Add a configuration option to suppress gpg warnings during binary
package verification. This only suppresses warnings: a gpg failure
will still fail the install. This allows users who have already
explicitly trusted the gpg key they are using to avoid seeing
repeated warnings that it is self-signed.
Add a new entry in `config.yaml`:
config:
shared_linking: 'rpath'
If this variable is set to `rpath` (the default) Spack will set RPATH in ELF binaries. If set to `runpath` it will set RUNPATH.
Details:
* Spack cc wrapper explicitly adds `--disable-new-dtags` when linking
* cc wrapper also strips `--enable-new-dtags` from the compile line
when disabling (and vice versa)
* We specifically do *not* add any dtags flags on macOS, which uses
Mach-O binaries, not ELF, so there's no RUNPATH)
Dotkit is being used only at a few sites and has been deprecated on new
machines. This commit removes all the code that provide support for the
generation of dotkit module files.
A new validator named "deprecatedProperties" has been added to the
jsonschema validators. It permits to prompt a warning message or exit
with an error if a property that has been marked as deprecated is
encountered.
* Removed references to dotkit in the docs
* Removed references to dotkit in setup-env-test.sh
* Added a unit test for the 'deprecatedProperties' schema validator
* When cleaning the stage root, only remove directories that appear
to be used for staging Spack packages. Previously Spack was clearing
all directories in the stage root, which could remove content not
related to Spack if the user chose a staging root which contains
files/directories not managed by Spack.
* The documentation is updated with warnings about choosing a stage
directory that is only managed by Spack (although generally the
check added in this PR for "spack clean" should avoid removing
content that was not created by Spack)
* The default stage directory (in config.yaml) is now
$tempdir/$user/spack-stage and the logic is updated to omit the
$user portion of this path if $tempdir already contains a $user
directory.
* When creating stage root assign user read/write permissions to all
directories in the path under $user. Previously Spack was assigning
the permissions of the first existing parent directory
Fixes#11163
The goal of this work is to simplify stage directory structures by eliminating use of symbolic links. This means, among other things, that` $spack/var/spack/stage` will no longer be the core staging directory. Instead, the first accessible `config:build_stage` path will be used.
Spack will no longer automatically append `spack-stage` (or the like) to configured build stage directories so the onus of distinguishing the directory from other work -- so the other work is not automatically removed with a `spack clean` operation -- falls on the user.
* config:build_jobs now controls the number of parallel jobs to spawn during
builds, but cannot ever exceed the number of cores on the machine.
* The default is set to 16 or the number of available cores, whatever
is lowest.
* Updated docs to reflect the changes done to limit parallel builds
* Create option to build missing compilers and add them to config before installing packages that use them
* Clean up kwarg passing for do_install, put compiler bootstrapping in separate method
* Remove /nfs/tmp2 from default configuration
* /nfs/tmp2 is going away from LC... and doesn’t exist for the rest of the world.
* update documentation to remove /nfs/tmp2 as well
* Add a build_language config.yaml option which controls the language
of compiler messages
* build_language defaults to "C", in which case the compiler messages
will be in English. This allows Spack log parsing to detect and
highlight error messages (since the regular expressions to find
error messages are in English)
* The user can use the default language in their environment by setting
the build_language config variable to null or ''
Fixes#9166
This is intended to reduce errors related to lock timeouts by making
the following changes:
* Improves error reporting when acquiring a lock fails (addressing
#9166) - there is no longer an attempt to release the lock if an
acquire fails
* By default locks taken on individual packages no longer have a
timeout. This allows multiple spack instances to install overlapping
dependency DAGs. For debugging purposes, a timeout can be added by
setting 'package_lock_timeout' in config.yaml
* Reduces the polling frequency when trying to acquire a lock, to
reduce impact in the case where NFS is overtaxed. A simple
adaptive strategy is implemented, which starts with a polling
interval of .1 seconds and quickly increases to .5 seconds
(originally it would poll up to 10^5 times per second).
A test is added to check the polling interval generation logic.
* The timeout for Spack's whole-database lock (e.g. for managing
information about installed packages) is increased from 60s to
120s
* Users can configure the whole-database lock timeout using the
'db_lock_timout' setting in config.yaml
Generally, Spack locks (those created using spack.llnl.util.lock.Lock)
now have no timeout by default
This does not address implementations of NFS that do not support file
locking, or detect cases where services that may be required
(nfslock/statd) aren't running.
Users may want to be able to more-aggressively release locks when
they know they are the only one using their Spack instance, and they
encounter lock errors after a crash (e.g. a remote terminal disconnect
mentioned in #8915).
If the user sets "ccache: true" in spack's config.yaml, Spack will use an available
ccache executable when compiling c/c++ code. This feature is disabled by default
(i.e. "ccache: false") and the documentation is updated with how to enable
ccache support
- spack.util.lock behaves the same as llnl.util.lock, but Lock._lock and
Lock._unlock do nothing.
- can be disabled with a control variable.
- configuration options can enable/disable locking:
- `locks` option in spack configuration controls whether Spack will use filesystem locks or not.
- `-l` and `-L` command-line options can force-disable or force-enable locking.
- Spack will check for group- and world-writability before disabling
locks, and it will not allow a group- or world-writable instance to
have locks disabled.
- update documentation
* Add format to separate target and os for path
spec format can now handle separations of target and os for setting
up the path.
* Added ${PLATFORM} et al to spec.format()
${PLATFORM}, ${OS}, ${TARGET}
* Update tests
Updated tests and got rid of unnecessary code.
* Also update documentation to reflect this new ability.
* Add default path scheme to config.yaml
Added default path scheme to config.yaml. Users can overwrite this
section if they want.
* Module files now are generated using a template engine refers #2902#3173
jinja2 has been hooked into Spack.
The python module `modules.py` has been splitted into several modules
under the python package `spack/modules`. Unit tests stressing module
file generation have been refactored accordingly.
The module file generator for Lmod has been extended to multi-providers
and deeper hierarchies.
* Improved the support for templates in module files.
Added an entry in `config.yaml` (`template_dirs`) to list all the
directories where Spack could find templates for `jinja2`.
Module file generators have a simple override mechanism to override
template selection ('modules.yaml' beats 'package.py' beats 'default').
* Added jinja2 and MarkupSafe to vendored packages.
* Spec.concretize() sets mutual spec-package references
The correct place to set the mutual references between spec and package
objects at the end of concretization. After a call to concretize we
should now be ensured that spec is the same object as spec.package.spec.
Code in `build_environment.py` that was performing the same operation
has been turned into an assertion to be defensive on the new behavior.
* Improved code and data layout for modules and related tests.
Common fixtures related to module file generation have been extracted
in `conftest.py`. All the mock configurations for module files have been
extracted from python code and have been put into their own yaml file.
Added a `context_property` decorator for the template engine, to make
it easy to define dictionaries out of properties.
The default for `verbose` in `modules.yaml` is now False instead of True.
* Extendable module file contexts + short description from docstring
The contexts that are used in conjunction with `jinja2` templates to
generate module files can now be extended from package.py and
modules.yaml.
Module files generators now infer the short description from package.py
docstring (and as you may expect it's the first paragraph)
* 'module refresh' regenerates all modules by default
`module refresh` without `--module-type` specified tries to
regenerate all known module types. The same holds true for `module rm`
Configure options used at build time are extracted and written into the
module files where possible.
* Fixed python3 compatibility, tests for Lmod and Tcl.
Added test for exceptional paths of execution when generating Lmod
module files.
Fixed a few compatibility issues with python3.
Fixed a bug in Tcl with naming_scheme and autoload + unit tests
* Updated module file tutorial docs. Fixed a few typos in docstrings.
The reference section for module files has been reorganized. The idea is
to have only three topics at the highest level:
- shell support + spack load/unload use/unuse
- module file generation (a.k.a. APIs + modules.yaml)
- module file maintenance (spack module refresh/rm)
Module file generation will cover the entries in modules.yaml
Also:
- Licenses have been updated to include NOTICE and extended to 2017
- docstrings have been reformatted according to Google style
* Removed redundant arguments to RPackage and WafPackage.
All the callbacks in `RPackage` and `WafPackage` that are not build
phases have been modified not to accept a `spec` and a `prefix`
argument. This permits to leverage the common `configure_args` signature
to insert by default the configuration arguments into the generated
module files. I think it's preferable to handling those packages
differently than `AutotoolsPackage`. Besides only one package seems
to override one of these methods.
* Fixed broken indentation + improved resiliency of refresh
Fixed broken indentation in `spack module refresh` (probably a rebase
gone silently wrong?). Filter the writers for blacklisted specs before
searching for name clashes. An error with a single writer will not
stop regeneration, but instead will print a warning and continue
the command.
- Added a schema for config.yaml
- Moved install tree configuration to config.yaml
- Moved etc/spack/install.yaml to etc/spack/defaults/config.yaml
- renamed install_area to "store", to use a term in common with guix/nix.
- in `config.yaml` file, it's called the `install_tree` to be more
intuitive to users.
- `install_tree` might've worked in the code, but `install_tree` is
already a global function in the spack namespace, from
llnl.util.filesystem.