile
SPACK ?= spack
.PHONY: env/all env/fetch-all env/clean
env/all: env/env
env/fetch-all: env/fetch
env/env: env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww
@touch $@
env/fetch: env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc
@touch $@
env/dirs:
@mkdir -p env/.fetch env/.install
env/.fetch/%: | env/dirs
$(info Fetching $(SPEC))
$(SPACK) -e '/tmp/tmp.7PHPSIRACv' fetch $(SPACK_FETCH_FLAGS) /$(notdir $@) && touch $@
env/.install/%: env/.fetch/%
$(info Installing $(SPEC))
+$(SPACK) -e '/tmp/tmp.7PHPSIRACv' install $(SPACK_INSTALL_FLAGS) --only-concrete --only=package --no-add /$(notdir $@) && touch $@
# Set the human-readable spec for each target
env/%/cdqldivylyxocqymwnfzmzc5sx2zwvww: SPEC = perl@5.34.1%gcc@10.3.0+cpanm+shared+threads arch=linux-ubuntu20.04-zen2
env/%/gv5kin2xnn33uxyfte6k4a3bynhmtxze: SPEC = berkeley-db@18.1.40%gcc@10.3.0+cxx~docs+stl patches=b231fcc arch=linux-ubuntu20.04-zen2
env/%/cuymc7e5gupwyu7vza5d4vrbuslk277p: SPEC = bzip2@1.0.8%gcc@10.3.0~debug~pic+shared arch=linux-ubuntu20.04-zen2
env/%/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: SPEC = diffutils@3.8%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws: SPEC = libiconv@1.16%gcc@10.3.0 libs=shared,static arch=linux-ubuntu20.04-zen2
env/%/yfz2agazed7ohevqvnrmm7jfkmsgwjao: SPEC = gdbm@1.19%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/73t7ndb5w72hrat5hsax4caox2sgumzu: SPEC = readline@8.1%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/trvdyncxzfozxofpm3cwgq4vecpxixzs: SPEC = ncurses@6.2%gcc@10.3.0~symlinks+termlib abi=none arch=linux-ubuntu20.04-zen2
env/%/sbzszb7v557ohyd6c2ekirx2t3ctxfxp: SPEC = pkgconf@1.8.0%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/c4go4gxlcznh5p5nklpjm644epuh3pzc: SPEC = zlib@1.2.12%gcc@10.3.0+optimize+pic+shared patches=0d38234 arch=linux-ubuntu20.04-zen2
# Install dependencies
env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww: env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p: env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk
env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws
env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao: env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu
env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu: env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs
env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs: env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp
env/clean:
rm -f -- env/env env/fetch env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
```
Then with `make -O` you get very nice orderly output when packages are built in parallel:
```console
$ make -Orecurse -j16
spack -e . install --only-concrete --only=package /c4go4gxlcznh5p5nklpjm644epuh3pzc && touch c4go4gxlcznh5p5nklpjm644epuh3pzc
==> Installing zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
...
Fetch: 0.00s. Build: 0.88s. Total: 0.88s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
spack -e . install --only-concrete --only=package /sbzszb7v557ohyd6c2ekirx2t3ctxfxp && touch sbzszb7v557ohyd6c2ekirx2t3ctxfxp
==> Installing pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
...
Fetch: 0.00s. Build: 3.96s. Total: 3.96s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
```
For Perl, at least for me, using `make -j16` versus `spack -e . install -j16` speeds up the builds from 3m32.623s to 2m22.775s, as some configure scripts run in parallel.
Another nice feature is you can do Makefile "metaprogramming" and depend on packages built by Spack. This example fetches all sources (in parallel) first, print a message, and only then build packages (in parallel).
```Makefile
SPACK ?= spack
.PHONY: env
all: env
spack.lock: spack.yaml
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-target-prefix spack
fetch: spack/fetch
@echo Fetched all packages && touch $@
env: fetch spack/env
@echo This executes after the environment has been installed
clean:
rm -rf spack/ env.mk spack.lock
ifeq (,$(filter clean,$(MAKECMDGOALS)))
include env.mk
endif
```
* Extract the MetaPathFinder and Loaders for packages in their own classes
https://peps.python.org/pep-0451/
Currently, RepoPath and Repo implement the (deprecated) interface of
MetaPathFinder (find_module) and of Loader (load_module). This commit
extracts both of them and places the code in their own classes.
The MetaPathFinder interface is updated to contain both the deprecated
"find_module" (for Python 2.7 support) and the recommended "find_spec".
Update of the Loader interface is deferred at a subsequent commit.
* Move the lines to be prepended inside "RepoLoader"
Also adjust the naming of a few variables too
* Remove spack.util.imp, since code is only used in spack.repo
* Remove support from loading Python modules Python > 3 but < 3.5
* Remove `Repo._create_namespace`
This function was interacting badly with the MetaPathFinder
and causing issues with "normal" imports. Removing the
function allows to do things like:
```python
import spack.pkg.builtin.mpich
cls = spack.pkg.builtin.mpich.Mpich
```
* Remove code needed to trigger the Singleton evaluation
The finder is coded in a way to trigger the Singleton,
so we don't need external code now that we register it
at module level into `sys.meta_path`.
* Add unit tests
Currently Spack vendors `pytest` at a version which is three major
versions behind the latest (3.2.5 vs. 6.2.4). We do that since v3.2.5
is the latest version supporting Python 2.6. Remaining so much
behind the currently supported versions though might introduce
some incompatibilities and is surely a technical debt.
This PR modifies Spack to:
- Use the vendored `pytest@3.2.5` only as a fallback solution,
if the Python interpreter used for Spack doesn't provide a newer one
- Be able to parse `pytest --collect-only` in all the different output
formats from v3.2.5 to v6.2.4 and use it consistently for `spack unit-test --list-*`
- Updating the unit tests in Github Actions to use a more recent `pytest` version
* fix remaining flake8 errors
* imports: sort imports everywhere in Spack
We enabled import order checking in #23947, but fixing things manually drives
people crazy. This used `spack style --fix --all` from #24071 to automatically
sort everything in Spack so PR submitters won't have to deal with it.
This should go in after #24071, as it assumes we're using `isort`, not
`flake8-import-order` to order things. `isort` seems to be more flexible and
allows `llnl` mports to be in their own group before `spack` ones, so this
seems like a good switch.
- [x] add `concretize.lp`, `spack.yaml`, etc. to licensed files
- [x] update all licensed files to say 2013-2021 using
`spack license update-copyright-year`
- [x] appease mypy with some additions to package.py that needed
for oneapi.py
- [x] Use higher contrast terminal output font
- [x] Use higher contrast code block background color than default
- [x] Use a noticeable prompt character
See also https://github.com/spack/spack-tutorial/pull/10.
* docs: add a spack environment for building the docs
* docs: remove tutorial and link to spack-tutorial.readthedocs.io
The tutorial now has its own standalone website, versioned by instances
of the tutorial. Link to that instead of versioning it directly with Spack.
- `gettext_uuid=True` makes every commit update every .pot file in spack/localized-docs,
and speeds up the internationalized doc build slightly.
- Optimize for less repository churn, and use `python-levenshtein` to accelerate
the build instead.
- make all Spack paths relative to a `_spack_root` symlink, so that we
can easily relocate the docs build *outside* lib/spack/docs
- set some useful defaults for gettext translation variables in conf.py
- update `relativeinclude` and other references to the spack root in the
RST files to use _spack_root
- Add a `--update FILE` option to `spack list`
- Output is written to the file only if any package is newer than the file
- Simplify the code in docs/conf.py using this new option
The Spack documentation currently hard-codes some functionality in
`conf.py`, which makes the doc build less "pluggable" for things like
localized doc builds.
In particular, we unconditionally generate an index of commands and a
package list as part of the docs, but those should really only be done if
things are not up to date.
This commit does the following:
- Add `--header` option to `spack commands` so that it can do the work of
prepending text to its output.
- Add `--update FILE` option to `spack commands` that makes it generate a
new command index *only* if FILE is out of date w.r.t. commands in the
Spack source.
- Simplify code in `conf.py` to use these options and only update the
command index when needed.
- remove the old LGPL license headers from all files in Spack
- add SPDX headers to all files
- core and most packages are (Apache-2.0 OR MIT)
- a very small number of remaining packages are LGPL-2.1-only
- Spack packages were originally expected to call `from spack import *`
themselves, but it has become difficult to manage imports in the
Spack core.
- the top-level namespace polluted by package symbols, and it's not
possible to avoid circular dependencies and unnecessary module loads in
the core, given all the stuff the packages need.
- This makes the top-level `spack` package essentially empty, save for a
version tuple and a version string, and `from spack import *` is now
essentially a no-op.
- The common routines and directives that packages need are now in
`spack.pkgkit`, and the import system forces packages to automatically
include this so that old packages that call `from spack import *`
will continue to work without modification.
- Since `from spack import *` is no longer required, we could consider
removing ``from spack import *`` from packages in the future and
shifting to ``from spack.pkgkit import *``, but we can wait a while to
do this.
- `spack.cmd.all_commands` does a directory listing on
`lib/spack/spack/cmd`, regardless of whether it is needed
- make this lazy so that the directory listing won't happen unless it's
necessary.
- no longer require `spack_version` to be a Version (it isn't used that
way anyway)
- use a simple tuple `spack_version_info` with major, minor, patch
versions
- generate `spack_version` from the tuple
- command reference now includes usage for all Spack commands as output
by `spack help`. Each command usage links to any related section in
the docs.
- added `spack commands` command which can list command names,
subcommands, and generate RST docs for commands.
- added `llnl.util.argparsewriter`, which analyzes an argparse parser and
calls hooks for description, usage, options, and subcommands
- Generating the HTML from for >2300 packages from RST in Sphinx seems to
take forever.
- Add an option to `spack list` to generate straight HTML instead.
- This reduces the doc build time to about a minute (from 5 minutes on a mac laptop).
- This isn't one of those autogenerated SVGs from a drawing program!
- This is a completely re-traced, minimalist SVG file with clearly
delineated pieces so that your favorite renderer can draw a Spack logo
at whatever resolution you want.
- Included versions with text, as well.
* Sphinx no longer supports Python 2.6
* Update vendored sphinxcontrib.programoutput from 0.9.0 to 0.10.0
* Documentation cannot be built in parallel
* Let Travis install programoutput for us
* Remove vendored sphinxcontrib-programoutput
Recent updates to the sphinx package prevent the vendored version
from being found in sys.path. We don't vendor sphinx, so it doesn't
make sense to vendor sphinxcontrib-programoutput either.