This PR provides complementary 2 features:
1. An augmentation to the package language to express ABI compatibility relationships among packages.
2. An extension to the concretizer that can synthesize splices between ABI compatible packages.
1. The `can_splice` directive and ABI compatibility
We augment the package language with a single directive: `can_splice`. Here is an example of a package `Foo` exercising the `can_splice` directive:
class Foo(Package):
version("1.0")
version("1.1")
variant("compat", default=True)
variant("json", default=False)
variant("pic", default=False)
can_splice("foo@1.0", when="@1.1")
can_splice("bar@1.0", when="@1.0+compat")
can_splice("baz@1.0+compat", when="@1.0+compat", match_variants="*")
can_splice("quux@1.0", when=@1.1~compat", match_variants="json")
Explanations of the uses of each directive:
- `can_splice("foo@1.0", when="@1.1")`: If `foo@1.0` is the dependency of an already installed spec and `foo@1.1` could be a valid dependency for the parent spec, then `foo@1.1` can be spliced in for `foo@1.0` in the parent spec.
- `can_splice("bar@1.0", when="@1.0+compat")`: If `bar@1.0` is the dependency of an already installed spec and `foo@1.0+compat` could be a valid dependency for the parent spec, then `foo@1.0+compat` can be spliced in for `bar@1.0+compat` in the parent spec
- `can_splice("baz@1.0", when="@1.0+compat", match_variants="*")`: If `baz@1.0+compat` is the dependency of an already installed spec and `foo@1.0+compat` could be a valid dependency for the parent spec, then `foo@1.0+compat` can be spliced in for `baz@1.0+compat` in the parent spec, provided that they have the same value for all other variants (regardless of what those values are).
- `can_splice("quux@1.0", when=@1.1~compat", match_variants="json")`:If `quux@1.0` is the dependency of an already installed spec and `foo@1.1~compat` could be a valid dependency for the parent spec, then `foo@1.0~compat` can be spliced in for `quux@1.0` in the parent spec, provided that they have the same value for their `json` variant.
2. Augmenting the solver to synthesize splices
### Changes to the hash encoding in `asp.py`
Previously, when including concrete specs in the solve, they would have the following form:
installed_hash("foo", "xxxyyy")
imposed_constraint("xxxyyy", "foo", "attr1", ...)
imposed_constraint("xxxyyy", "foo", "attr2", ...)
% etc.
Concrete specs now have the following form:
installed_hash("foo", "xxxyyy")
hash_attr("xxxyyy", "foo", "attr1", ...)
hash_attr("xxxyyy", "foo", "attr2", ...)
This transformation allows us to control which constraints are imposed when we select a hash, to facilitate the splicing of dependencies.
2.1 Compiling `can_splice` directives in `asp.py`
Consider the concrete spec:
foo@2.72%gcc@11.4 arch=linux-ubuntu22.04-icelake build_system=autotools ^bar ...
It will emit the following facts for reuse (below is a subset)
installed_hash("foo", "xxxyyy")
hash_attr("xxxyyy", "hash", "foo", "xxxyyy")
hash_attr("xxxyyy", "version", "foo", "2.72")
hash_attr("xxxyyy", "node_os", "ubuntu22.04")
hash_attr("xxxyyy", "hash", "bar", "zzzqqq")
hash_attr("xxxyyy", "depends_on", "foo", "bar", "link")
Rules that derive abi_splice_conditions_hold will be generated from
use of the `can_splice` directive. They will have the following form:
can_splice("foo@1.0.0+a", when="@1.0.1+a", match_variants=["b"]) --->
abi_splice_conditions_hold(0, node(SID, "foo"), "foo", BaseHash) :-
installed_hash("foo", BaseHash),
attr("node", node(SID, SpliceName)),
attr("node_version_satisfies", node(SID, "foo"), "1.0.1"),
hash_attr("hash", "node_version_satisfies", "foo", "1.0.1"),
attr("variant_value", node(SID, "foo"), "a", "True"),
hash_attr("hash", "variant_value", "foo", "a", "True"),
attr("variant_value", node(SID, "foo"), "b", VariVar0),
hash_attr("hash", "variant_value", "foo", "b", VariVar0).
2.2 Synthesizing splices in `concretize.lp` and `splices.lp`
The ASP solver generates "splice_at_hash" attrs to indicate that a particular node has a splice in one of its immediate dependencies.
Splices can be introduced in the dependencies of concrete specs when `splices.lp` is conditionally loaded (based on the config option `concretizer:splice:True`.
2.3 Constructing spliced specs in `asp.py`
The method `SpecBuilder._resolve_splices` implements a top-down memoized implementation of hybrid splicing. This is an optimization over the more general `Spec.splice`, since the solver gives a global view of exactly which specs can be shared, to ensure the minimal number of splicing operations.
Misc changes to facilitate configuration and benchmarking
- Added the method `Solver.solve_with_stats` to expose timers from the public interface for easier benchmarking
- Added the boolean config option `concretizer:splice` to conditionally load splicing behavior
Co-authored-by: Greg Becker <becker33@llnl.gov>
We added unification semantics for parsing specs from the CLI, but there are a couple
of special cases in which we can avoid calls to the concretizer for speed when the
specs can all be resolved by lookups.
- [x] special case 1: solving a single spec
- [x] special case 2: all specs are either concrete (come from a file) or have an abstract
hash. In this case if concretizer:unify:true we need an additional check to confirm
the specs are compatible.
- [x] add a parameterized test for unifying on the CI
---------
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This addresses part [1] of #46345#44713 introduced a bug where all non-spec query parameters like date
ranges, -x, etc. were ignored when an env was active.
This fixes that issue and adds tests for it.
---------
Co-authored-by: Harmen Stoppels <me@harmenstoppels.nl>
`spack mirror add` and `set` now have flags `--oci-password-variable`, `--oci-password-variable`, `--s3-access-key-id-variable`, `--s3-access-key-secret-variable`, `--s3-access-token-variable`, which allows users to specify an environment variable in which a username or password is stored.
Storing plain text passwords in config files is considered deprecated.
The schema for mirrors.yaml has changed, notably the `access_pair` list is generally replaced with a dictionary of `{id: ..., secret_variable: ...}` or `{id_variable: ..., secret_variable: ...}`.
- [x] Get rid of a call to `parser.quote_if_needed()` during solver setup, which
introduces a circular import and also isn't necessary.
- [x] Rename `spack.variant.Value` to `spack.variant.ConditionalValue`, as it is *only*
used for conditional values. This makes it much easier to understand some of the
logic for variant definitions.
Co-authored-by: Harmen Stoppels <me@harmenstoppels.nl>
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
`conditional()`, which defines conditional variant values, and the other ways to declare
variant values should probably be in a layer above `spack.variant`. This does the simple
thing and moves *just* `conditional()` to `spack.directives` to avoid a circular import.
We can revisit the public variant interface later, when we split packages from core.
Co-authored-by: Harmen Stoppels <me@harmenstoppels.nl>
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Currently, if a package has a dependency from another repository and patches it,
generation of the patch cache will fail. Concretization succeeds if a fixed patch
cache is in place.
- [x] don't assume that patched dependencies are in the same repo when indexing
- [x] add some test fixtures to support multi-repo tests.
---------
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
* spack.compiler: cache output
* compute libc from the dynamic linker at most once per spack process
* wrap compiler cache entry in class, add type hints
* test compiler caching
* ensure tests do not populate user cache, and fix 2 tests
* avoid recursion: cache lookup -> compute key -> cflags -> real_version -> cache lookup
* allow compiler execution in test that depends on get_real_version
If a package `foo` doesn't implement `libs`, the default was to search recursively for `libfoo` whenever asking for `spec[foo].libs` (this also happens automatically if a package includes `foo` as a link dependency).
This can lead to some strange behavior:
1. A package that is normally used as a build dependency (e.g. `cmake` at one point) is referenced like
`depends_on(cmake)` which leads to a fully-recursive search for `libcmake` (this can take
"forever" when CMake is registered as an external with a prefix like `/usr`, particularly on NFS mounts).
2. A similar hang can occur if a package is registered as an external with an incorrect prefix
- [x] Update the default library search to stop after a maximum depth (by default, search
the root prefix and each directory in it, but no lower).
- [x]
The following is a list of known changes to `find` compared to `develop`:
1. Matching directories are no longer returned -- `find` consistently only finds non-dirs,
even at `max_depth`
2. Symlinked directories are followed (needed to support max_depth)
3. `find(..., "dir/*.txt")` is allowed, for finding files inside certain dirs. These "complex"
patterns are delegated to `glob`, like they are on `develop`.
4. `root` and `files` arguments both support generic sequences, and `root`
allows both `str` and `path` types. This allows us to specify multiple entry points to `find`.
---------
Co-authored-by: Peter Scheibel <scheibel1@llnl.gov>
This PR adds a sub-command to `spack env` (`track`) which allows users to add/link
anonymous environments into their installation as named environments. This allows
users to more easily track their installed packages and the environments they're
dependencies of. For example, with the addition of #41731 it's now easier to remove
all packages not required by any environments with,
```
spack gc -bE
```
#### Usage
```
spack env track /path/to/env
==> Linked environment in /path/to/env
==> You can activate this environment with:
==> spack env activate env
```
By default `track /path/to/env` will use the last directory in the path as the name of
the environment. However users may customize the name of the linked environment
with `-n | --name`. Shown below.
```
spack env track /path/to/env --name foo
==> Tracking environment in /path/to/env
==> You can activate this environment with:
==> spack env activate foo
```
When removing a linked environment, Spack will remove the link to the environment
but will keep the structure of the environment within the directory. This will allow
users to remove a linked environment from their installation without deleting it from
a shared repository.
There is a `spack env untrack` command that can be used to *only* untrack a tracked
environment -- it will fail if it is used on a managed environment. Users can also use
`spack env remove` to untrack an environment.
This allows users to continue to share environments in git repositories while also having
the dependencies of those environments be remembered by Spack.
---------
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
You can now provide multiple roots to a single `find()` call and all of
them will be searched. The roots can overlap (e.g. can be parents of one
another).
This also adds a library function for taking a set of regular expression
patterns and creating a single OR expression (and that library function
is used in `find` to improve its performance).
Set command line scopes last in _main, so they are higher scopes
Restore the global configuration in a spawned process by inspecting
the result of ctx.get_start_method()
Add the ability to pass a mp.context to PackageInstallContext.
Add shell-tests to check overriding the configuration:
- Using both -c and -C from command line
- With and without an environment active
Variants can now be propagated from a dependent package to (transitive) dependencies,
even if the source or transitive dependencies have the propagated variants.
For example, here `zlib` doesn't have a `guile` variant, but `gmake` does:
```
$ spack spec zlib++guile
- zlib@1.3%gcc@12.2.0+optimize+pic+shared build_system=makefile arch=linux-rhel8-broadwell
- ^gcc-runtime@12.2.0%gcc@12.2.0 build_system=generic arch=linux-rhel8-broadwell
- ^gmake@4.4.1%gcc@12.2.0+guile build_system=generic arch=linux-rhel8-broadwell
```
Adding this property has some strange ramifications for `satisfies()`. In particular:
* The abstract specs `pkg++variant` and `pkg+variant` do not intersect, because `+variant`
implies that `pkg` *has* the variant, but `++variant` does not.
* This means that `spec.satisfies("++foo")` is `True` if:
* for concrete specs: `spec` and its dependencies all have `foo` set if it exists
* for abstract specs: no dependency of `spec` has `~foo` (i.e. no dependency contradicts `++foo`).
* This also means that `Spec("++foo").satisfies("+foo")` is `False` -- we only know after concretization.
The `satisfies()` semantics may be surprising, but this is the cost of introducing non-subset
semantics (which are more useful than proper subsets here).
- [x] Change checks for variants
- [x] Resolve conflicts
- [x] Add tests
- [x] Add documentation
---------
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* `find(..., max_depth=...)` can be used to control how many directories at most to descend into below the starting point
* `find` now enters every unique (symlinked) directory once at the lowest depth
* `find` is now repeatable: it traverses the directory tree in a deterministic order
In the pure `ld` case, we weren't actually parsing `RPATH` arguments separately as we
do for `ccld`. Fix this by adding *another* nested case statement for raw `RPATH`
parsing.
There are now 3 places where we deal with `-rpath` and friends, but I don't see a great
way to unify them, as `-Wl,`, `-Xlinker`, and raw `-rpath` arguments are all ever so
slightly different.
Also, this Fixes ordering of assertions to make `pytest` diffs more intelligible.
The meaning of `+` and `-` in diffs changed in `pytest` 6.0 and the "preferred" order
for assertions became `assert actual == expected` instead of the other way around.
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
`cc` divides most paths up into system paths, spack managed paths, and other paths.
This gets really repetitive and makes the code hard to read. Simplify the script
by adding some functions to do most of the redundant work for us.
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
This PR has two small contributions:
- It adds another phase to the timer for concrectization, "construct_specs", to actually see the time the concretizer spends interpreting the `clingo` output to build the Python object for a concretized spec.
- It adds the method `Solver.solve_with_stats` to expose the timers that were already in the concretizer to the public solver API. `Solver.solve` just becomes a special case of `Solver.solve_with_stats` that throws away the timing output (which is what it was already doing).
These changes will make it easier to benchmark concretizer performance and provide a more complete picture of the time spent in the concretizer by including the time spent interpreting clingo output.
The idea is to go from most to least used: backward compat -> forward compat -> pinning on major or major.minor version -> pinning specific, concrete versions.
Further, the following
```python
# backward compatibility with Python
depends_on("python@3.8:")
depends_on("python@3.9:", when="@1.2:")
depends_on("python@3.10:", when="@1.4:")
# forward compatibility with Python
depends_on("python@:3.12", when="@:1.10")
depends_on("python@:3.13", when="@:1.12")
depends_on("python@:3.14")
```
is better than disjoint when ranges causing repetition of the rules on dependencies, and requiring frequent editing of existing lines after new releases are done:
```python
depends_on("python@3.8:3.12", when="@:1.1")
depends_on("python@3.9:3.12", when="@1.2:1.3")
depends_on("python@3.10:3.12", when="@1.4:1.10")
depends_on("python@3.10:3.13", when="@1.11:1.12")
depends_on("python@3.10:3.14", when="@1.13:")
This PR changes the semantic of == for spec so that:
hdf5++mpi == hdf5+mpi
won't hold true anymore. It also changes the constrain semantic, so that a
non-propagating variant always override a propagating variant. This means:
(hdf5++mpi).constrain(hdf5+mpi) -> hdf5+mpi
Before we had a very weird semantic, that was supposed to be tested by unit-tests:
(libelf++debug).constrain(libelf+debug+foo) -> libelf++debug++foo
This semantic has been dropped, as it was never really tested due to the == bug.
Currently, the schema reads:
from:
- type:
environment: path_or_name
but this can't be extended easily to other types, e.g. to buildcaches,
without duplicating the extension keys. Use instead:
from:
- type: environment
path: path_or_name
Currently, the `concretizer:unify:` config option only affects environments.
With this PR, it now affects any group of specs given to a command using the `parse_specs(*, concretize=True)` interface.
- [x] implementation in `parse_specs`
- [x] tests
- [x] ensure all commands that accept multiple specs and concretize use `parse_specs` interface
---------
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
* don't concretize in CI if changed packages are not in stacks
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
* Generate noop job when no specs to rebuild due to untouched pruning
* Add test to verify skipping generate creates a noop job
* Changed debug for early exit
---------
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This changes `Spec` serialization to include information about propagation for abstract specs.
This was previously not included in the JSON representation for abstract specs, and couldn't be
stored.
Now, there is a separate `propagate` dictionary alongside the `parameters` dictionary. This isn't
beautiful, but when we bump the spec version for Spack `v0.24`, we can clean up this and other
aspects of the schema.
Fixes an issue reported where `spack env depfile` + `make -j` would
non-deterministically refuse to mark all environment roots explicit.
`update_explicit` had the pattern
```python
rec = self._data[key]
with self.write_transaction():
rec.explicit = explicit
```
but `write_transaction` may reinitialize `self._data`, meaning that
mutating `rec` won't mutate `self._data`, and the changes won't be
persisted.
Instead, use `mark` which has a correct implementation.
Also avoids the essentially incorrect early return in `update_explicit`
which is a pattern I don't think belongs in database.py: it branches on
possibly stale data to realize there is nothing to change, but in reality
it requires a write transaction to know that for a fact, but that would
defeat the purpose. So, leave this optimization to the call site.
The already concrete specs in an environment are now among the reusable specs for the concretizer.
This includes concrete specs from all include_concrete environments.
In addition to this change to the default reuse, `environment` is added as a reuse type for
the concretizer config. This allows users to specify:
spack:
concretizer:
# Reuse from this environment (including included concrete) but not elsewhere
reuse:
from:
- type: environment
# or reuse from only my_env included environment
reuse:
from:
- type:
environment: my_env
# or reuse from everywhere
reuse: true
If reuse is specified from a specific environment, only specs from that environment will be reused.
If the reused environment is not specified via include_concrete, the concrete specs will be retried
at concretization time to be reused.
Signed-off-by: Ryan Krattiger <ryan.krattiger@kitware.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Currently the order in which hooks are run is arbitrary.
This can be fixed by sorted(list_modules(...)) but I think it is much
more clear to just have a static list.
Hooks are not extensible other than modifying Spack code, which
means it's unlikely people maintain custom hooks since they'd have
to fork Spack. And if they fork Spack, they might as well add an entry
to the list when they're continuously rebasing.
The idea is that `spack -e env add ./concrete-spec.json` would list the
full hash in the specs, so that (a) it's not ambiguous and (b) it could
in principle results in constant time lookup instead of linear time
substring match in large build caches.
* Add a descriptor to have a class level constant
This descriptor helps intercept places where we set a value on instances.
It does not really behave like "const" in C-like languages, but is the
simplest implementation that might still be useful.
* Add a descriptor to deprecate properties/attributes of an object
This descriptor is used as a base class. Derived classes may implement a
factory to return an adaptor to the attribute being deprecated. The
descriptor can either warn, or raise an error, when usage of the deprecated
attribute is intercepted.
---------
Co-authored-by: Harmen Stoppels <me@harmenstoppels.nl>
Currently, `spack solve` has different spec selection semantics than `spack spec`.
`spack solve` currently does not allow specifying a single spec when an environment is active.
This PR modifies `spack solve` to inherit the interface from `spack spec`, and to use
the same spec selection logic. This will allow for better use of `spack solve --show opt`
for debugging.
---------
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Originally, concretization failed if the splice config points to an invalid replacement.
This PR defers the check until we know the splice is needed, so that irrelevant splices
with bad config cannot stop concretization.
While I was at it, I improved an error message from an assert to a ValueError.
* Normalize Spack Win entrypoints
Currently Spack has multiple entrypoints on Windows that in addition to
differing from *nix implementations, differ from shell to shell on
Windows. This is a bit confusing for new users and in general
unnecessary.
This PR adds a normal setup script for the batch shell while preserving
the previous "click from file explorer for spack shell" behavior.
Additionally adds a shell title to both powershell and cmd letting users
know this is a Spack shell
* remove doskeys
#44588 we added logic to suppress deprecation warnings for the
Intel classic compilers. This depended on matching against
* The compiler names (looking for icc, icpc, ifort)
* The compiler version
When using an Intel compiler with fortran wrappers, the first check
always fails. To support using the fortran wrappers (in combination
with the classic Intel compilers), we remove the first check and
suppress if just the version matches. This works because:
* The newer compilers like icx can handle (ignore) the flags that
suppress deprecation warnings
* The Cray wrappers pass the underlying compiler version (e.g. they
report what icc would report)
Connection objects are Python version, platform and multiprocessing
start method independent, so better to use those than a mix of plain
file descriptors and inadequate guesses in the child process whether it
was forked or not.
This also allows us to delete the now redundant MultiProcessFd class,
hopefully making things a bit easier to follow.
This allows the following
```python
cache.init_entry("my/cache")
with cache.read_transaction("my/cache") as f:
data = f.read() if f is not None else None
```
mirroring `write_transaction`, which returns a tuple `(old, new)` where
`old` is `None` if the cache file did not exist yet.
The alternative that requires less defensive programming on the call
site would be to create the "old" file upon first read, but I did not
want to think about how to safely atomically create the file, and it's
not unthinkable that an empty file is an invalid format (for instance
the call site may expect a json file, which requires at least {} bytes).
This PR is in response to a question in the `environments` slack channel (https://spackpm.slack.com/archives/CMHK7MF51/p1729200068557219) about inadequate CLI help/documentation for one specific subcommand.
This PR uses the approach I took for the descriptions and help for `spack test` subcommands. Namely, I use the first line of the relevant docstring as the description, which is shown per subcommand in `spack env -h`, and the entire docstring as the help. I then added, where it seemed appropriate, help. I also tweaked argument docstrings to tighten them up, make consistent with similar arguments elsewhere in the command, and elaborate when it seemed important. (The only subcommand I didn't touch is `loads`.)
For example, before:
```
$ spack env update -h
usage: spack env update [-hy] env
positional arguments:
env name or directory of the environment to activate
optional arguments:
-h, --help show this help message and exit
-y, --yes-to-all assume "yes" is the answer to every confirmation request
```
After the changes in this PR:
```
$ spack env update -h
usage: spack env update [-hy] env
update the environment manifest to the latest schema format
update the environment to the latest schema format, which may not be
readable by older versions of spack
a backup copy of the manifest is retained in case there is a need to revert
this operation
positional arguments:
env name or directory of the environment
optional arguments:
-h, --help show this help message and exit
-y, --yes-to-all assume "yes" is the answer to every confirmation request
```
---------
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Commit aa0825d642 accidentally added a semicolon
to the ANSI escape sequence even if the color code was `None` or unknown, breaking the
bold, uncolored font-face. This PR restores the old behavior.
---------
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
* Add type hints to all query* methods
* Inline docstrings
* Change defaults from `any` to `None` so they can be type hinted in old Python
* Pre-filter on given hashes instead of iterating over all db specs
* Fix a bug where the `--origin` option of uninstall had no effect
* Fix a bug where query args were not applied when searching by concrete spec
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Fixes a change in behavior/bug in
70412612c7, where partial environment
installs would mark the selected spec as explicitly installed, even if
it was not a root of the environment.
The desired behavior is that roots by definition are the to be
explicitly installed specs. The specs on the `spack -e ... install x`
command line are just filters for partial installs, so leave them
implicitly installed if they aren't roots.
ci: Remove deprecated logic from the ci module
Remove the following from the ci module, schema, and tests:
- deprecated ci stack and handling of old ci config
- deprecated mirror handling logic
- support for artifacts buildcache
- support for temporary storage url
Both `multiprocessing.connection.Connection.__del__` and `io.IOBase.__del__` called `os.close` on the same file descriptor. As of Python 3.13, this is an explicit warning. Ensure we close once by usef `os.fdopen(..., closefd=False)`
* stacks: add a stack for devtools on darwin
After getting this whole mess building on darwin, let's keep it that
way, and maybe make it so we have some non-ML darwin binaries in spack
as well.
* reuse: false for devtools
* dtc: fix darwin dylib name and id
On mac the convention is `lib<name>.<num>.dylib`, while the makefile
creates a num suffixed one by default. The id in the file is also a
local name rather than rewritten to the full path, this fixes both
problems.
* node-js: make whereis more deterministic
* relocation(darwin): catch Mach-O load failure
The MachO library can throw an exception rather than return no headers,
this happened in an elf file in the test data of go-bootstrap. Trying
catching the exception and moving on for now. May also need to look
into why we're trying to rewrite an elf file.
* qemu: add darwin flags to clear out warnings
There's a build failure for qemu in CI, but it's invisible because of
the immense mass of warning output. Explicitly specify the target macos
version and remove the extraneous unknown-warning-option flag.
* dtc: libyaml is also a link dependency
libyaml is required at runtime to run the dtc binary, lack of it caused
the ci for qemu to fail when the library wasn't found.
fixes#47101
The bug was introduced in #33495, where `spack find was not updated,
and wasn't caught by unit tests.
Now a Database can accept a custom predicate to select the installation
records. A unit test is added to prevent regressions. The weird convention
of having `any` as a default value has been replaced by the more commonly
used `None`.
Signed-off-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
#44327 made sure to always run `set_package_py_globals` on all
packages before running `setup_dependent_package` for any package,
so that packages implementing the latter could depend on variables
like `spack_cc` being defined.
This ran into an undocumented dependency: `std_cmake_args` is set in
`set_package_py_globals` and makes use of `cmake_prefix_paths` (if it
is defined in the package); `py-torch`es implementation of
`cmake_prefix_paths` depends on a variable set by
`setup_dependent_package` (`python_platlib`).
This generally restores #44327, and corrects the resulting issue by
moving assignment of `std_cmake_args` to after both actions have been
run.
Remove the constraint for concrete specs and simply take the
max(version) if a version is not given. This should default to the
highest infinity version which is also the logical best guess for
doing development.
* Remove concrete verision constriant for develop, set docs
* Add unit-test
* Update lib/spack/docs/environments.rst
Co-authored-by: kwryankrattiger <80296582+kwryankrattiger@users.noreply.github.com>
* Update lib/spack/spack/cmd/develop.py
Co-authored-by: Greg Becker <becker33@llnl.gov>
* Consolidate env collection in cmd
* Style
---------
Co-authored-by: kwryankrattiger <80296582+kwryankrattiger@users.noreply.github.com>
Co-authored-by: Greg Becker <becker33@llnl.gov>