Compare commits

..

2 Commits

Author SHA1 Message Date
Gregory Becker
88d364a6e2 try not checking repos for reuse specs 2022-12-08 09:57:06 -08:00
Gregory Becker
2b84985aa7 improve debug errors from solver 2022-12-08 09:56:32 -08:00
10475 changed files with 164117 additions and 323937 deletions

View File

@@ -1,20 +0,0 @@
#!/bin/bash
# Load spack environment at terminal startup
cat <<EOF >> /root/.bashrc
. /workspaces/spack/share/spack/setup-env.sh
EOF
# Load spack environment in this script
. /workspaces/spack/share/spack/setup-env.sh
# Ensure generic targets for maximum matching with buildcaches
spack config --scope site add "packages:all:require:[target=x86_64_v3]"
spack config --scope site add "concretizer:targets:granularity:generic"
# Find compiler and install gcc-runtime
spack compiler find --scope site
# Setup buildcaches
spack mirror add --scope site develop https://binaries.spack.io/develop
spack buildcache keys --install --trust

View File

@@ -1,5 +0,0 @@
{
"name": "Ubuntu 20.04",
"image": "ghcr.io/spack/ubuntu20.04-runner-amd64-gcc-11.4:2023.08.01",
"postCreateCommand": "./.devcontainer/postCreateCommand.sh"
}

View File

@@ -1,5 +0,0 @@
{
"name": "Ubuntu 22.04",
"image": "ghcr.io/spack/ubuntu-22.04:v2024-05-07",
"postCreateCommand": "./.devcontainer/postCreateCommand.sh"
}

View File

@@ -1,5 +1,3 @@
# .git-blame-ignore-revs
# Formatted entire codebase with black 23
603569e321013a1a63a637813c94c2834d0a0023
# Formatted entire codebase with black 22
# Formatted entire codebase with black
f52f6e99dbf1131886a80112b8c79dfc414afb7c

1
.gitattributes vendored
View File

@@ -1,4 +1,3 @@
*.py diff=python
*.lp linguist-language=Prolog
lib/spack/external/* linguist-vendored
*.bat text eol=crlf

View File

@@ -9,7 +9,7 @@ body:
Thanks for taking the time to report this build failure. To proceed with the report please:
1. Title the issue `Installation issue: <name-of-the-package>`.
2. Provide the information required below.
We encourage you to try, as much as possible, to reduce your problem to the minimal example that still reproduces the issue. That would help us a lot in fixing it quickly and effectively!
- type: textarea
id: reproduce
@@ -29,9 +29,7 @@ body:
description: |
Please post the error message from spack inside the `<details>` tag below:
value: |
<details><summary>Error message</summary>
<pre>
<details><summary>Error message</summary><pre>
...
</pre></details>
validations:
@@ -55,7 +53,7 @@ body:
Please upload the following files:
* **`spack-build-out.txt`**
* **`spack-build-env.txt`**
They should be present in the stage directory of the failing build. Also upload any `config.log` or similar file if one exists.
- type: markdown
attributes:

View File

@@ -1,4 +1,4 @@
name: "\U0001F38A Feature request"
name: "\U0001F38A Feature request"
description: Suggest adding a feature that is not yet in Spack
labels: [feature]
body:
@@ -29,11 +29,13 @@ body:
attributes:
label: General information
options:
- label: I have run `spack --version` and reported the version of Spack
required: true
- label: I have searched the issues of this repo and believe this is not a duplicate
required: true
- type: markdown
attributes:
value: |
If you want to ask a question about the tool (how to use it, what it can currently do, etc.), try the `#general` channel on [our Slack](https://slack.spack.io/) first. We have a welcoming community and chances are you'll get your reply faster and without opening an issue.
Other than that, thanks for taking the time to contribute to Spack!

View File

@@ -21,9 +21,7 @@ body:
description: |
Please post the error message from spack inside the `<details>` tag below:
value: |
<details><summary>Error message</summary>
<pre>
<details><summary>Error message</summary><pre>
...
</pre></details>
validations:

View File

@@ -5,10 +5,3 @@ updates:
directory: "/"
schedule:
interval: "daily"
# Requirements to run style checks and build documentation
- package-ecosystem: "pip"
directories:
- "/.github/workflows/requirements/style/*"
- "/lib/spack/docs"
schedule:
interval: "daily"

View File

@@ -1,6 +0,0 @@
<!--
Remember that `spackbot` can help with your PR in multiple ways:
- `@spackbot help` shows all the commands that are currently available
- `@spackbot fix style` tries to push a commit to fix style issues in this PR
- `@spackbot re-run pipeline` runs the pipelines again, if you have write access to the repository
-->

View File

@@ -17,58 +17,28 @@ concurrency:
jobs:
# Run audits on all the packages in the built-in repository
package-audits:
runs-on: ${{ matrix.system.os }}
strategy:
matrix:
system:
- { os: windows-latest, shell: 'powershell Invoke-Expression -Command "./share/spack/qa/windows_test_setup.ps1"; {0}' }
- { os: ubuntu-latest, shell: bash }
- { os: macos-latest, shell: bash }
defaults:
run:
shell: ${{ matrix.system.shell }}
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: ${{inputs.python_version}}
- name: Install Python packages
run: |
pip install --upgrade pip setuptools pytest coverage[toml]
- name: Setup for Windows run
if: runner.os == 'Windows'
run: |
python -m pip install --upgrade pywin32
pip install --upgrade pip six setuptools pytest codecov coverage[toml]
- name: Package audits (with coverage)
env:
COVERAGE_FILE: coverage/.coverage-audits-${{ matrix.system.os }}
if: ${{ inputs.with_coverage == 'true' && runner.os != 'Windows' }}
if: ${{ inputs.with_coverage == 'true' }}
run: |
. share/spack/setup-env.sh
coverage run $(which spack) audit packages
coverage run $(which spack) audit configs
coverage run $(which spack) -d audit externals
coverage combine
coverage xml
- name: Package audits (without coverage)
if: ${{ inputs.with_coverage == 'false' && runner.os != 'Windows' }}
if: ${{ inputs.with_coverage == 'false' }}
run: |
. share/spack/setup-env.sh
spack -d audit packages
spack -d audit configs
spack -d audit externals
- name: Package audits (without coverage)
if: ${{ runner.os == 'Windows' }}
run: |
. share/spack/setup-env.sh
spack -d audit packages
./share/spack/qa/validate_last_exit.ps1
spack -d audit configs
./share/spack/qa/validate_last_exit.ps1
spack -d audit externals
./share/spack/qa/validate_last_exit.ps1
- uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874
if: ${{ inputs.with_coverage == 'true' && runner.os != 'Windows' }}
$(which spack) audit packages
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70 # @v2.1.0
if: ${{ inputs.with_coverage == 'true' }}
with:
name: coverage-audits-${{ matrix.system.os }}
path: coverage
include-hidden-files: true
flags: unittests,linux,audits

View File

@@ -1,8 +0,0 @@
#!/bin/bash
set -e
source share/spack/setup-env.sh
$PYTHON bin/spack bootstrap disable github-actions-v0.4
$PYTHON bin/spack bootstrap disable spack-install
$PYTHON bin/spack $SPACK_FLAGS solve zlib
tree $BOOTSTRAP/store
exit 0

View File

@@ -1,10 +0,0 @@
# (c) 2022 Lawrence Livermore National Laboratory
git config --global user.email "spack@example.com"
git config --global user.name "Test User"
git config --global core.longpaths true
if ($(git branch --show-current) -ne "develop")
{
git branch develop origin/develop
}

View File

@@ -1,8 +0,0 @@
#!/bin/bash -e
git config --global user.email "spack@example.com"
git config --global user.name "Test User"
# create a local pr base branch
if [[ -n $GITHUB_BASE_REF ]]; then
git fetch origin "${GITHUB_BASE_REF}:${GITHUB_BASE_REF}"
fi

7
.github/workflows/bootstrap-test.sh vendored Executable file
View File

@@ -0,0 +1,7 @@
#!/bin/bash
set -ex
source share/spack/setup-env.sh
$PYTHON bin/spack bootstrap disable spack-install
$PYTHON bin/spack -d solve zlib
tree $BOOTSTRAP/store
exit 0

View File

@@ -13,22 +13,118 @@ concurrency:
cancel-in-progress: true
jobs:
distros-clingo-sources:
fedora-clingo-sources:
runs-on: ubuntu-latest
container: ${{ matrix.image }}
strategy:
matrix:
image: ["fedora:latest", "opensuse/leap:latest"]
container: "fedora:latest"
steps:
- name: Setup Fedora
if: ${{ matrix.image == 'fedora:latest' }}
- name: Install dependencies
run: |
dnf install -y \
bzip2 curl file gcc-c++ gcc gcc-gfortran git gzip \
bzip2 curl file gcc-c++ gcc gcc-gfortran git gnupg2 gzip \
make patch unzip which xz python3 python3-devel tree \
cmake bison bison-devel libstdc++-static
- name: Setup OpenSUSE
if: ${{ matrix.image == 'opensuse/leap:latest' }}
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
ubuntu-clingo-sources:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
DEBIAN_FRONTEND: noninteractive
run: |
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc gfortran git gnupg2 gzip \
make patch unzip xz-utils python3 python3-dev tree \
cmake bison
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
ubuntu-clingo-binaries-and-patchelf:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
DEBIAN_FRONTEND: noninteractive
run: |
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc gfortran git gnupg2 gzip \
make patch unzip xz-utils python3 python3-dev tree
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack -d solve zlib
tree ~/.spack/bootstrap/store/
opensuse-clingo-sources:
runs-on: ubuntu-latest
container: "opensuse/leap:latest"
steps:
- name: Install dependencies
run: |
# Harden CI by applying the workaround described here: https://www.suse.com/support/kb/doc/?id=000019505
zypper update -y || zypper update -y
@@ -37,138 +133,98 @@ jobs:
make patch unzip which xz python3 python3-devel tree \
cmake bison
- name: Checkout
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup repo
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.5
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
clingo-sources:
runs-on: ${{ matrix.runner }}
strategy:
matrix:
runner: ['macos-13', 'macos-14', "ubuntu-latest", "windows-latest"]
macos-clingo-sources:
runs-on: macos-latest
steps:
- name: Setup macOS
if: ${{ matrix.runner != 'ubuntu-latest' && matrix.runner != 'windows-latest' }}
- name: Install dependencies
run: |
brew install cmake bison tree
brew install cmake bison@2.7 tree
- name: Checkout
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
with:
python-version: "3.12"
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap clingo
env:
SETUP_SCRIPT_EXT: ${{ matrix.runner == 'windows-latest' && 'ps1' || 'sh' }}
SETUP_SCRIPT_SOURCE: ${{ matrix.runner == 'windows-latest' && './' || 'source ' }}
USER_SCOPE_PARENT_DIR: ${{ matrix.runner == 'windows-latest' && '$env:userprofile' || '$HOME' }}
VALIDATE_LAST_EXIT: ${{ matrix.runner == 'windows-latest' && './share/spack/qa/validate_last_exit.ps1' || '' }}
run: |
${{ env.SETUP_SCRIPT_SOURCE }}share/spack/setup-env.${{ env.SETUP_SCRIPT_EXT }}
spack bootstrap disable github-actions-v0.5
source share/spack/setup-env.sh
export PATH=/usr/local/opt/bison@2.7/bin:$PATH
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find --not-buildable cmake bison
spack -d solve zlib
${{ env.VALIDATE_LAST_EXIT }}
tree ${{ env.USER_SCOPE_PARENT_DIR }}/.spack/bootstrap/store/
gnupg-sources:
runs-on: ${{ matrix.runner }}
strategy:
matrix:
runner: [ 'macos-13', 'macos-14', "ubuntu-latest" ]
steps:
- name: Setup macOS
if: ${{ matrix.runner != 'ubuntu-latest' }}
run: |
brew install tree gawk
sudo rm -rf $(command -v gpg gpg2)
- name: Setup Ubuntu
if: ${{ matrix.runner == 'ubuntu-latest' }}
run: sudo rm -rf $(command -v gpg gpg2 patchelf)
- name: Checkout
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
fetch-depth: 0
- name: Bootstrap GnuPG
run: |
source share/spack/setup-env.sh
spack solve zlib
spack bootstrap disable github-actions-v0.5
spack bootstrap disable github-actions-v0.4
spack -d gpg list
tree ~/.spack/bootstrap/store/
from-binaries:
runs-on: ${{ matrix.runner }}
macos-clingo-binaries:
runs-on: ${{ matrix.macos-version }}
strategy:
matrix:
runner: ['macos-13', 'macos-14', "ubuntu-latest", "windows-latest"]
macos-version: ['macos-11', 'macos-12']
steps:
- name: Setup macOS
if: ${{ matrix.runner != 'ubuntu-latest' && matrix.runner != 'windows-latest'}}
- name: Install dependencies
run: |
brew install tree
# Remove GnuPG since we want to bootstrap it
sudo rm -rf /usr/local/bin/gpg
- name: Setup Ubuntu
if: ${{ matrix.runner == 'ubuntu-latest' }}
run: |
sudo rm -rf $(which gpg) $(which gpg2) $(which patchelf)
- name: Setup Windows
if: ${{ matrix.runner == 'windows-latest' }}
run: |
Remove-Item -Path (Get-Command gpg).Path
Remove-Item -Path (Get-Command file).Path
- name: Checkout
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
with:
python-version: |
3.8
3.9
3.10
3.11
3.12
- name: Set bootstrap sources
env:
SETUP_SCRIPT_EXT: ${{ matrix.runner == 'windows-latest' && 'ps1' || 'sh' }}
SETUP_SCRIPT_SOURCE: ${{ matrix.runner == 'windows-latest' && './' || 'source ' }}
run: |
${{ env.SETUP_SCRIPT_SOURCE }}share/spack/setup-env.${{ env.SETUP_SCRIPT_EXT }}
spack bootstrap disable github-actions-v0.4
- name: Disable from source bootstrap
if: ${{ matrix.runner != 'windows-latest' }}
run: |
source share/spack/setup-env.sh
spack bootstrap disable spack-install
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap clingo
# No binary clingo on Windows yet
if: ${{ matrix.runner != 'windows-latest' }}
run: |
set -e
for ver in '3.8' '3.9' '3.10' '3.11' '3.12' ; do
set -ex
for ver in '3.6' '3.7' '3.8' '3.9' '3.10' ; do
not_found=1
ver_dir="$(find $RUNNER_TOOL_CACHE/Python -wholename "*/${ver}.*/*/bin" | grep . || true)"
echo "Testing $ver_dir"
if [[ -d "$ver_dir" ]] ; then
echo "Testing $ver_dir"
if $ver_dir/python --version ; then
export PYTHON="$ver_dir/python"
not_found=0
old_path="$PATH"
export PATH="$ver_dir:$PATH"
./bin/spack-tmpconfig -b ./.github/workflows/bin/bootstrap-test.sh
./bin/spack-tmpconfig -b ./.github/workflows/bootstrap-test.sh
export PATH="$old_path"
fi
fi
# NOTE: test all pythons that exist, not all do on 12
done
ubuntu-clingo-binaries:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup repo
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
run: |
set -ex
for ver in '3.6' '3.7' '3.8' '3.9' '3.10' ; do
not_found=1
ver_dir="$(find $RUNNER_TOOL_CACHE/Python -wholename "*/${ver}.*/*/bin" | grep . || true)"
echo "Testing $ver_dir"
if [[ -d "$ver_dir" ]] ; then
if $ver_dir/python --version ; then
export PYTHON="$ver_dir/python"
not_found=0
old_path="$PATH"
export PATH="$ver_dir:$PATH"
./bin/spack-tmpconfig -b ./.github/workflows/bootstrap-test.sh
export PATH="$old_path"
fi
fi
@@ -177,25 +233,120 @@ jobs:
exit 1
fi
done
ubuntu-gnupg-binaries:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
DEBIAN_FRONTEND: noninteractive
run: |
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc patchelf gfortran git gzip \
make patch unzip xz-utils python3 python3-dev tree
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap GnuPG
env:
SETUP_SCRIPT_EXT: ${{ matrix.runner == 'windows-latest' && 'ps1' || 'sh' }}
SETUP_SCRIPT_SOURCE: ${{ matrix.runner == 'windows-latest' && './' || 'source ' }}
USER_SCOPE_PARENT_DIR: ${{ matrix.runner == 'windows-latest' && '$env:userprofile' || '$HOME' }}
VALIDATE_LAST_EXIT: ${{ matrix.runner == 'windows-latest' && './share/spack/qa/validate_last_exit.ps1' || '' }}
shell: runuser -u spack-test -- bash {0}
run: |
${{ env.SETUP_SCRIPT_SOURCE }}share/spack/setup-env.${{ env.SETUP_SCRIPT_EXT }}
source share/spack/setup-env.sh
spack bootstrap disable spack-install
spack -d gpg list
${{ env.VALIDATE_LAST_EXIT }}
tree ${{ env.USER_SCOPE_PARENT_DIR }}/.spack/bootstrap/store/
- name: Bootstrap File
tree ~/.spack/bootstrap/store/
ubuntu-gnupg-sources:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
SETUP_SCRIPT_EXT: ${{ matrix.runner == 'windows-latest' && 'ps1' || 'sh' }}
SETUP_SCRIPT_SOURCE: ${{ matrix.runner == 'windows-latest' && './' || 'source ' }}
USER_SCOPE_PARENT_DIR: ${{ matrix.runner == 'windows-latest' && '$env:userprofile' || '$HOME' }}
VALIDATE_LAST_EXIT: ${{ matrix.runner == 'windows-latest' && './share/spack/qa/validate_last_exit.ps1' || '' }}
DEBIAN_FRONTEND: noninteractive
run: |
${{ env.SETUP_SCRIPT_SOURCE }}share/spack/setup-env.${{ env.SETUP_SCRIPT_EXT }}
spack -d python share/spack/qa/bootstrap-file.py
${{ env.VALIDATE_LAST_EXIT }}
tree ${{ env.USER_SCOPE_PARENT_DIR }}/.spack/bootstrap/store/
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc patchelf gfortran git gzip \
make patch unzip xz-utils python3 python3-dev tree \
gawk
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap GnuPG
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack solve zlib
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack -d gpg list
tree ~/.spack/bootstrap/store/
macos-gnupg-binaries:
runs-on: macos-latest
steps:
- name: Install dependencies
run: |
brew install tree
# Remove GnuPG since we want to bootstrap it
sudo rm -rf /usr/local/bin/gpg
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap GnuPG
run: |
source share/spack/setup-env.sh
spack bootstrap disable spack-install
spack -d gpg list
tree ~/.spack/bootstrap/store/
macos-gnupg-sources:
runs-on: macos-latest
steps:
- name: Install dependencies
run: |
brew install gawk tree
# Remove GnuPG since we want to bootstrap it
sudo rm -rf /usr/local/bin/gpg
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap GnuPG
run: |
source share/spack/setup-env.sh
spack solve zlib
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack -d gpg list
tree ~/.spack/bootstrap/store/
# [1] Distros that have patched git to resolve CVE-2022-24765 (e.g. Ubuntu patching v2.25.1)
# introduce breaking behaviorso we have to set `safe.directory` in gitconfig ourselves.
# See:
# - https://github.blog/2022-04-12-git-security-vulnerability-announced/
# - https://github.com/actions/checkout/issues/760
# - http://changelogs.ubuntu.com/changelogs/pool/main/g/git/git_2.25.1-1ubuntu3.3/changelog

View File

@@ -38,45 +38,38 @@ jobs:
# Meaning of the various items in the matrix list
# 0: Container name (e.g. ubuntu-bionic)
# 1: Platforms to build for
# 2: Base image (e.g. ubuntu:22.04)
# 2: Base image (e.g. ubuntu:18.04)
dockerfile: [[amazon-linux, 'linux/amd64,linux/arm64', 'amazonlinux:2'],
[centos-stream9, 'linux/amd64,linux/arm64,linux/ppc64le', 'centos:stream9'],
[centos7, 'linux/amd64,linux/arm64,linux/ppc64le', 'centos:7'],
[centos-stream, 'linux/amd64,linux/arm64,linux/ppc64le', 'centos:stream'],
[leap15, 'linux/amd64,linux/arm64,linux/ppc64le', 'opensuse/leap:15'],
[ubuntu-bionic, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:18.04'],
[ubuntu-focal, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:20.04'],
[ubuntu-jammy, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:22.04'],
[ubuntu-noble, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:24.04'],
[almalinux8, 'linux/amd64,linux/arm64,linux/ppc64le', 'almalinux:8'],
[almalinux9, 'linux/amd64,linux/arm64,linux/ppc64le', 'almalinux:9'],
[rockylinux8, 'linux/amd64,linux/arm64', 'rockylinux:8'],
[rockylinux9, 'linux/amd64,linux/arm64', 'rockylinux:9'],
[fedora39, 'linux/amd64,linux/arm64,linux/ppc64le', 'fedora:39'],
[fedora40, 'linux/amd64,linux/arm64,linux/ppc64le', 'fedora:40']]
[ubuntu-jammy, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:22.04']]
name: Build ${{ matrix.dockerfile[0] }}
if: github.repository == 'spack/spack'
steps:
- name: Checkout
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- uses: docker/metadata-action@8e5442c4ef9f78752691e2d8f8d19755c6f78e81
id: docker_meta
with:
images: |
ghcr.io/${{ github.repository_owner }}/${{ matrix.dockerfile[0] }}
${{ github.repository_owner }}/${{ matrix.dockerfile[0] }}
tags: |
type=schedule,pattern=nightly
type=schedule,pattern=develop
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=semver,pattern={{major}}
type=ref,event=branch
type=ref,event=pr
- name: Set Container Tag Normal (Nightly)
run: |
container="${{ matrix.dockerfile[0] }}:latest"
echo "container=${container}" >> $GITHUB_ENV
echo "versioned=${container}" >> $GITHUB_ENV
# On a new release create a container with the same tag as the release.
- name: Set Container Tag on Release
if: github.event_name == 'release'
run: |
versioned="${{matrix.dockerfile[0]}}:${GITHUB_REF##*/}"
echo "versioned=${versioned}" >> $GITHUB_ENV
- name: Generate the Dockerfile
env:
SPACK_YAML_OS: "${{ matrix.dockerfile[2] }}"
run: |
.github/workflows/bin/generate_spack_yaml_containerize.sh
.github/workflows/generate_spack_yaml_containerize.sh
. share/spack/setup-env.sh
mkdir -p dockerfiles/${{ matrix.dockerfile[0] }}
spack containerize --last-stage=bootstrap | tee dockerfiles/${{ matrix.dockerfile[0] }}/Dockerfile
@@ -87,19 +80,19 @@ jobs:
fi
- name: Upload Dockerfile
uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874
uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
with:
name: dockerfiles_${{ matrix.dockerfile[0] }}
name: dockerfiles
path: dockerfiles
- name: Set up QEMU
uses: docker/setup-qemu-action@49b3bc8e6bdd4a60e6116a5414239cba5943d3cf
uses: docker/setup-qemu-action@e81a89b1732b9c48d79cd809d8d81d79c4647a18 # @v1
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@988b5a0280414f521da01fcc63a27aeeb4b104db
uses: docker/setup-buildx-action@8c0edbc76e98fa90f69d9a2c020dcb50019dc325 # @v1
- name: Log in to GitHub Container Registry
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
uses: docker/login-action@f4ef78c080cd8ba55a85445d5b36e214a81df20a # @v1
with:
registry: ghcr.io
username: ${{ github.actor }}
@@ -107,27 +100,21 @@ jobs:
- name: Log in to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
uses: docker/login-action@f4ef78c080cd8ba55a85445d5b36e214a81df20a # @v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build & Deploy ${{ matrix.dockerfile[0] }}
uses: docker/build-push-action@5cd11c3a4ced054e52742c5fd54dca954e0edd85
uses: docker/build-push-action@c56af957549030174b10d6867f20e78cfd7debc5 # @v2
with:
context: dockerfiles/${{ matrix.dockerfile[0] }}
platforms: ${{ matrix.dockerfile[1] }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.docker_meta.outputs.tags }}
labels: ${{ steps.docker_meta.outputs.labels }}
merge-dockerfiles:
runs-on: ubuntu-latest
needs: deploy-images
steps:
- name: Merge Artifacts
uses: actions/upload-artifact/merge@50769540e7f4bd5e21e526ee35c689e35e0d6874
with:
name: dockerfiles
pattern: dockerfiles_*
delete-merged: true
cache-from: type=gha
cache-to: type=gha,mode=max
tags: |
spack/${{ env.container }}
spack/${{ env.versioned }}
ghcr.io/spack/${{ env.container }}
ghcr.io/spack/${{ env.versioned }}

View File

@@ -18,7 +18,6 @@ jobs:
prechecks:
needs: [ changes ]
uses: ./.github/workflows/valid-style.yml
secrets: inherit
with:
with_coverage: ${{ needs.changes.outputs.core }}
all-prechecks:
@@ -36,12 +35,12 @@ jobs:
core: ${{ steps.filter.outputs.core }}
packages: ${{ steps.filter.outputs.packages }}
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
if: ${{ github.event_name == 'push' }}
with:
fetch-depth: 0
# For pull requests it's not necessary to checkout the code
- uses: dorny/paths-filter@de90cc6fb38fc0963ad72b210f1f284cd68cea36
- uses: dorny/paths-filter@4512585405083f25c027a35db413c2b3b9006d50
id: filter
with:
# See https://github.com/dorny/paths-filter/issues/56 for the syntax used below
@@ -53,13 +52,6 @@ jobs:
- 'var/spack/repos/builtin/packages/clingo/**'
- 'var/spack/repos/builtin/packages/python/**'
- 'var/spack/repos/builtin/packages/re2c/**'
- 'var/spack/repos/builtin/packages/gnupg/**'
- 'var/spack/repos/builtin/packages/libassuan/**'
- 'var/spack/repos/builtin/packages/libgcrypt/**'
- 'var/spack/repos/builtin/packages/libgpg-error/**'
- 'var/spack/repos/builtin/packages/libksba/**'
- 'var/spack/repos/builtin/packages/npth/**'
- 'var/spack/repos/builtin/packages/pinentry/**'
- 'lib/spack/**'
- 'share/spack/**'
- '.github/workflows/bootstrap.yml'
@@ -78,36 +70,16 @@ jobs:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.bootstrap == 'true' }}
needs: [ prechecks, changes ]
uses: ./.github/workflows/bootstrap.yml
secrets: inherit
unit-tests:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.core == 'true' }}
needs: [ prechecks, changes ]
uses: ./.github/workflows/unit_tests.yaml
secrets: inherit
upload-coverage:
needs: [ unit-tests, prechecks ]
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
fetch-depth: 0
- name: Download coverage files
uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16
with:
pattern: coverage-*
path: coverage
merge-multiple: true
- run: pip install --upgrade coverage
- run: ls -la coverage
- run: coverage combine -a coverage/.coverage*
- run: coverage xml
- name: "Upload coverage"
uses: codecov/codecov-action@e28ff129e5465c2c0dcc6f003fc735cb6ae0c673
with:
token: ${{ secrets.CODECOV_TOKEN }}
verbose: true
windows:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.core == 'true' }}
needs: [ prechecks ]
uses: ./.github/workflows/windows_python.yml
all:
needs: [ upload-coverage, bootstrap ]
needs: [ windows, unit-tests, bootstrap ]
runs-on: ubuntu-latest
steps:
- name: Success

8
.github/workflows/install_spack.sh vendored Executable file
View File

@@ -0,0 +1,8 @@
#!/usr/bin/env sh
. share/spack/setup-env.sh
echo -e "config:\n build_jobs: 2" > etc/spack/config.yaml
spack config add "packages:all:target:[x86_64]"
spack compiler find
spack compiler info apple-clang
spack debug report
spack solve zlib

View File

@@ -1,31 +0,0 @@
name: Windows Paraview Nightly
on:
schedule:
- cron: '0 2 * * *' # Run at 2 am
defaults:
run:
shell:
powershell Invoke-Expression -Command "./share/spack/qa/windows_test_setup.ps1"; {0}
jobs:
build-paraview-deps:
runs-on: windows-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools coverage
- name: Build Test
run: |
spack compiler find
spack external find cmake ninja win-sdk win-wdk wgl msmpi
spack -d install -y --cdash-upload-url https://cdash.spack.io/submit.php?project=Spack+on+Windows --cdash-track Nightly --only dependencies paraview
exit 0

View File

@@ -1,7 +0,0 @@
black==24.8.0
clingo==5.7.1
flake8==7.1.1
isort==5.13.2
mypy==1.8.0
types-six==1.16.21.20240513
vermin==1.6.0

16
.github/workflows/setup_git.ps1 vendored Normal file
View File

@@ -0,0 +1,16 @@
# (c) 2021 Lawrence Livermore National Laboratory
Set-Location spack
git config --global user.email "spack@example.com"
git config --global user.name "Test User"
git config --global core.longpaths true
# See https://github.com/git/git/security/advisories/GHSA-3wp6-j8xr-qw85 (CVE-2022-39253)
# This is needed to let some fixture in our unit-test suite run
git config --global protocol.file.allow always
if ($(git branch --show-current) -ne "develop")
{
git branch develop origin/develop
}

12
.github/workflows/setup_git.sh vendored Executable file
View File

@@ -0,0 +1,12 @@
#!/bin/bash -e
git config --global user.email "spack@example.com"
git config --global user.name "Test User"
# See https://github.com/git/git/security/advisories/GHSA-3wp6-j8xr-qw85 (CVE-2022-39253)
# This is needed to let some fixture in our unit-test suite run
git config --global protocol.file.allow always
# create a local pr base branch
if [[ -n $GITHUB_BASE_REF ]]; then
git fetch origin "${GITHUB_BASE_REF}:${GITHUB_BASE_REF}"
fi

View File

@@ -15,35 +15,42 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: ['3.7', '3.8', '3.9', '3.10', '3.11', '3.12']
python-version: ['3.7', '3.8', '3.9', '3.10', '3.11']
concretizer: ['clingo']
on_develop:
- ${{ github.ref == 'refs/heads/develop' }}
include:
- python-version: '3.11'
os: ubuntu-latest
concretizer: original
on_develop: ${{ github.ref == 'refs/heads/develop' }}
- python-version: '3.6'
os: ubuntu-20.04
concretizer: clingo
on_develop: ${{ github.ref == 'refs/heads/develop' }}
exclude:
- python-version: '3.7'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
- python-version: '3.8'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
- python-version: '3.9'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
- python-version: '3.10'
os: ubuntu-latest
on_develop: false
- python-version: '3.11'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: ${{ matrix.python-version }}
- name: Install System packages
@@ -55,13 +62,13 @@ jobs:
cmake bison libbison-dev kcov
- name: Install Python packages
run: |
pip install --upgrade pip setuptools pytest pytest-xdist pytest-cov
pip install --upgrade pip six setuptools pytest codecov[toml] pytest-xdist pytest-cov
pip install --upgrade flake8 "isort>=4.3.5" "mypy>=0.900" "click" "black"
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/bin/setup_git.sh
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
if: ${{ matrix.concretizer == 'clingo' }}
env:
@@ -74,25 +81,23 @@ jobs:
- name: Run unit tests
env:
SPACK_PYTHON: python
SPACK_TEST_SOLVER: ${{ matrix.concretizer }}
SPACK_TEST_PARALLEL: 2
COVERAGE: true
COVERAGE_FILE: coverage/.coverage-${{ matrix.os }}-python${{ matrix.python-version }}
UNIT_TEST_COVERAGE: ${{ matrix.python-version == '3.11' }}
run: |
share/spack/qa/run-unit-tests
- uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
name: coverage-${{ matrix.os }}-python${{ matrix.python-version }}
path: coverage
include-hidden-files: true
flags: unittests,linux,${{ matrix.concretizer }}
# Test shell integration
shell:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
- name: Install System packages
@@ -102,22 +107,20 @@ jobs:
sudo apt-get install -y coreutils kcov csh zsh tcsh fish dash bash
- name: Install Python packages
run: |
pip install --upgrade pip setuptools pytest coverage[toml] pytest-xdist
pip install --upgrade pip six setuptools pytest codecov coverage[toml] pytest-xdist
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/bin/setup_git.sh
. .github/workflows/setup_git.sh
- name: Run shell tests
env:
COVERAGE: true
run: |
share/spack/qa/run-shell-tests
- uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
name: coverage-shell
path: coverage
include-hidden-files: true
flags: shelltests,linux
# Test RHEL8 UBI with platform Python. This job is run
# only on PRs modifying core Spack
@@ -130,13 +133,12 @@ jobs:
dnf install -y \
bzip2 curl file gcc-c++ gcc gcc-gfortran git gnupg2 gzip \
make patch tcl unzip which xz
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- name: Setup repo and non-root user
run: |
git --version
git config --global --add safe.directory /__w/spack/spack
git fetch --unshallow
. .github/workflows/bin/setup_git.sh
. .github/workflows/setup_git.sh
useradd spack-test
chown -R spack-test .
- name: Run unit tests
@@ -149,10 +151,10 @@ jobs:
clingo-cffi:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
- name: Install System packages
@@ -161,90 +163,53 @@ jobs:
sudo apt-get -y install coreutils cvs gfortran graphviz gnupg2 mercurial ninja-build kcov
- name: Install Python packages
run: |
pip install --upgrade pip setuptools pytest coverage[toml] pytest-cov clingo pytest-xdist
pip install --upgrade flake8 "isort>=4.3.5" "mypy>=0.900" "click" "black"
pip install --upgrade pip six setuptools pytest codecov coverage[toml] pytest-cov clingo pytest-xdist
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/bin/setup_git.sh
. .github/workflows/setup_git.sh
- name: Run unit tests (full suite with coverage)
env:
COVERAGE: true
COVERAGE_FILE: coverage/.coverage-clingo-cffi
SPACK_TEST_SOLVER: clingo
run: |
share/spack/qa/run-unit-tests
- uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70 # @v2.1.0
with:
name: coverage-clingo-cffi
path: coverage
include-hidden-files: true
flags: unittests,linux,clingo
# Run unit tests on MacOS
macos:
runs-on: ${{ matrix.os }}
runs-on: macos-latest
strategy:
matrix:
os: [macos-13, macos-14]
python-version: ["3.11"]
python-version: ["3.10"]
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: ${{ matrix.python-version }}
- name: Install Python packages
run: |
pip install --upgrade pip setuptools
pip install --upgrade pytest coverage[toml] pytest-xdist pytest-cov
pip install --upgrade pip six setuptools
pip install --upgrade pytest codecov coverage[toml] pytest-xdist pytest-cov
- name: Setup Homebrew packages
run: |
brew install dash fish gcc gnupg2 kcov
- name: Run unit tests
env:
SPACK_TEST_SOLVER: clingo
SPACK_TEST_PARALLEL: 4
COVERAGE_FILE: coverage/.coverage-${{ matrix.os }}-python${{ matrix.python-version }}
run: |
git --version
. .github/workflows/bin/setup_git.sh
. .github/workflows/setup_git.sh
. share/spack/setup-env.sh
$(which spack) bootstrap disable spack-install
$(which spack) solve zlib
common_args=(--dist loadfile --tx '4*popen//python=./bin/spack-tmpconfig python -u ./bin/spack python' -x)
$(which spack) unit-test --verbose --cov --cov-config=pyproject.toml --cov-report=xml:coverage.xml "${common_args[@]}"
- uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874
$(which spack) unit-test --cov --cov-config=pyproject.toml --cov-report=xml:coverage.xml "${common_args[@]}"
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
name: coverage-${{ matrix.os }}-python${{ matrix.python-version }}
path: coverage
include-hidden-files: true
# Run unit tests on Windows
windows:
defaults:
run:
shell:
powershell Invoke-Expression -Command "./share/spack/qa/windows_test_setup.ps1"; {0}
runs-on: windows-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip pywin32 setuptools pytest-cov clingo
- name: Create local develop
run: |
./.github/workflows/bin/setup_git.ps1
- name: Unit Test
env:
COVERAGE_FILE: coverage/.coverage-windows
run: |
spack unit-test -x --verbose --cov --cov-config=pyproject.toml
./share/spack/qa/validate_last_exit.ps1
- uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874
with:
name: coverage-windows
path: coverage
include-hidden-files: true
flags: unittests,macos

View File

@@ -18,15 +18,15 @@ jobs:
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
cache: 'pip'
- name: Install Python Packages
run: |
pip install --upgrade pip setuptools
pip install -r .github/workflows/requirements/style/requirements.txt
pip install --upgrade pip
pip install --upgrade vermin
- name: vermin (Spack's Core)
run: vermin --backport importlib --backport argparse --violations --backport typing -t=3.6- -vvv lib/spack/spack/ lib/spack/llnl/ bin/
- name: vermin (Repositories)
@@ -35,114 +35,26 @@ jobs:
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@f677139bbe7f9c59b41e40162b753c062f5d49a3
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
cache: 'pip'
- name: Install Python packages
run: |
pip install --upgrade pip setuptools
pip install -r .github/workflows/requirements/style/requirements.txt
python3 -m pip install --upgrade pip six setuptools types-six black mypy isort clingo flake8
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/bin/setup_git.sh
. .github/workflows/setup_git.sh
- name: Run style tests
run: |
share/spack/qa/run-style-tests
audit:
uses: ./.github/workflows/audit.yaml
secrets: inherit
with:
with_coverage: ${{ inputs.with_coverage }}
python_version: '3.11'
# Check that spack can bootstrap the development environment on Python 3.6 - RHEL8
bootstrap-dev-rhel8:
runs-on: ubuntu-latest
container: registry.access.redhat.com/ubi8/ubi
steps:
- name: Install dependencies
run: |
dnf install -y \
bzip2 curl file gcc-c++ gcc gcc-gfortran git gnupg2 gzip \
make patch tcl unzip which xz
- uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
- name: Setup repo and non-root user
run: |
git --version
git config --global --add safe.directory /__w/spack/spack
git fetch --unshallow
. .github/workflows/bin/setup_git.sh
useradd spack-test
chown -R spack-test .
- name: Bootstrap Spack development environment
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack debug report
spack -d bootstrap now --dev
spack style -t black
spack unit-test -V
import-check:
runs-on: ubuntu-latest
steps:
- uses: julia-actions/setup-julia@v2
with:
version: '1.10'
- uses: julia-actions/cache@v2
# PR: use the base of the PR as the old commit
- name: Checkout PR base commit
if: github.event_name == 'pull_request'
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
ref: ${{ github.event.pull_request.base.sha }}
path: old
# not a PR: use the previous commit as the old commit
- name: Checkout previous commit
if: github.event_name != 'pull_request'
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
fetch-depth: 2
path: old
- name: Checkout previous commit
if: github.event_name != 'pull_request'
run: git -C old reset --hard HEAD^
- name: Checkout new commit
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
path: new
- name: Install circular import checker
uses: actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332
with:
repository: haampie/circular-import-fighter
ref: 555519c6fd5564fd2eb844e7b87e84f4d12602e2
path: circular-import-fighter
- name: Install dependencies
working-directory: circular-import-fighter
run: make -j dependencies
- name: Import cycles before
working-directory: circular-import-fighter
run: make SPACK_ROOT=../old && cp solution solution.old
- name: Import cycles after
working-directory: circular-import-fighter
run: make clean-graph && make SPACK_ROOT=../new && cp solution solution.new
- name: Compare import cycles
working-directory: circular-import-fighter
run: |
edges_before="$(grep -oP 'edges to delete: \K\d+' solution.old)"
edges_after="$(grep -oP 'edges to delete: \K\d+' solution.new)"
if [ "$edges_after" -gt "$edges_before" ]; then
printf '\033[1;31mImport check failed: %s imports need to be deleted, ' "$edges_after"
printf 'previously this was %s\033[0m\n' "$edges_before"
printf 'Compare \033[1;97m"Import cycles before"\033[0m and '
printf '\033[1;97m"Import cycles after"\033[0m to see problematic imports.\n'
exit 1
else
printf '\033[1;32mImport check passed: %s <= %s\033[0m\n' "$edges_after" "$edges_before"
fi

158
.github/workflows/windows_python.yml vendored Normal file
View File

@@ -0,0 +1,158 @@
name: windows
on:
workflow_call:
concurrency:
group: windows-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
defaults:
run:
shell:
powershell Invoke-Expression -Command ".\share\spack\qa\windows_test_setup.ps1"; {0}
jobs:
unit-tests:
runs-on: windows-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov pytest-cov clingo
- name: Create local develop
run: |
.\spack\.github\workflows\setup_git.ps1
- name: Unit Test
run: |
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
cd spack
dir
spack unit-test -x --verbose --cov --cov-config=pyproject.toml --ignore=lib/spack/spack/test/cmd
coverage combine -a
coverage xml
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,windows
unit-tests-cmd:
runs-on: windows-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage pytest-cov clingo
- name: Create local develop
run: |
.\spack\.github\workflows\setup_git.ps1
- name: Command Unit Test
run: |
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
cd spack
spack unit-test -x --verbose --cov --cov-config=pyproject.toml lib/spack/spack/test/cmd
coverage combine -a
coverage xml
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,windows
build-abseil:
runs-on: windows-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage
- name: Build Test
run: |
spack compiler find
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
spack external find cmake
spack external find ninja
spack -d install abseil-cpp
make-installer:
runs-on: windows-latest
steps:
- name: Disable Windows Symlinks
run: |
git config --global core.symlinks false
shell:
powershell
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools
- name: Add Light and Candle to Path
run: |
$env:WIX >> $GITHUB_PATH
- name: Run Installer
run: |
.\spack\share\spack\qa\setup_spack.ps1
spack make-installer -s spack -g SILENT pkg
echo "installer_root=$((pwd).Path)" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
env:
ProgressPreference: SilentlyContinue
- uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
with:
name: Windows Spack Installer Bundle
path: ${{ env.installer_root }}\pkg\Spack.exe
- uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
with:
name: Windows Spack Installer
path: ${{ env.installer_root}}\pkg\Spack.msi
execute-installer:
needs: make-installer
runs-on: windows-latest
defaults:
run:
shell: pwsh
steps:
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools
- name: Setup installer directory
run: |
mkdir -p spack_installer
echo "spack_installer=$((pwd).Path)\spack_installer" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
- uses: actions/download-artifact@v3
with:
name: Windows Spack Installer Bundle
path: ${{ env.spack_installer }}
- name: Execute Bundled Installer
run: |
$proc = Start-Process ${{ env.spack_installer }}\spack.exe "/install /quiet" -Passthru
$handle = $proc.Handle # cache proc.Handle
$proc.WaitForExit();
$LASTEXITCODE
env:
ProgressPreference: SilentlyContinue
- uses: actions/download-artifact@v3
with:
name: Windows Spack Installer
path: ${{ env.spack_installer }}
- name: Execute MSI
run: |
$proc = Start-Process ${{ env.spack_installer }}\spack.msi "/quiet" -Passthru
$handle = $proc.Handle # cache proc.Handle
$proc.WaitForExit();
$LASTEXITCODE

View File

@@ -1,16 +1,10 @@
version: 2
build:
os: "ubuntu-22.04"
apt_packages:
- graphviz
tools:
python: "3.11"
sphinx:
configuration: lib/spack/docs/conf.py
fail_on_warning: true
python:
version: 3.7
install:
- requirements: lib/spack/docs/requirements.txt

View File

@@ -1,947 +1,3 @@
# v0.22.0 (2024-05-12)
`v0.22.0` is a major feature release.
## Features in this release
1. **Compiler dependencies**
We are in the process of making compilers proper dependencies in Spack, and a number
of changes in `v0.22` support that effort. You may notice nodes in your dependency
graphs for compiler runtime libraries like `gcc-runtime` or `libgfortran`, and you
may notice that Spack graphs now include `libc`. We've also begun moving compiler
configuration from `compilers.yaml` to `packages.yaml` to make it consistent with
other externals. We are trying to do this with the least disruption possible, so
your existing `compilers.yaml` files should still work. We expect to be done with
this transition by the `v0.23` release in November.
* #41104: Packages compiled with `%gcc` on Linux, macOS and FreeBSD now depend on a
new package `gcc-runtime`, which contains a copy of the shared compiler runtime
libraries. This enables gcc runtime libraries to be installed and relocated when
using a build cache. When building minimal Spack-generated container images it is
no longer necessary to install libgfortran, libgomp etc. using the system package
manager.
* #42062: Packages compiled with `%oneapi` now depend on a new package
`intel-oneapi-runtime`. This is similar to `gcc-runtime`, and the runtimes can
provide virtuals and compilers can inject dependencies on virtuals into compiled
packages. This allows us to model library soname compatibility and allows
compilers like `%oneapi` to provide virtuals like `sycl` (which can also be
provided by standalone libraries). Note that until we have an agreement in place
with intel, Intel packages are marked `redistribute(source=False, binary=False)`
and must be downloaded outside of Spack.
* #43272: changes to the optimization criteria of the solver improve the hit-rate of
buildcaches by a fair amount. The solver more relaxed compatibility rules and will
not try to strictly match compilers or targets of reused specs. Users can still
enforce the previous strict behavior with `require:` sections in `packages.yaml`.
Note that to enforce correct linking, Spack will *not* reuse old `%gcc` and
`%oneapi` specs that do not have the runtime libraries as a dependency.
* #43539: Spack will reuse specs built with compilers that are *not* explicitly
configured in `compilers.yaml`. Because we can now keep runtime libraries in build
cache, we do not require you to also have a local configured compiler to *use* the
runtime libraries. This improves reuse in buildcaches and avoids conflicts with OS
updates that happen underneath Spack.
* #43190: binary compatibility on `linux` is now based on the `libc` version,
instead of on the `os` tag. Spack builds now detect the host `libc` (`glibc` or
`musl`) and add it as an implicit external node in the dependency graph. Binaries
with a `libc` with the same name and a version less than or equal to that of the
detected `libc` can be reused. This is only on `linux`, not `macos` or `Windows`.
* #43464: each package that can provide a compiler is now detectable using `spack
external find`. External packages defining compiler paths are effectively used as
compilers, and `spack external find -t compiler` can be used as a substitute for
`spack compiler find`. More details on this transition are in
[the docs](https://spack.readthedocs.io/en/latest/getting_started.html#manual-compiler-configuration)
2. **Improved `spack find` UI for Environments**
If you're working in an enviroment, you likely care about:
* What are the roots
* Which ones are installed / not installed
* What's been added that still needs to be concretized
We've tweaked `spack find` in environments to show this information much more
clearly. Installation status is shown next to each root, so you can see what is
installed. Roots are also shown in bold in the list of installed packages. There is
also a new option for `spack find -r` / `--only-roots` that will only show env
roots, if you don't want to look at all the installed specs.
More details in #42334.
3. **Improved command-line string quoting**
We are making some breaking changes to how Spack parses specs on the CLI in order to
respect shell quoting instead of trying to fight it. If you (sadly) had to write
something like this on the command line:
```
spack install zlib cflags=\"-O2 -g\"
```
That will now result in an error, but you can now write what you probably expected
to work in the first place:
```
spack install zlib cflags="-O2 -g"
```
Quoted can also now include special characters, so you can supply flags like:
```
spack intall zlib ldflags='-Wl,-rpath=$ORIGIN/_libs'
```
To reduce ambiguity in parsing, we now require that you *not* put spaces around `=`
and `==` when for flags or variants. This would not have broken before but will now
result in an error:
```
spack install zlib cflags = "-O2 -g"
```
More details and discussion in #30634.
4. **Revert default `spack install` behavior to `--reuse`**
We changed the default concretizer behavior from `--reuse` to `--reuse-deps` in
#30990 (in `v0.20`), which meant that *every* `spack install` invocation would
attempt to build a new version of the requested package / any environment roots.
While this is a common ask for *upgrading* and for *developer* workflows, we don't
think it should be the default for a package manager.
We are going to try to stick to this policy:
1. Prioritize reuse and build as little as possible by default.
2. Only upgrade or install duplicates if they are explicitly asked for, or if there
is a known security issue that necessitates an upgrade.
With the install command you now have three options:
* `--reuse` (default): reuse as many existing installations as possible.
* `--reuse-deps` / `--fresh-roots`: upgrade (freshen) roots but reuse dependencies if possible.
* `--fresh`: install fresh versions of requested packages (roots) and their dependencies.
We've also introduced `--fresh-roots` as an alias for `--reuse-deps` to make it more clear
that it may give you fresh versions. More details in #41302 and #43988.
5. **More control over reused specs**
You can now control which packages to reuse and how. There is a new
`concretizer:reuse` config option, which accepts the following properties:
- `roots`: `true` to reuse roots, `false` to reuse just dependencies
- `exclude`: list of constraints used to select which specs *not* to reuse
- `include`: list of constraints used to select which specs *to* reuse
- `from`: list of sources for reused specs (some combination of `local`,
`buildcache`, or `external`)
For example, to reuse only specs compiled with GCC, you could write:
```yaml
concretizer:
reuse:
roots: true
include:
- "%gcc"
```
Or, if `openmpi` must be used from externals, and it must be the only external used:
```yaml
concretizer:
reuse:
roots: true
from:
- type: local
exclude: ["openmpi"]
- type: buildcache
exclude: ["openmpi"]
- type: external
include: ["openmpi"]
```
6. **New `redistribute()` directive**
Some packages can't be redistributed in source or binary form. We need an explicit
way to say that in a package.
Now there is a `redistribute()` directive so that package authors can write:
```python
class MyPackage(Package):
redistribute(source=False, binary=False)
```
Like other directives, this works with `when=`:
```python
class MyPackage(Package):
# 12.0 and higher are proprietary
redistribute(source=False, binary=False, when="@12.0:")
# can't redistribute when we depend on some proprietary dependency
redistribute(source=False, binary=False, when="^proprietary-dependency")
```
More in #20185.
7. **New `conflict:` and `prefer:` syntax for package preferences**
Previously, you could express conflicts and preferences in `packages.yaml` through
some contortions with `require:`:
```yaml
packages:
zlib-ng:
require:
- one_of: ["%clang", "@:"] # conflict on %clang
- any_of: ["+shared", "@:"] # strong preference for +shared
```
You can now use `require:` and `prefer:` for a much more readable configuration:
```yaml
packages:
zlib-ng:
conflict:
- "%clang"
prefer:
- "+shared"
```
See [the documentation](https://spack.readthedocs.io/en/latest/packages_yaml.html#conflicts-and-strong-preferences)
and #41832 for more details.
8. **`include_concrete` in environments**
You may want to build on the *concrete* contents of another environment without
changing that environment. You can now include the concrete specs from another
environment's `spack.lock` with `include_concrete`:
```yaml
spack:
specs: []
concretizer:
unify: true
include_concrete:
- /path/to/environment1
- /path/to/environment2
```
Now, when *this* environment is concretized, it will bring in the already concrete
specs from `environment1` and `environment2`, and build on top of them without
changing them. This is useful if you have phased deployments, where old deployments
should not be modified but you want to use as many of them as possible. More details
in #33768.
9. **`python-venv` isolation**
Spack has unique requirements for Python because it:
1. installs every package in its own independent directory, and
2. allows users to register *external* python installations.
External installations may contain their own installed packages that can interfere
with Spack installations, and some distributions (Debian and Ubuntu) even change the
`sysconfig` in ways that alter the installation layout of installed Python packages
(e.g., with the addition of a `/local` prefix on Debian or Ubuntu). To isolate Spack
from these and other issues, we now insert a small `python-venv` package in between
`python` and packages that need to install Python code. This isolates Spack's build
environment, isolates Spack from any issues with an external python, and resolves a
large number of issues we've had with Python installations.
See #40773 for further details.
## New commands, options, and directives
* Allow packages to be pushed to build cache after install from source (#42423)
* `spack develop`: stage build artifacts in same root as non-dev builds #41373
* Don't delete `spack develop` build artifacts after install (#43424)
* `spack find`: add options for local/upstream only (#42999)
* `spack logs`: print log files for packages (either partially built or installed) (#42202)
* `patch`: support reversing patches (#43040)
* `develop`: Add -b/--build-directory option to set build_directory package attribute (#39606)
* `spack list`: add `--namesapce` / `--repo` option (#41948)
* directives: add `checked_by` field to `license()`, add some license checks
* `spack gc`: add options for environments and build dependencies (#41731)
* Add `--create` to `spack env activate` (#40896)
## Performance improvements
* environment.py: fix excessive re-reads (#43746)
* ruamel yaml: fix quadratic complexity bug (#43745)
* Refactor to improve `spec format` speed (#43712)
* Do not acquire a write lock on the env post install if no views (#43505)
* asp.py: fewer calls to `spec.copy()` (#43715)
* spec.py: early return in `__str__`
* avoid `jinja2` import at startup unless needed (#43237)
## Other new features of note
* `archspec`: update to `v0.2.4`: support for Windows, bugfixes for `neoverse-v1` and
`neoverse-v2` detection.
* `spack config get`/`blame`: with no args, show entire config
* `spack env create <env>`: dir if dir-like (#44024)
* ASP-based solver: update os compatibility for macOS (#43862)
* Add handling of custom ssl certs in urllib ops (#42953)
* Add ability to rename environments (#43296)
* Add config option and compiler support to reuse across OS's (#42693)
* Support for prereleases (#43140)
* Only reuse externals when configured (#41707)
* Environments: Add support for including views (#42250)
## Binary caches
* Build cache: make signed/unsigned a mirror property (#41507)
* tools stack
## Removals, deprecations, and syntax changes
* remove `dpcpp` compiler and package (#43418)
* spack load: remove --only argument (#42120)
## Notable Bugfixes
* repo.py: drop deleted packages from provider cache (#43779)
* Allow `+` in module file names (#41999)
* `cmd/python`: use runpy to allow multiprocessing in scripts (#41789)
* Show extension commands with spack -h (#41726)
* Support environment variable expansion inside module projections (#42917)
* Alert user to failed concretizations (#42655)
* shell: fix zsh color formatting for PS1 in environments (#39497)
* spack mirror create --all: include patches (#41579)
## Spack community stats
* 7,994 total packages; 525 since `v0.21.0`
* 178 new Python packages, 5 new R packages
* 358 people contributed to this release
* 344 committers to packages
* 45 committers to core
# v0.21.2 (2024-03-01)
## Bugfixes
- Containerize: accommodate nested or pre-existing spack-env paths (#41558)
- Fix setup-env script, when going back and forth between instances (#40924)
- Fix using fully-qualified namespaces from root specs (#41957)
- Fix a bug when a required provider is requested for multiple virtuals (#42088)
- OCI buildcaches:
- only push in parallel when forking (#42143)
- use pickleable errors (#42160)
- Fix using sticky variants in externals (#42253)
- Fix a rare issue with conditional requirements and multi-valued variants (#42566)
## Package updates
- rust: add v1.75, rework a few variants (#41161,#41903)
- py-transformers: add v4.35.2 (#41266)
- mgard: fix OpenMP on AppleClang (#42933)
# v0.21.1 (2024-01-11)
## New features
- Add support for reading buildcaches created by Spack v0.22 (#41773)
## Bugfixes
- spack graph: fix coloring with environments (#41240)
- spack info: sort variants in --variants-by-name (#41389)
- Spec.format: error on old style format strings (#41934)
- ASP-based solver:
- fix infinite recursion when computing concretization errors (#41061)
- don't error for type mismatch on preferences (#41138)
- don't emit spurious debug output (#41218)
- Improve the error message for deprecated preferences (#41075)
- Fix MSVC preview version breaking clingo build on Windows (#41185)
- Fix multi-word aliases (#41126)
- Add a warning for unconfigured compiler (#41213)
- environment: fix an issue with deconcretization/reconcretization of specs (#41294)
- buildcache: don't error if a patch is missing, when installing from binaries (#41986)
- Multiple improvements to unit-tests (#41215,#41369,#41495,#41359,#41361,#41345,#41342,#41308,#41226)
## Package updates
- root: add a webgui patch to address security issue (#41404)
- BerkeleyGW: update source urls (#38218)
# v0.21.0 (2023-11-11)
`v0.21.0` is a major feature release.
## Features in this release
1. **Better error messages with condition chaining**
In v0.18, we added better error messages that could tell you what problem happened,
but they couldn't tell you *why* it happened. `0.21` adds *condition chaining* to the
solver, and Spack can now trace back through the conditions that led to an error and
build a tree of causes potential causes and where they came from. For example:
```console
$ spack solve hdf5 ^cmake@3.0.1
==> Error: concretization failed for the following reasons:
1. Cannot satisfy 'cmake@3.0.1'
2. Cannot satisfy 'cmake@3.0.1'
required because hdf5 ^cmake@3.0.1 requested from CLI
3. Cannot satisfy 'cmake@3.18:' and 'cmake@3.0.1
required because hdf5 ^cmake@3.0.1 requested from CLI
required because hdf5 depends on cmake@3.18: when @1.13:
required because hdf5 ^cmake@3.0.1 requested from CLI
4. Cannot satisfy 'cmake@3.12:' and 'cmake@3.0.1
required because hdf5 depends on cmake@3.12:
required because hdf5 ^cmake@3.0.1 requested from CLI
required because hdf5 ^cmake@3.0.1 requested from CLI
```
More details in #40173.
2. **OCI build caches**
You can now use an arbitrary [OCI](https://opencontainers.org) registry as a build
cache:
```console
$ spack mirror add my_registry oci://user/image # Dockerhub
$ spack mirror add my_registry oci://ghcr.io/haampie/spack-test # GHCR
$ spack mirror set --push --oci-username ... --oci-password ... my_registry # set login creds
$ spack buildcache push my_registry [specs...]
```
And you can optionally add a base image to get *runnable* images:
```console
$ spack buildcache push --base-image ubuntu:23.04 my_registry python
Pushed ... as [image]:python-3.11.2-65txfcpqbmpawclvtasuog4yzmxwaoia.spack
$ docker run --rm -it [image]:python-3.11.2-65txfcpqbmpawclvtasuog4yzmxwaoia.spack
```
This creates a container image from the Spack installations on the host system,
without the need to run `spack install` from a `Dockerfile` or `sif` file. It also
addresses the inconvenience of losing binaries of dependencies when `RUN spack
install` fails inside `docker build`.
Further, the container image layers and build cache tarballs are the same files. This
means that `spack install` and `docker pull` use the exact same underlying binaries.
If you previously used `spack install` inside of `docker build`, this feature helps
you save storage by a factor two.
More details in #38358.
3. **Multiple versions of build dependencies**
Increasingly, complex package builds require multiple versions of some build
dependencies. For example, Python packages frequently require very specific versions
of `setuptools`, `cython`, and sometimes different physics packages require different
versions of Python to build. The concretizer enforced that every solve was *unified*,
i.e., that there only be one version of every package. The concretizer now supports
"duplicate" nodes for *build dependencies*, but enforces unification through
transitive link and run dependencies. This will allow it to better resolve complex
dependency graphs in ecosystems like Python, and it also gets us very close to
modeling compilers as proper dependencies.
This change required a major overhaul of the concretizer, as well as a number of
performance optimizations. See #38447, #39621.
4. **Cherry-picking virtual dependencies**
You can now select only a subset of virtual dependencies from a spec that may provide
more. For example, if you want `mpich` to be your `mpi` provider, you can be explicit
by writing:
```
hdf5 ^[virtuals=mpi] mpich
```
Or, if you want to use, e.g., `intel-parallel-studio` for `blas` along with an external
`lapack` like `openblas`, you could write:
```
strumpack ^[virtuals=mpi] intel-parallel-studio+mkl ^[virtuals=lapack] openblas
```
The `virtuals=mpi` is an edge attribute, and dependency edges in Spack graphs now
track which virtuals they satisfied. More details in #17229 and #35322.
Note for packaging: in Spack 0.21 `spec.satisfies("^virtual")` is true if and only if
the package specifies `depends_on("virtual")`. This is different from Spack 0.20,
where depending on a provider implied depending on the virtual provided. See #41002
for an example where `^mkl` was being used to test for several `mkl` providers in a
package that did not depend on `mkl`.
5. **License directive**
Spack packages can now have license metadata, with the new `license()` directive:
```python
license("Apache-2.0")
```
Licenses use [SPDX identifiers](https://spdx.org/licenses), and you can use SPDX
expressions to combine them:
```python
license("Apache-2.0 OR MIT")
```
Like other directives in Spack, it's conditional, so you can handle complex cases like
Spack itself:
```python
license("LGPL-2.1", when="@:0.11")
license("Apache-2.0 OR MIT", when="@0.12:")
```
More details in #39346, #40598.
6. **`spack deconcretize` command**
We are getting close to having a `spack update` command for environments, but we're
not quite there yet. This is the next best thing. `spack deconcretize` gives you
control over what you want to update in an already concrete environment. If you have
an environment built with, say, `meson`, and you want to update your `meson` version,
you can run:
```console
spack deconcretize meson
```
and have everything that depends on `meson` rebuilt the next time you run `spack
concretize`. In a future Spack version, we'll handle all of this in a single command,
but for now you can use this to drop bits of your lockfile and resolve your
dependencies again. More in #38803.
7. **UI Improvements**
The venerable `spack info` command was looking shabby compared to the rest of Spack's
UI, so we reworked it to have a bit more flair. `spack info` now makes much better
use of terminal space and shows variants, their values, and their descriptions much
more clearly. Conditional variants are grouped separately so you can more easily
understand how packages are structured. More in #40998.
`spack checksum` now allows you to filter versions from your editor, or by version
range. It also notifies you about potential download URL changes. See #40403.
8. **Environments can include definitions**
Spack did not previously support using `include:` with The
[definitions](https://spack.readthedocs.io/en/latest/environments.html#spec-list-references)
section of an environment, but now it does. You can use this to curate lists of specs
and more easily reuse them across environments. See #33960.
9. **Aliases**
You can now add aliases to Spack commands in `config.yaml`, e.g. this might enshrine
your favorite args to `spack find` as `spack f`:
```yaml
config:
aliases:
f: find -lv
```
See #17229.
10. **Improved autoloading of modules**
Spack 0.20 was the first release to enable autoloading of direct dependencies in
module files.
The downside of this was that `module avail` and `module load` tab completion would
show users too many modules to choose from, and many users disabled generating
modules for dependencies through `exclude_implicits: true`. Further, it was
necessary to keep hashes in module names to avoid file name clashes.
In this release, you can start using `hide_implicits: true` instead, which exposes
only explicitly installed packages to the user, while still autoloading
dependencies. On top of that, you can safely use `hash_length: 0`, as this config
now only applies to the modules exposed to the user -- you don't have to worry about
file name clashes for hidden dependencies.
Note: for `tcl` this feature requires Modules 4.7 or higher
11. **Updated container labeling**
Nightly Docker images from the `develop` branch will now be tagged as `:develop` and
`:nightly`. The `:latest` tag is no longer associated with `:develop`, but with the
latest stable release. Releases will be tagged with `:{major}`, `:{major}.{minor}`
and `:{major}.{minor}.{patch}`. `ubuntu:18.04` has also been removed from the list of
generated Docker images, as it is no longer supported. See #40593.
## Other new commands and directives
* `spack env activate` without arguments now loads a `default` environment that you do
not have to create (#40756).
* `spack find -H` / `--hashes`: a new shortcut for piping `spack find` output to
other commands (#38663)
* Add `spack checksum --verify`, fix `--add` (#38458)
* New `default_args` context manager factors out common args for directives (#39964)
* `spack compiler find --[no]-mixed-toolchain` lets you easily mix `clang` and
`gfortran` on Linux (#40902)
## Performance improvements
* `spack external find` execution is now much faster (#39843)
* `spack location -i` now much faster on success (#40898)
* Drop redundant rpaths post install (#38976)
* ASP-based solver: avoid cycles in clingo using hidden directive (#40720)
* Fix multiple quadratic complexity issues in environments (#38771)
## Other new features of note
* archspec: update to v0.2.2, support for Sapphire Rapids, Power10, Neoverse V2 (#40917)
* Propagate variants across nodes that don't have that variant (#38512)
* Implement fish completion (#29549)
* Can now distinguish between source/binary mirror; don't ping mirror.spack.io as much (#34523)
* Improve status reporting on install (add [n/total] display) (#37903)
## Windows
This release has the best Windows support of any Spack release yet, with numerous
improvements and much larger swaths of tests passing:
* MSVC and SDK improvements (#37711, #37930, #38500, #39823, #39180)
* Windows external finding: update default paths; treat .bat as executable on Windows (#39850)
* Windows decompression: fix removal of intermediate file (#38958)
* Windows: executable/path handling (#37762)
* Windows build systems: use ninja and enable tests (#33589)
* Windows testing (#36970, #36972, #36973, #36840, #36977, #36792, #36834, #34696, #36971)
* Windows PowerShell support (#39118, #37951)
* Windows symlinking and libraries (#39933, #38599, #34701, #38578, #34701)
## Notable refactors
* User-specified flags take precedence over others in Spack compiler wrappers (#37376)
* Improve setup of build, run, and test environments (#35737, #40916)
* `make` is no longer a required system dependency of Spack (#40380)
* Support Python 3.12 (#40404, #40155, #40153)
* docs: Replace package list with packages.spack.io (#40251)
* Drop Python 2 constructs in Spack (#38720, #38718, #38703)
## Binary cache and stack updates
* e4s arm stack: duplicate and target neoverse v1 (#40369)
* Add macOS ML CI stacks (#36586)
* E4S Cray CI Stack (#37837)
* e4s cray: expand spec list (#38947)
* e4s cray sles ci: expand spec list (#39081)
## Removals, deprecations, and syntax changes
* ASP: targets, compilers and providers soft-preferences are only global (#31261)
* Parser: fix ambiguity with whitespace in version ranges (#40344)
* Module file generation is disabled by default; you'll need to enable it to use it (#37258)
* Remove deprecated "extra_instructions" option for containers (#40365)
* Stand-alone test feature deprecation postponed to v0.22 (#40600)
* buildcache push: make `--allow-root` the default and deprecate the option (#38878)
## Notable Bugfixes
* Bugfix: propagation of multivalued variants (#39833)
* Allow `/` in git versions (#39398)
* Fetch & patch: actually acquire stage lock, and many more issues (#38903)
* Environment/depfile: better escaping of targets with Git versions (#37560)
* Prevent "spack external find" to error out on wrong permissions (#38755)
* lmod: allow core compiler to be specified with a version range (#37789)
## Spack community stats
* 7,469 total packages, 303 new since `v0.20.0`
* 150 new Python packages
* 34 new R packages
* 353 people contributed to this release
* 336 committers to packages
* 65 committers to core
# v0.20.3 (2023-10-31)
## Bugfixes
- Fix a bug where `spack mirror set-url` would drop configured connection info (reverts #34210)
- Fix a minor issue with package hash computation for Python 3.12 (#40328)
# v0.20.2 (2023-10-03)
## Features in this release
Spack now supports Python 3.12 (#40155)
## Bugfixes
- Improve escaping in Tcl module files (#38375)
- Make repo cache work on repositories with zero mtime (#39214)
- Ignore errors for newer, incompatible buildcache version (#40279)
- Print an error when git is required, but missing (#40254)
- Ensure missing build dependencies get installed when using `spack install --overwrite` (#40252)
- Fix an issue where Spack freezes when the build process unexpectedly exits (#39015)
- Fix a bug where installation failures cause an unrelated `NameError` to be thrown (#39017)
- Fix an issue where Spack package versions would be incorrectly derived from git tags (#39414)
- Fix a bug triggered when file locking fails internally (#39188)
- Prevent "spack external find" to error out when a directory cannot be accessed (#38755)
- Fix multiple performance regressions in environments (#38771)
- Add more ignored modules to `pyproject.toml` for `mypy` (#38769)
# v0.20.1 (2023-07-10)
## Spack Bugfixes
- Spec removed from an environment where not actually removed if `--force` was not given (#37877)
- Speed-up module file generation (#37739)
- Hotfix for a few recipes that treat CMake as a link dependency (#35816)
- Fix re-running stand-alone test a second time, which was getting a trailing spurious failure (#37840)
- Fixed reading JSON manifest on Cray, reporting non-concrete specs (#37909)
- Fixed a few bugs when generating Dockerfiles from Spack (#37766,#37769)
- Fixed a few long-standing bugs when generating module files (#36678,#38347,#38465,#38455)
- Fixed issues with building Python extensions using an external Python (#38186)
- Fixed compiler removal from command line (#38057)
- Show external status as [e] (#33792)
- Backported `archspec` fixes (#37793)
- Improved a few error messages (#37791)
# v0.20.0 (2023-05-21)
`v0.20.0` is a major feature release.
## Features in this release
1. **`requires()` directive and enhanced package requirements**
We've added some more enhancements to requirements in Spack (#36286).
There is a new `requires()` directive for packages. `requires()` is the opposite of
`conflicts()`. You can use it to impose constraints on this package when certain
conditions are met:
```python
requires(
"%apple-clang",
when="platform=darwin",
msg="This package builds only with clang on macOS"
)
```
More on this in [the docs](
https://spack.rtfd.io/en/latest/packaging_guide.html#conflicts-and-requirements).
You can also now add a `when:` clause to `requires:` in your `packages.yaml`
configuration or in an environment:
```yaml
packages:
openmpi:
require:
- any_of: ["%gcc"]
when: "@:4.1.4"
message: "Only OpenMPI 4.1.5 and up can build with fancy compilers"
```
More details can be found [here](
https://spack.readthedocs.io/en/latest/build_settings.html#package-requirements)
2. **Exact versions**
Spack did not previously have a way to distinguish a version if it was a prefix of
some other version. For example, `@3.2` would match `3.2`, `3.2.1`, `3.2.2`, etc. You
can now match *exactly* `3.2` with `@=3.2`. This is useful, for example, if you need
to patch *only* the `3.2` version of a package. The new syntax is described in [the docs](
https://spack.readthedocs.io/en/latest/basic_usage.html#version-specifier).
Generally, when writing packages, you should prefer to use ranges like `@3.2` over
the specific versions, as this allows the concretizer more leeway when selecting
versions of dependencies. More details and recommendations are in the [packaging guide](
https://spack.readthedocs.io/en/latest/packaging_guide.html#ranges-versus-specific-versions).
See #36273 for full details on the version refactor.
3. **New testing interface**
Writing package tests is now much simpler with a new [test interface](
https://spack.readthedocs.io/en/latest/packaging_guide.html#stand-alone-tests).
Writing a test is now as easy as adding a method that starts with `test_`:
```python
class MyPackage(Package):
...
def test_always_fails(self):
"""use assert to always fail"""
assert False
def test_example(self):
"""run installed example"""
example = which(self.prefix.bin.example)
example()
```
You can use Python's native `assert` statement to implement your checks -- no more
need to fiddle with `run_test` or other test framework methods. Spack will
introspect the class and run `test_*` methods when you run `spack test`,
4. **More stable concretization**
* Now, `spack concretize` will *only* concretize the new portions of the environment
and will not change existing parts of an environment unless you specify `--force`.
This has always been true for `unify:false`, but not for `unify:true` and
`unify:when_possible` environments. Now it is true for all of them (#37438, #37681).
* The concretizer has a new `--reuse-deps` argument that *only* reuses dependencies.
That is, it will always treat the *roots* of your environment as it would with
`--fresh`. This allows you to upgrade just the roots of your environment while
keeping everything else stable (#30990).
5. **Weekly develop snapshot releases**
Since last year, we have maintained a buildcache of `develop` at
https://binaries.spack.io/develop, but the cache can grow to contain so many builds
as to be unwieldy. When we get a stable `develop` build, we snapshot the release and
add a corresponding tag the Spack repository. So, you can use a stack from a specific
day. There are now tags in the spack repository like:
* `develop-2023-05-14`
* `develop-2023-05-18`
that correspond to build caches like:
* https://binaries.spack.io/develop-2023-05-14/e4s
* https://binaries.spack.io/develop-2023-05-18/e4s
We plan to store these snapshot releases weekly.
6. **Specs in buildcaches can be referenced by hash.**
* Previously, you could run `spack buildcache list` and see the hashes in
buildcaches, but referring to them by hash would fail.
* You can now run commands like `spack spec` and `spack install` and refer to
buildcache hashes directly, e.g. `spack install /abc123` (#35042)
7. **New package and buildcache index websites**
Our public websites for searching packages have been completely revamped and updated.
You can check them out here:
* *Package Index*: https://packages.spack.io
* *Buildcache Index*: https://cache.spack.io
Both are searchable and more interactive than before. Currently major releases are
shown; UI for browsing `develop` snapshots is coming soon.
8. **Default CMake and Meson build types are now Release**
Spack has historically defaulted to building with optimization and debugging, but
packages like `llvm` can be enormous with debug turned on. Our default build type for
all Spack packages is now `Release` (#36679, #37436). This has a number of benefits:
* much smaller binaries;
* higher default optimization level; and
* defining `NDEBUG` disables assertions, which may lead to further speedups.
You can still get the old behavior back through requirements and package preferences.
## Other new commands and directives
* `spack checksum` can automatically add new versions to package (#24532)
* new command: `spack pkg grep` to easily search package files (#34388)
* New `maintainers` directive (#35083)
* Add `spack buildcache push` (alias to `buildcache create`) (#34861)
* Allow using `-j` to control the parallelism of concretization (#37608)
* Add `--exclude` option to 'spack external find' (#35013)
## Other new features of note
* editing: add higher-precedence `SPACK_EDITOR` environment variable
* Many YAML formatting improvements from updating `ruamel.yaml` to the latest version
supporting Python 3.6. (#31091, #24885, #37008).
* Requirements and preferences should not define (non-git) versions (#37687, #37747)
* Environments now store spack version/commit in `spack.lock` (#32801)
* User can specify the name of the `packages` subdirectory in repositories (#36643)
* Add container images supporting RHEL alternatives (#36713)
* make version(...) kwargs explicit (#36998)
## Notable refactors
* buildcache create: reproducible tarballs (#35623)
* Bootstrap most of Spack dependencies using environments (#34029)
* Split `satisfies(..., strict=True/False)` into two functions (#35681)
* spack install: simplify behavior when inside environments (#35206)
## Binary cache and stack updates
* Major simplification of CI boilerplate in stacks (#34272, #36045)
* Many improvements to our CI pipeline's reliability
## Removals, Deprecations, and disablements
* Module file generation is disabled by default; you'll need to enable it to use it (#37258)
* Support for Python 2 was deprecated in `v0.19.0` and has been removed. `v0.20.0` only
supports Python 3.6 and higher.
* Deprecated target names are no longer recognized by Spack. Use generic names instead:
* `graviton` is now `cortex_a72`
* `graviton2` is now `neoverse_n1`
* `graviton3` is now `neoverse_v1`
* `blacklist` and `whitelist` in module configuration were deprecated in `v0.19.0` and are
removed in this release. Use `exclude` and `include` instead.
* The `ignore=` parameter of the `extends()` directive has been removed. It was not used by
any builtin packages and is no longer needed to avoid conflicts in environment views (#35588).
* Support for the old YAML buildcache format has been removed. It was deprecated in `v0.19.0` (#34347).
* `spack find --bootstrap` has been removed. It was deprecated in `v0.19.0`. Use `spack
--bootstrap find` instead (#33964).
* `spack bootstrap trust` and `spack bootstrap untrust` are now removed, having been
deprecated in `v0.19.0`. Use `spack bootstrap enable` and `spack bootstrap disable`.
* The `--mirror-name`, `--mirror-url`, and `--directory` options to buildcache and
mirror commands were deprecated in `v0.19.0` and have now been removed. They have been
replaced by positional arguments (#37457).
* Deprecate `env:` as top level environment key (#37424)
* deprecate buildcache create --rel, buildcache install --allow-root (#37285)
* Support for very old perl-like spec format strings (e.g., `$_$@$%@+$+$=`) has been
removed (#37425). This was deprecated in in `v0.15` (#10556).
## Notable Bugfixes
* bugfix: don't fetch package metadata for unknown concrete specs (#36990)
* Improve package source code context display on error (#37655)
* Relax environment manifest filename requirements and lockfile identification criteria (#37413)
* `installer.py`: drop build edges of installed packages by default (#36707)
* Bugfix: package requirements with git commits (#35057, #36347)
* Package requirements: allow single specs in requirement lists (#36258)
* conditional variant values: allow boolean (#33939)
* spack uninstall: follow run/link edges on --dependents (#34058)
## Spack community stats
* 7,179 total packages, 499 new since `v0.19.0`
* 329 new Python packages
* 31 new R packages
* 336 people contributed to this release
* 317 committers to packages
* 62 committers to core
# v0.19.1 (2023-02-07)
### Spack Bugfixes
* `buildcache create`: make "file exists" less verbose (#35019)
* `spack mirror create`: don't change paths to urls (#34992)
* Improve error message for requirements (#33988)
* uninstall: fix accidental cubic complexity (#34005)
* scons: fix signature for `install_args` (#34481)
* Fix `combine_phase_logs` text encoding issues (#34657)
* Use a module-like object to propagate changes in the MRO, when setting build env (#34059)
* PackageBase should not define builder legacy attributes (#33942)
* Forward lookup of the "run_tests" attribute (#34531)
* Bugfix for timers (#33917, #33900)
* Fix path handling in prefix inspections (#35318)
* Fix libtool filter for Fujitsu compilers (#34916)
* Bug fix for duplicate rpath errors on macOS when creating build caches (#34375)
* FileCache: delete the new cache file on exception (#34623)
* Propagate exceptions from Spack python console (#34547)
* Tests: Fix a bug/typo in a `config_values.py` fixture (#33886)
* Various CI fixes (#33953, #34560, #34560, #34828)
* Docs: remove monitors and analyzers, typos (#34358, #33926)
* bump release version for tutorial command (#33859)
# v0.19.0 (2022-11-11)
`v0.19.0` is a major feature release.

View File

@@ -27,57 +27,12 @@
# And here's the CITATION.cff format:
#
cff-version: 1.2.0
type: software
message: "If you are referencing Spack in a publication, please cite the paper below."
title: "The Spack Package Manager: Bringing Order to HPC Software Chaos"
abstract: >-
Large HPC centers spend considerable time supporting software for thousands of users, but the
complexity of HPC software is quickly outpacing the capabilities of existing software management
tools. Scientific applications require specific versions of compilers, MPI, and other dependency
libraries, so using a single, standard software stack is infeasible. However, managing many
configurations is difficult because the configuration space is combinatorial in size. We
introduce Spack, a tool used at Lawrence Livermore National Laboratory to manage this complexity.
Spack provides a novel, re- cursive specification syntax to invoke parametric builds of packages
and dependencies. It allows any number of builds to coexist on the same system, and it ensures
that installed packages can find their dependencies, regardless of the environment. We show
through real-world use cases that Spack supports diverse and demanding applications, bringing
order to HPC software chaos.
preferred-citation:
title: "The Spack Package Manager: Bringing Order to HPC Software Chaos"
type: conference-paper
url: "https://tgamblin.github.io/pubs/spack-sc15.pdf"
doi: "10.1145/2807591.2807623"
url: "https://github.com/spack/spack"
authors:
- family-names: "Gamblin"
given-names: "Todd"
- family-names: "LeGendre"
given-names: "Matthew"
- family-names: "Collette"
given-names: "Michael R."
- family-names: "Lee"
given-names: "Gregory L."
- family-names: "Moody"
given-names: "Adam"
- family-names: "de Supinski"
given-names: "Bronis R."
- family-names: "Futral"
given-names: "Scott"
conference:
name: "Supercomputing 2015 (SC15)"
city: "Austin"
region: "Texas"
country: "US"
date-start: 2015-11-15
date-end: 2015-11-20
month: 11
year: 2015
identifiers:
- description: "The concept DOI of the work."
type: doi
value: 10.1145/2807591.2807623
- description: "The DOE Document Release Number of the work"
type: other
value: "LLNL-CONF-669890"
authors:
- family-names: "Gamblin"
given-names: "Todd"
- family-names: "LeGendre"
@@ -92,3 +47,12 @@ authors:
given-names: "Bronis R."
- family-names: "Futral"
given-names: "Scott"
title: "The Spack Package Manager: Bringing Order to HPC Software Chaos"
conference:
name: "Supercomputing 2015 (SC15)"
city: "Austin"
region: "Texas"
country: "USA"
month: November 15-20
year: 2015
notes: LLNL-CONF-669890

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2013-2024 LLNS, LLC and other Spack Project Developers.
Copyright (c) 2013-2022 LLNS, LLC and other Spack Project Developers.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -1,38 +1,16 @@
<div align="left">
# <img src="https://cdn.rawgit.com/spack/spack/develop/share/spack/logo/spack-logo.svg" width="64" valign="middle" alt="Spack"/> Spack
<h2>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://cdn.rawgit.com/spack/spack/develop/share/spack/logo/spack-logo-white-text.svg" width="250">
<source media="(prefers-color-scheme: light)" srcset="https://cdn.rawgit.com/spack/spack/develop/share/spack/logo/spack-logo-text.svg" width="250">
<img alt="Spack" src="https://cdn.rawgit.com/spack/spack/develop/share/spack/logo/spack-logo-text.svg" width="250">
</picture>
<br>
<br clear="all">
<a href="https://github.com/spack/spack/actions/workflows/ci.yml"><img src="https://github.com/spack/spack/workflows/ci/badge.svg" alt="CI Status"></a>
<a href="https://github.com/spack/spack/actions/workflows/bootstrapping.yml"><img src="https://github.com/spack/spack/actions/workflows/bootstrap.yml/badge.svg" alt="Bootstrap Status"></a>
<a href="https://github.com/spack/spack/actions/workflows/build-containers.yml"><img src="https://github.com/spack/spack/actions/workflows/build-containers.yml/badge.svg" alt="Containers Status"></a>
<a href="https://spack.readthedocs.io"><img src="https://readthedocs.org/projects/spack/badge/?version=latest" alt="Documentation Status"></a>
<a href="https://codecov.io/gh/spack/spack"><img src="https://codecov.io/gh/spack/spack/branch/develop/graph/badge.svg" alt="Code coverage"/></a>
<a href="https://slack.spack.io"><img src="https://slack.spack.io/badge.svg" alt="Slack"/></a>
<a href="https://matrix.to/#/#spack-space:matrix.org"><img src="https://img.shields.io/matrix/spack-space%3Amatrix.org?label=matrix" alt="Matrix"/></a>
</h2>
**[Getting Started] &nbsp;&nbsp; [Config] &nbsp;&nbsp; [Community] &nbsp;&nbsp; [Contributing] &nbsp;&nbsp; [Packaging Guide]**
[Getting Started]: https://spack.readthedocs.io/en/latest/getting_started.html
[Config]: https://spack.readthedocs.io/en/latest/configuration.html
[Community]: #community
[Contributing]: https://spack.readthedocs.io/en/latest/contribution_guide.html
[Packaging Guide]: https://spack.readthedocs.io/en/latest/packaging_guide.html
</div>
[![Unit Tests](https://github.com/spack/spack/workflows/linux%20tests/badge.svg)](https://github.com/spack/spack/actions)
[![Bootstrapping](https://github.com/spack/spack/actions/workflows/bootstrap.yml/badge.svg)](https://github.com/spack/spack/actions/workflows/bootstrap.yml)
[![codecov](https://codecov.io/gh/spack/spack/branch/develop/graph/badge.svg)](https://codecov.io/gh/spack/spack)
[![Containers](https://github.com/spack/spack/actions/workflows/build-containers.yml/badge.svg)](https://github.com/spack/spack/actions/workflows/build-containers.yml)
[![Read the Docs](https://readthedocs.org/projects/spack/badge/?version=latest)](https://spack.readthedocs.io)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Slack](https://slack.spack.io/badge.svg)](https://slack.spack.io)
Spack is a multi-platform package manager that builds and installs
multiple versions and configurations of software. It works on Linux,
macOS, Windows, and many supercomputers. Spack is non-destructive: installing a
macOS, and many supercomputers. Spack is non-destructive: installing a
new version of a package does not break existing installations, so many
configurations of the same package can coexist.
@@ -84,14 +62,10 @@ Resources:
* **Slack workspace**: [spackpm.slack.com](https://spackpm.slack.com).
To get an invitation, visit [slack.spack.io](https://slack.spack.io).
* **Matrix space**: [#spack-space:matrix.org](https://matrix.to/#/#spack-space:matrix.org):
[bridged](https://github.com/matrix-org/matrix-appservice-slack#matrix-appservice-slack) to Slack.
* [**Github Discussions**](https://github.com/spack/spack/discussions):
for Q&A and discussions. Note the pinned discussions for announcements.
* **X**: [@spackpm](https://twitter.com/spackpm). Be sure to
* [**Github Discussions**](https://github.com/spack/spack/discussions): not just for discussions, also Q&A.
* **Mailing list**: [groups.google.com/d/forum/spack](https://groups.google.com/d/forum/spack)
* **Twitter**: [@spackpm](https://twitter.com/spackpm). Be sure to
`@mention` us!
* **Mailing list**: [groups.google.com/d/forum/spack](https://groups.google.com/d/forum/spack):
only for announcements. Please use other venues for discussions.
Contributing
------------------------

View File

@@ -2,26 +2,24 @@
## Supported Versions
We provide security updates for `develop` and for the last two
stable (`0.x`) release series of Spack. Security updates will be
made available as patch (`0.x.1`, `0.x.2`, etc.) releases.
We provide security updates for the following releases.
For more on Spack's release structure, see
[`README.md`](https://github.com/spack/spack#releases).
| Version | Supported |
| ------- | ------------------ |
| develop | :white_check_mark: |
| 0.19.x | :white_check_mark: |
| 0.18.x | :white_check_mark: |
## Reporting a Vulnerability
You can report a vulnerability using GitHub's private reporting
feature:
To report a vulnerability or other security
issue, email maintainers@spack.io.
1. Go to [github.com/spack/spack/security](https://github.com/spack/spack/security).
2. Click "Report a vulnerability" in the upper right corner of that page.
3. Fill out the form and submit your draft security advisory.
More details are available in
[GitHub's docs](https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing/privately-reporting-a-security-vulnerability).
You can expect to hear back about security issues within two days.
If your security issue is accepted, we will do our best to release
a fix within a week. If fixing the issue will take longer than
this, we will discuss timeline options with you.
You can expect to hear back within two days.
If your security issue is accepted, we will do
our best to release a fix within a week. If
fixing the issue will take longer than this,
we will discuss timeline options with you.

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -10,7 +10,6 @@ def getpywin():
try:
import win32con # noqa: F401
except ImportError:
print("pyWin32 not installed but is required...\nInstalling via pip:")
subprocess.check_call([sys.executable, "-m", "pip", "-q", "install", "--upgrade", "pip"])
subprocess.check_call([sys.executable, "-m", "pip", "-q", "install", "pywin32"])

View File

@@ -1,6 +1,6 @@
#!/bin/sh
#
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
# sbang project developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,7 +1,7 @@
#!/bin/sh
# -*- python -*-
#
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -25,6 +25,8 @@ exit 1
# Line above is a shell no-op, and ends a python multi-line comment.
# The code above runs this file with our preferred python interpreter.
from __future__ import print_function
import os
import os.path
import sys

View File

@@ -1,6 +1,6 @@
#!/bin/sh
#
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -22,4 +22,4 @@
#
# This is compatible across platforms.
#
exec spack python "$@"
exec /usr/bin/env spack python "$@"

View File

@@ -72,7 +72,6 @@ config:
root: $TMP_DIR/install
misc_cache: $$user_cache_path/cache
source_cache: $$user_cache_path/source
environments_root: $TMP_DIR/envs
EOF
cat >"$SPACK_USER_CONFIG_PATH/bootstrap.yaml" <<EOF
bootstrap:

View File

@@ -1,4 +1,4 @@
:: Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
:: Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
:: Spack Project Developers. See the top-level COPYRIGHT file for details.
::
:: SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -14,7 +14,7 @@
::
@echo off
set spack="%SPACK_ROOT%"\bin\spack
set spack=%SPACK_ROOT%\bin\spack
::#######################################################################
:: This is a wrapper around the spack command that forwards calls to
@@ -50,48 +50,25 @@ setlocal enabledelayedexpansion
:: flags will always start with '-', e.g. --help or -V
:: subcommands will never start with '-'
:: everything after the subcommand is an arg
:process_cl_args
rem Set first cl argument (denoted by %1) to be processed
set t=%1
rem shift moves all cl positional arguments left by one
rem meaning %2 is now %1, this allows us to iterate over each
rem argument
shift
rem assign next "first" cl argument to cl_args, will be null when
rem there are now further arguments to process
set cl_args=%1
if "!t:~0,1!" == "-" (
if defined _sp_subcommand (
rem We already have a subcommand, processing args now
if not defined _sp_args (
set "_sp_args=!t!"
) else (
for %%x in (%*) do (
set t="%%~x"
if "!t:~0,1!" == "-" (
if defined _sp_subcommand (
:: We already have a subcommand, processing args now
set "_sp_args=!_sp_args! !t!"
)
) else (
if not defined _sp_flags (
set "_sp_flags=!t!"
) else (
set "_sp_flags=!_sp_flags! !t!"
shift
)
)
) else if not defined _sp_subcommand (
set "_sp_subcommand=!t!"
) else (
if not defined _sp_args (
set "_sp_args=!t!"
) else if not defined _sp_subcommand (
set "_sp_subcommand=!t!"
shift
) else (
set "_sp_args=!_sp_args! !t!"
shift
)
)
rem if this is not nu;ll, we have more tokens to process
rem start above process again with remaining unprocessed cl args
if defined cl_args goto :process_cl_args
:: --help, -h and -V flags don't require further output parsing.
:: If we encounter, execute and exit
if defined _sp_flags (
@@ -106,24 +83,24 @@ if defined _sp_flags (
exit /B 0
)
)
if not defined _sp_subcommand (
if not defined _sp_args (
if not defined _sp_flags (
python "%spack%" --help
exit /B 0
)
)
)
:: pass parsed variables outside of local scope. Need to do
:: this because delayedexpansion can only be set by setlocal
endlocal & (
set "_sp_flags=%_sp_flags%"
set "_sp_args=%_sp_args%"
set "_sp_subcommand=%_sp_subcommand%"
)
echo %_sp_flags%>flags
echo %_sp_args%>args
echo %_sp_subcommand%>subcmd
endlocal
set /p _sp_subcommand=<subcmd
set /p _sp_flags=<flags
set /p _sp_args=<args
set str_subcommand=%_sp_subcommand:"='%
set str_flags=%_sp_flags:"='%
set str_args=%_sp_args:"='%
if "%str_subcommand%"=="ECHO is off." (set "_sp_subcommand=")
if "%str_flags%"=="ECHO is off." (set "_sp_flags=")
if "%str_args%"=="ECHO is off." (set "_sp_args=")
del subcmd
del flags
del args
:: Filter out some commands. For any others, just run the command.
if "%_sp_subcommand%" == "cd" (
@@ -166,9 +143,7 @@ goto :end_switch
:: If no args or args contain --bat or -h/--help: just execute.
if NOT defined _sp_args (
goto :default_case
)
if NOT "%_sp_args%"=="%_sp_args:--help=%" (
)else if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args: -h=%" (
goto :default_case
@@ -176,11 +151,11 @@ if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:deactivate=%" (
for /f "tokens=* USEBACKQ" %%I in (
`call python %spack% %_sp_flags% env deactivate --bat %_sp_args:deactivate=%`
`call python "%spack%" %_sp_flags% env deactivate --bat %_sp_args:deactivate=%`
) do %%I
) else if NOT "%_sp_args%"=="%_sp_args:activate=%" (
for /f "tokens=* USEBACKQ" %%I in (
`python %spack% %_sp_flags% env activate --bat %_sp_args:activate=%`
`call python "%spack%" %_sp_flags% env activate --bat %_sp_args:activate=%`
) do %%I
) else (
goto :default_case
@@ -188,27 +163,25 @@ if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :end_switch
:case_load
if NOT defined _sp_args (
exit /B 0
)
:: If args contain --bat, or -h/--help: just execute.
if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:-h=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:--bat=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:--list=%" (
goto :default_case
:: If args contain --sh, --csh, or -h/--help: just execute.
if defined _sp_args (
if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args: -h=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:--bat=%" (
goto :default_case
)
)
for /f "tokens=* USEBACKQ" %%I in (
`python "%spack%" %_sp_flags% %_sp_subcommand% --bat %_sp_args%`
) do %%I
`python "%spack%" %_sp_flags% %_sp_subcommand% --bat %_sp_args%`) do %%I
)
goto :end_switch
:case_unload
goto :case_load
:default_case
python "%spack%" %_sp_flags% %_sp_subcommand% %_sp_args%
goto :end_switch
@@ -241,10 +214,10 @@ for %%Z in ("%_pa_new_path%") do if EXIST %%~sZ\NUL (
exit /b 0
:: set module system roots
:_sp_multi_pathadd
:_sp_multi_pathadd
for %%I in (%~2) do (
for %%Z in (%_sp_compatible_sys_types%) do (
:pathadd "%~1" "%%I\%%Z"
)
)
exit /B %ERRORLEVEL%
exit /B %ERRORLEVEL%

View File

@@ -1,148 +0,0 @@
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
# #######################################################################
function Compare-CommonArgs {
$CMDArgs = $args[0]
# These aruments take precedence and call for no futher parsing of arguments
# invoke actual Spack entrypoint with that context and exit after
"--help", "-h", "--version", "-V" | ForEach-Object {
$arg_opt = $_
if(($CMDArgs) -and ([bool]($CMDArgs.Where({$_ -eq $arg_opt})))) {
return $true
}
}
return $false
}
function Read-SpackArgs {
$SpackCMD_params = @()
$SpackSubCommand = $NULL
$SpackSubCommandArgs = @()
$args_ = $args[0]
$args_ | ForEach-Object {
if (!$SpackSubCommand) {
if($_.SubString(0,1) -eq "-")
{
$SpackCMD_params += $_
}
else{
$SpackSubCommand = $_
}
}
else{
$SpackSubCommandArgs += $_
}
}
return $SpackCMD_params, $SpackSubCommand, $SpackSubCommandArgs
}
function Set-SpackEnv {
# This method is responsible
# for processing the return from $(spack <command>)
# which are returned as System.Object[]'s containing
# a list of env commands
# Invoke-Expression can only handle one command at a time
# so we iterate over the list to invoke the env modification
# expressions one at a time
foreach($envop in $args[0]){
Invoke-Expression $envop
}
}
function Invoke-SpackCD {
if (Compare-CommonArgs $SpackSubCommandArgs) {
python "$Env:SPACK_ROOT/bin/spack" cd -h
}
else {
$LOC = $(python "$Env:SPACK_ROOT/bin/spack" location $SpackSubCommandArgs)
if (($NULL -ne $LOC)){
if ( Test-Path -Path $LOC){
Set-Location $LOC
}
else{
exit 1
}
}
else {
exit 1
}
}
}
function Invoke-SpackEnv {
if (Compare-CommonArgs $SpackSubCommandArgs[0]) {
python "$Env:SPACK_ROOT/bin/spack" env -h
}
else {
$SubCommandSubCommand = $SpackSubCommandArgs[0]
$SubCommandSubCommandArgs = $SpackSubCommandArgs[1..$SpackSubCommandArgs.Count]
switch ($SubCommandSubCommand) {
"activate" {
if (Compare-CommonArgs $SubCommandSubCommandArgs) {
python "$Env:SPACK_ROOT/bin/spack" env activate $SubCommandSubCommandArgs
}
elseif ([bool]($SubCommandSubCommandArgs.Where({$_ -eq "--pwsh"}))) {
python "$Env:SPACK_ROOT/bin/spack" env activate $SubCommandSubCommandArgs
}
elseif (!$SubCommandSubCommandArgs) {
python "$Env:SPACK_ROOT/bin/spack" env activate $SubCommandSubCommandArgs
}
else {
$SpackEnv = $(python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params env activate "--pwsh" $SubCommandSubCommandArgs)
Set-SpackEnv $SpackEnv
}
}
"deactivate" {
if ([bool]($SubCommandSubCommandArgs.Where({$_ -eq "--pwsh"}))) {
python"$Env:SPACK_ROOT/bin/spack" env deactivate $SubCommandSubCommandArgs
}
elseif($SubCommandSubCommandArgs) {
python "$Env:SPACK_ROOT/bin/spack" env deactivate -h
}
else {
$SpackEnv = $(python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params env deactivate "--pwsh")
Set-SpackEnv $SpackEnv
}
}
default {python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params $SpackSubCommand $SpackSubCommandArgs}
}
}
}
function Invoke-SpackLoad {
if (Compare-CommonArgs $SpackSubCommandArgs) {
python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params $SpackSubCommand $SpackSubCommandArgs
}
elseif ([bool]($SpackSubCommandArgs.Where({($_ -eq "--pwsh") -or ($_ -eq "--list")}))) {
python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params $SpackSubCommand $SpackSubCommandArgs
}
else {
$SpackEnv = $(python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params $SpackSubCommand "--pwsh" $SpackSubCommandArgs)
Set-SpackEnv $SpackEnv
}
}
$SpackCMD_params, $SpackSubCommand, $SpackSubCommandArgs = Read-SpackArgs $args
if (Compare-CommonArgs $SpackCMD_params) {
python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params $SpackSubCommand $SpackSubCommandArgs
exit $LASTEXITCODE
}
# Process Spack commands with special conditions
# all other commands are piped directly to Spack
switch($SpackSubCommand)
{
"cd" {Invoke-SpackCD}
"env" {Invoke-SpackEnv}
"load" {Invoke-SpackLoad}
"unload" {Invoke-SpackLoad}
default {python "$Env:SPACK_ROOT/bin/spack" $SpackCMD_params $SpackSubCommand $SpackSubCommandArgs}
}
exit $LASTEXITCODE

View File

@@ -52,6 +52,7 @@ if defined py_path (
if defined py_exe (
"%py_exe%" "%SPACK_ROOT%\bin\haspywin.py"
"%py_exe%" "%SPACK_ROOT%\bin\spack" external find python >NUL
)
set "EDITOR=notepad"

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -9,15 +9,15 @@ bootstrap:
# may not be able to bootstrap all the software that Spack needs,
# depending on its type.
sources:
- name: 'github-actions-v0.5'
metadata: $spack/share/spack/bootstrap/github-actions-v0.5
- name: 'github-actions-v0.4'
metadata: $spack/share/spack/bootstrap/github-actions-v0.4
- name: 'github-actions-v0.3'
metadata: $spack/share/spack/bootstrap/github-actions-v0.3
- name: 'spack-install'
metadata: $spack/share/spack/bootstrap/spack-install
trusted:
# By default we trust bootstrapping from sources and from binaries
# produced on Github via the workflow
github-actions-v0.5: true
github-actions-v0.4: true
github-actions-v0.3: true
spack-install: true

View File

@@ -13,18 +13,16 @@ concretizer:
# Whether to consider installed packages or packages from buildcaches when
# concretizing specs. If `true`, we'll try to use as many installs/binaries
# as possible, rather than building. If `false`, we'll always give you a fresh
# concretization. If `dependencies`, we'll only reuse dependencies but
# give you a fresh concretization for your root specs.
# concretization.
reuse: true
# Options that tune which targets are considered for concretization. The
# concretization process is very sensitive to the number targets, and the time
# needed to reach a solution increases noticeably with the number of targets
# considered.
targets:
# Determine whether we want to target specific or generic
# microarchitectures. Valid values are: "microarchitectures" or "generic".
# An example of "microarchitectures" would be "skylake" or "bulldozer",
# while an example of "generic" would be "aarch64" or "x86_64_v4".
# Determine whether we want to target specific or generic microarchitectures.
# An example of the first kind might be for instance "skylake" or "bulldozer",
# while generic microarchitectures are for instance "aarch64" or "x86_64_v4".
granularity: microarchitectures
# If "false" allow targets that are incompatible with the current host (for
# instance concretize with target "icelake" while running on "haswell").
@@ -35,15 +33,4 @@ concretizer:
# environments can always be activated. When "false" perform concretization separately
# on each root spec, allowing different versions and variants of the same package in
# an environment.
unify: true
# Option to deal with possible duplicate nodes (i.e. different nodes from the same package) in the DAG.
duplicates:
# "none": allows a single node for any package in the DAG.
# "minimal": allows the duplication of 'build-tools' nodes only (e.g. py-setuptools, cmake etc.)
# "full" (experimental): allows separation of the entire build-tool stack (e.g. the entire "cmake" subDAG)
strategy: minimal
# Option to specify compatiblity between operating systems for reuse of compilers and packages
# Specified as a key: [list] where the key is the os that is being targeted, and the list contains the OS's
# it can reuse. Note this is a directional compatibility so mutual compatibility between two OS's
# requires two entries i.e. os_compatible: {sonoma: [monterey], monterey: [sonoma]}
os_compatible: {}
unify: true

View File

@@ -54,11 +54,6 @@ config:
# are that it precludes its use as a system package and its ability to be
# pip installable.
#
# In Spack environment files, chaining onto existing system Spack
# installations, the $env variable can be used to download, cache and build
# into user-writable paths that are relative to the currently active
# environment.
#
# In any case, if the username is not already in the path, Spack will append
# the value of `$user` in an attempt to avoid potential conflicts between
# users in shared temporary spaces.
@@ -81,10 +76,6 @@ config:
source_cache: $spack/var/spack/cache
## Directory where spack managed environments are created and stored
# environments_root: $spack/var/spack/environments
# Cache directory for miscellaneous files, like the package index.
# This can be purged with `spack clean --misc-cache`
misc_cache: $user_cache_path/cache
@@ -101,12 +92,6 @@ config:
verify_ssl: true
# This is where custom certs for proxy/firewall are stored.
# It can be a path or environment variable. To match ssl env configuration
# the default is the environment variable SSL_CERT_FILE
ssl_certs: $SSL_CERT_FILE
# Suppress gpg warnings from binary package verification
# Only suppresses warnings, gpg failure will still fail the install
# Potential rationale to set True: users have already explicitly trusted the
@@ -115,6 +100,12 @@ config:
suppress_gpg_warnings: false
# If set to true, Spack will attempt to build any compiler on the spec
# that is not already available. If set to False, Spack will only use
# compilers already configured in compilers.yaml
install_missing_compilers: false
# If set to true, Spack will always check checksums after downloading
# archives. If false, Spack skips the checksum step.
checksum: true
@@ -164,11 +155,28 @@ config:
# If set to true, Spack will use ccache to cache C compiles.
ccache: false
# The concretization algorithm to use in Spack. Options are:
#
# 'clingo': Uses a logic solver under the hood to solve DAGs with full
# backtracking and optimization for user preferences. Spack will
# try to bootstrap the logic solver, if not already available.
#
# 'original': Spack's original greedy, fixed-point concretizer. This
# algorithm can make decisions too early and will not backtrack
# sufficiently for many specs. This will soon be deprecated in
# favor of clingo.
#
# See `concretizer.yaml` for more settings you can fine-tune when
# using clingo.
concretizer: clingo
# How long to wait to lock the Spack installation database. This lock is used
# when Spack needs to manage its own package metadata and all operations are
# expected to complete within the default time limit. The timeout should
# therefore generally be left untouched.
db_lock_timeout: 60
db_lock_timeout: 3
# How long to wait when attempting to modify a package (e.g. to install it).
@@ -199,11 +207,10 @@ config:
# manipulation by unprivileged user (e.g. AFS)
allow_sgid: true
# Whether to show status information during building and installing packages.
# This gives information about Spack's current progress as well as the current
# and total number of packages. Information is shown both in the terminal
# title and inline.
install_status: true
# Whether to set the terminal title to display status information during
# building and installing packages. This gives information about Spack's
# current progress as well as the current and total number of packages.
terminal_title: false
# Number of seconds a buildcache's index.json is cached locally before probing
# for updates, within a single Spack invocation. Defaults to 10 minutes.
@@ -212,11 +219,3 @@ config:
flags:
# Whether to keep -Werror flags active in package builds.
keep_werror: 'none'
# A mapping of aliases that can be used to define new commands. For instance,
# `sp: spec -I` will define a new command `sp` that will execute `spec` with
# the `-I` argument. Aliases cannot override existing commands.
aliases:
concretise: concretize
containerise: containerize
rm: remove

View File

@@ -0,0 +1,16 @@
# -------------------------------------------------------------------------
# This is the default configuration for Spack's module file generation.
#
# Settings here are versioned with Spack and are intended to provide
# sensible defaults out of the box. Spack maintainers should edit this
# file to keep it current.
#
# Users can override these settings by editing the following files.
#
# Per-spack-instance settings (overrides defaults):
# $SPACK_ROOT/etc/spack/modules.yaml
#
# Per-user settings (overrides default and site settings):
# ~/.spack/modules.yaml
# -------------------------------------------------------------------------
modules: {}

View File

@@ -19,23 +19,12 @@ packages:
- apple-clang
- clang
- gcc
- intel
providers:
elf: [libelf]
fuse: [macfuse]
gl: [apple-gl]
glu: [apple-glu]
unwind: [apple-libunwind]
uuid: [apple-libuuid]
apple-gl:
buildable: false
externals:
- spec: apple-gl@4.1.0
prefix: /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk
apple-glu:
buildable: false
externals:
- spec: apple-glu@1.3.0
prefix: /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk
apple-libunwind:
buildable: false
externals:
@@ -49,4 +38,4 @@ packages:
# Apple bundles libuuid in libsystem_c version 1353.100.2,
# although the version number used here isn't critical
- spec: apple-libuuid@1353.100.2
prefix: /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk
prefix: /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk

View File

@@ -1,4 +1,2 @@
mirrors:
spack-public:
binary: false
url: https://mirror.spack.io
spack-public: https://mirror.spack.io

View File

@@ -40,12 +40,13 @@ modules:
roots:
tcl: $spack/share/spack/modules
lmod: $spack/share/spack/lmod
# What type of modules to use ("tcl" and/or "lmod")
enable: []
# What type of modules to use
enable:
- tcl
tcl:
all:
autoload: direct
autoload: none
# Default configurations if lmod is enabled
lmod:

View File

@@ -15,39 +15,32 @@
# -------------------------------------------------------------------------
packages:
all:
compiler: [gcc, clang, oneapi, xl, nag, fj, aocc]
compiler: [gcc, intel, pgi, clang, xl, nag, fj, aocc]
providers:
awk: [gawk]
armci: [armcimpi]
blas: [openblas, amdblis]
c: [gcc]
cxx: [gcc]
D: [ldc]
daal: [intel-oneapi-daal]
daal: [intel-daal]
elf: [elfutils]
fftw-api: [fftw, amdfftw]
flame: [libflame, amdlibflame]
fortran: [gcc]
fortran-rt: [gcc-runtime, intel-oneapi-runtime]
fuse: [libfuse]
gl: [glx, osmesa]
glu: [mesa-glu, openglu]
golang: [go, gcc]
go-or-gccgo-bootstrap: [go-bootstrap, gcc]
go-external-or-gccgo-bootstrap: [go-bootstrap, gcc]
iconv: [libiconv]
ipp: [intel-oneapi-ipp]
ipp: [intel-ipp]
java: [openjdk, jdk, ibm-java]
jpeg: [libjpeg-turbo, libjpeg]
lapack: [openblas, amdlibflame]
libc: [glibc, musl]
libgfortran: [ gcc-runtime ]
libglx: [mesa+glx]
libifcore: [ intel-oneapi-runtime ]
libglx: [mesa+glx, mesa18+glx]
libllvm: [llvm]
libosmesa: [mesa+osmesa, mesa18+osmesa]
lua-lang: [lua, lua-luajit-openresty, lua-luajit]
luajit: [lua-luajit-openresty, lua-luajit]
mariadb-client: [mariadb-c-client, mariadb]
mkl: [intel-oneapi-mkl]
mkl: [intel-mkl]
mpe: [mpe2]
mpi: [openmpi, mpich]
mysql-client: [mysql, mariadb-c-client]
@@ -56,7 +49,6 @@ packages:
pbs: [openpbs, torque]
pil: [py-pillow]
pkgconfig: [pkgconf, pkg-config]
qmake: [qt-base, qt]
rpc: [libtirpc]
scalapack: [netlib-scalapack, amdscalapack]
sycl: [hipsycl]
@@ -64,21 +56,9 @@ packages:
tbb: [intel-tbb]
unwind: [libunwind]
uuid: [util-linux-uuid, libuuid]
wasi-sdk: [wasi-sdk-prebuilt]
xxd: [xxd-standalone, vim]
yacc: [bison, byacc]
ziglang: [zig]
zlib-api: [zlib-ng+compat, zlib]
permissions:
read: world
write: user
cray-mpich:
buildable: false
cray-mvapich2:
buildable: false
fujitsu-mpi:
buildable: false
hpcx-mpi:
buildable: false
spectrum-mpi:
buildable: false

View File

@@ -1,5 +1,5 @@
config:
locks: false
concretizer: clingo
build_stage::
- '$spack/.staging'
stage_name: '{name}-{version}-{hash:7}'

View File

@@ -1,22 +0,0 @@
# -------------------------------------------------------------------------
# This file controls default concretization preferences for Spack.
#
# Settings here are versioned with Spack and are intended to provide
# sensible defaults out of the box. Spack maintainers should edit this
# file to keep it current.
#
# Users can override these settings by editing the following files.
#
# Per-spack-instance settings (overrides defaults):
# $SPACK_ROOT/etc/spack/packages.yaml
#
# Per-user settings (overrides default and site settings):
# ~/.spack/packages.yaml
# -------------------------------------------------------------------------
packages:
all:
compiler:
- msvc
providers:
mpi: [msmpi]
gl: [wgl]

View File

@@ -1,7 +1,7 @@
package_list.html
command_index.rst
spack*.rst
llnl*.rst
_build
.spack-env
spack.lock
_spack_root

View File

@@ -1,16 +0,0 @@
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
# The name of the Pygments (syntax highlighting) style to use.
# We use our own extension of the default style with a few modifications
from pygments.styles.default import DefaultStyle
from pygments.token import Generic
class SpackStyle(DefaultStyle):
styles = DefaultStyle.styles.copy()
background_color = "#f4f4f8"
styles[Generic.Output] = "#355"
styles[Generic.Prompt] = "bold #346ec9"

View File

@@ -1,12 +0,0 @@
{% extends "!layout.html" %}
{%- block extrahead %}
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-S0PQ7WV75K"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-S0PQ7WV75K');
</script>
{% endblock %}

162
lib/spack/docs/analyze.rst Normal file
View File

@@ -0,0 +1,162 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _analyze:
=======
Analyze
=======
The analyze command is a front-end to various tools that let us analyze
package installations. Each analyzer is a module for a different kind
of analysis that can be done on a package installation, including (but not
limited to) binary, log, or text analysis. Thus, the analyze command group
allows you to take an existing package install, choose an analyzer,
and extract some output for the package using it.
-----------------
Analyzer Metadata
-----------------
For all analyzers, we write to an ``analyzers`` folder in ``~/.spack``, or the
value that you specify in your spack config at ``config:analyzers_dir``.
For example, here we see the results of running an analysis on zlib:
.. code-block:: console
$ tree ~/.spack/analyzers/
└── linux-ubuntu20.04-skylake
└── gcc-9.3.0
└── zlib-1.2.11-sl7m27mzkbejtkrajigj3a3m37ygv4u2
├── environment_variables
│   └── spack-analyzer-environment-variables.json
├── install_files
│   └── spack-analyzer-install-files.json
└── libabigail
└── spack-analyzer-libabigail-libz.so.1.2.11.xml
This means that you can always find analyzer output in this folder, and it
is organized with the same logic as the package install it was run for.
If you want to customize this top level folder, simply provide the ``--path``
argument to ``spack analyze run``. The nested organization will be maintained
within your custom root.
-----------------
Listing Analyzers
-----------------
If you aren't familiar with Spack's analyzers, you can quickly list those that
are available:
.. code-block:: console
$ spack analyze list-analyzers
install_files : install file listing read from install_manifest.json
environment_variables : environment variables parsed from spack-build-env.txt
config_args : config args loaded from spack-configure-args.txt
libabigail : Application Binary Interface (ABI) features for objects
In the above, the first three are fairly simple - parsing metadata files from
a package install directory to save
-------------------
Analyzing a Package
-------------------
The analyze command, akin to install, will accept a package spec to perform
an analysis for. The package must be installed. Let's walk through an example
with zlib. We first ask to analyze it. However, since we have more than one
install, we are asked to disambiguate:
.. code-block:: console
$ spack analyze run zlib
==> Error: zlib matches multiple packages.
Matching packages:
fz2bs56 zlib@1.2.11%gcc@7.5.0 arch=linux-ubuntu18.04-skylake
sl7m27m zlib@1.2.11%gcc@9.3.0 arch=linux-ubuntu20.04-skylake
Use a more specific spec.
We can then specify the spec version that we want to analyze:
.. code-block:: console
$ spack analyze run zlib/fz2bs56
If you don't provide any specific analyzer names, by default all analyzers
(shown in the ``list-analyzers`` subcommand list) will be run. If an analyzer does not
have any result, it will be skipped. For example, here is a result running for
zlib:
.. code-block:: console
$ ls ~/.spack/analyzers/linux-ubuntu20.04-skylake/gcc-9.3.0/zlib-1.2.11-sl7m27mzkbejtkrajigj3a3m37ygv4u2/
spack-analyzer-environment-variables.json
spack-analyzer-install-files.json
spack-analyzer-libabigail-libz.so.1.2.11.xml
If you want to run a specific analyzer, ask for it with `--analyzer`. Here we run
spack analyze on libabigail (already installed) _using_ libabigail1
.. code-block:: console
$ spack analyze run --analyzer abigail libabigail
.. _analyze_monitoring:
----------------------
Monitoring An Analysis
----------------------
For any kind of analysis, you can
use a `spack monitor <https://github.com/spack/spack-monitor>`_ "Spackmon"
as a server to upload the same run metadata to. You can
follow the instructions in the `spack monitor documentation <https://spack-monitor.readthedocs.org>`_
to first create a server along with a username and token for yourself.
You can then use this guide to interact with the server.
You should first export our spack monitor token and username to the environment:
.. code-block:: console
$ export SPACKMON_TOKEN=50445263afd8f67e59bd79bff597836ee6c05438
$ export SPACKMON_USER=spacky
By default, the host for your server is expected to be at ``http://127.0.0.1``
with a prefix of ``ms1``, and if this is the case, you can simply add the
``--monitor`` flag to the install command:
.. code-block:: console
$ spack analyze run --monitor wget
If you need to customize the host or the prefix, you can do that as well:
.. code-block:: console
$ spack analyze run --monitor --monitor-prefix monitor --monitor-host https://monitor-service.io wget
If your server doesn't have authentication, you can skip it:
.. code-block:: console
$ spack analyze run --monitor --monitor-disable-auth wget
Regardless of your choice, when you run analyze on an installed package (whether
it was installed with ``--monitor`` or not, you'll see the results generating as they did
before, and a message that the monitor server was pinged:
.. code-block:: console
$ spack analyze --monitor wget
...
==> Sending result for wget bin/wget to monitor.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -45,8 +45,7 @@ Listing available packages
To install software with Spack, you need to know what software is
available. You can see a list of available package names at the
`packages.spack.io <https://packages.spack.io>`_ website, or
using the ``spack list`` command.
:ref:`package-list` webpage, or using the ``spack list`` command.
.. _cmd-spack-list:
@@ -61,7 +60,7 @@ can install:
:ellipsis: 10
There are thousands of them, so we've truncated the output above, but you
can find a `full list here <https://packages.spack.io>`_.
can find a :ref:`full list here <package-list>`.
Packages are listed by name in alphabetical order.
A pattern to match with no wildcards, ``*`` or ``?``,
will be treated as though it started and ended with
@@ -865,7 +864,7 @@ There are several different ways to use Spack packages once you have
installed them. As you've seen, spack packages are installed into long
paths with hashes, and you need a way to get them into your path. The
easiest way is to use :ref:`spack load <cmd-spack-load>`, which is
described in this section.
described in the next section.
Some more advanced ways to use Spack packages include:
@@ -943,7 +942,7 @@ first ``libelf`` above, you would run:
$ spack load /qmm4kso
To see which packages that you have loaded to your environment you would
To see which packages that you have loaded to your enviornment you would
use ``spack find --loaded``.
.. code-block:: console
@@ -959,86 +958,7 @@ use ``spack find --loaded``.
You can also use ``spack load --list`` to get the same output, but it
does not have the full set of query options that ``spack find`` offers.
We'll learn more about Spack's spec syntax in :ref:`a later section <sec-specs>`.
.. _extensions:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Python packages and virtual environments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Spack can install a large number of Python packages. Their names are
typically prefixed with ``py-``. Installing and using them is no
different from any other package:
.. code-block:: console
$ spack install py-numpy
$ spack load py-numpy
$ python3
>>> import numpy
The ``spack load`` command sets the ``PATH`` variable so that the right Python
executable is used, and makes sure that ``numpy`` and its dependencies can be
located in the ``PYTHONPATH``.
Spack is different from other Python package managers in that it installs
every package into its *own* prefix. This is in contrast to ``pip``, which
installs all packages into the same prefix, be it in a virtual environment
or not.
For many users, **virtual environments** are more convenient than repeated
``spack load`` commands, particularly when working with multiple Python
packages. Fortunately Spack supports environments itself, which together
with a view are no different from Python virtual environments.
The recommended way of working with Python extensions such as ``py-numpy``
is through :ref:`Environments <environments>`. The following example creates
a Spack environment with ``numpy`` in the current working directory. It also
puts a filesystem view in ``./view``, which is a more traditional combined
prefix for all packages in the environment.
.. code-block:: console
$ spack env create --with-view view --dir .
$ spack -e . add py-numpy
$ spack -e . concretize
$ spack -e . install
Now you can activate the environment and start using the packages:
.. code-block:: console
$ spack env activate .
$ python3
>>> import numpy
The environment view is also a virtual environment, which is useful if you are
sharing the environment with others who are unfamiliar with Spack. They can
either use the Python executable directly:
.. code-block:: console
$ ./view/bin/python3
>>> import numpy
or use the activation script:
.. code-block:: console
$ source ./view/bin/activate
$ python3
>>> import numpy
In general, there should not be much difference between ``spack env activate``
and using the virtual environment. The main advantage of ``spack env activate``
is that it knows about more packages than just Python packages, and it may set
additional runtime variables that are not covered by the virtual environment
activation script.
See :ref:`environments` for a more in-depth description of Spack
environments and customizations to views.
We'll learn more about Spack's spec syntax in the next section.
.. _sec-specs:
@@ -1175,17 +1095,6 @@ unspecified version, but packages can depend on other packages with
could depend on ``mpich@1.2:`` if it can only build with version
``1.2`` or higher of ``mpich``.
.. note:: Windows Spec Syntax Caveats
Windows has a few idiosyncrasies when it comes to the Spack spec syntax and the use of certain shells
Spack's spec dependency syntax uses the carat (``^``) character, however this is an escape string in CMD
so it must be escaped with an additional carat (i.e. ``^^``).
CMD also will attempt to interpret strings with ``=`` characters in them. Any spec including this symbol
must double quote the string.
Note: All of these issues are unique to CMD, they can be avoided by using Powershell.
For more context on these caveats see the related issues: `carat <https://github.com/spack/spack/issues/42833>`_ and `equals <https://github.com/spack/spack/issues/43348>`_
Below are more details about the specifiers that you can add to specs.
.. _version-specifier:
@@ -1194,38 +1103,16 @@ Below are more details about the specifiers that you can add to specs.
Version specifier
^^^^^^^^^^^^^^^^^
A version specifier ``pkg@<specifier>`` comes after a package name
and starts with ``@``. It can be something abstract that matches
multiple known versions, or a specific version. During concretization,
Spack will pick the optimal version within the spec's constraints
according to policies set for the particular Spack installation.
The version specifier can be *a specific version*, such as ``@=1.0.0`` or
``@=1.2a7``. Or, it can be *a range of versions*, such as ``@1.0:1.5``.
Version ranges are inclusive, so this example includes both ``1.0``
and any ``1.5.x`` version. Version ranges can be unbounded, e.g. ``@:3``
means any version up to and including ``3``. This would include ``3.4``
and ``3.4.2``. Similarly, ``@4.2:`` means any version above and including
``4.2``. As a short-hand, ``@3`` is equivalent to the range ``@3:3`` and
includes any version with major version ``3``.
Versions are ordered lexicograpically by its components. For more details
on the order, see :ref:`the packaging guide <version-comparison>`.
Notice that you can distinguish between the specific version ``@=3.2`` and
the range ``@3.2``. This is useful for packages that follow a versioning
scheme that omits the zero patch version number: ``3.2``, ``3.2.1``,
``3.2.2``, etc. In general it is preferable to use the range syntax
``@3.2``, since ranges also match versions with one-off suffixes, such as
``3.2-custom``.
A version specifier can also be a list of ranges and specific versions,
separated by commas. For example, ``@1.0:1.5,=1.7.1`` matches any version
in the range ``1.0:1.5`` and the specific version ``1.7.1``.
^^^^^^^^^^^^
Git versions
^^^^^^^^^^^^
A version specifier comes somewhere after a package name and starts
with ``@``. It can be a single version, e.g. ``@1.0``, ``@3``, or
``@1.2a7``. Or, it can be a range of versions, such as ``@1.0:1.5``
(all versions between ``1.0`` and ``1.5``, inclusive). Version ranges
can be open, e.g. ``:3`` means any version up to and including ``3``.
This would include ``3.4`` and ``3.4.2``. ``4.2:`` means any version
above and including ``4.2``. Finally, a version specifier can be a
set of arbitrary versions, such as ``@1.0,1.5,1.7`` (``1.0``, ``1.5``,
or ``1.7``). When you supply such a specifier to ``spack install``,
it constrains the set of versions that Spack will install.
For packages with a ``git`` attribute, ``git`` references
may be specified instead of a numerical version i.e. branches, tags
@@ -1234,35 +1121,36 @@ reference provided. Acceptable syntaxes for this are:
.. code-block:: sh
# commit hashes
foo@abcdef1234abcdef1234abcdef1234abcdef1234 # 40 character hashes are automatically treated as git commits
foo@git.abcdef1234abcdef1234abcdef1234abcdef1234
# branches and tags
foo@git.develop # use the develop branch
foo@git.0.19 # use the 0.19 tag
Spack always needs to associate a Spack version with the git reference,
which is used for version comparison. This Spack version is heuristically
taken from the closest valid git tag among ancestors of the git ref.
# commit hashes
foo@abcdef1234abcdef1234abcdef1234abcdef1234 # 40 character hashes are automatically treated as git commits
foo@git.abcdef1234abcdef1234abcdef1234abcdef1234
Once a Spack version is associated with a git ref, it always printed with
the git ref. For example, if the commit ``@git.abcdefg`` is tagged
``0.19``, then the spec will be shown as ``@git.abcdefg=0.19``.
Spack versions from git reference either have an associated version supplied by the user,
or infer a relationship to known versions from the structure of the git repository. If an
associated version is supplied by the user, Spack treats the git version as equivalent to that
version for all version comparisons in the package logic (e.g. ``depends_on('foo', when='@1.5')``).
If the git ref is not exactly a tag, then the distance to the nearest tag
is also part of the resolved version. ``@git.abcdefg=0.19.git.8`` means
that the commit is 8 commits away from the ``0.19`` tag.
In cases where Spack cannot resolve a sensible version from a git ref,
users can specify the Spack version to use for the git ref. This is done
by appending ``=`` and the Spack version to the git ref. For example:
The associated version can be assigned with ``[git ref]=[version]`` syntax, with the caveat that the specified version is known to Spack from either the package definition, or in the configuration preferences (i.e. ``packages.yaml``).
.. code-block:: sh
foo@git.my_ref=3.2 # use the my_ref tag or branch, but treat it as version 3.2 for version comparisons
foo@git.abcdef1234abcdef1234abcdef1234abcdef1234=develop # use the given commit, but treat it as develop for version comparisons
If an associated version is not supplied then the tags in the git repo are used to determine
the most recent previous version known to Spack. Details about how versions are compared
and how Spack determines if one version is less than another are discussed in the developer guide.
If the version spec is not provided, then Spack will choose one
according to policies set for the particular spack installation. If
the spec is ambiguous, i.e. it could match multiple versions, Spack
will choose a version within the spec's constraints according to
policies set for the particular Spack installation.
Details about how versions are compared and how Spack determines if
one version is less than another are discussed in the developer guide.
@@ -1444,12 +1332,22 @@ the reserved keywords ``platform``, ``os`` and ``target``:
$ spack install libelf os=ubuntu18.04
$ spack install libelf target=broadwell
or together by using the reserved keyword ``arch``:
.. code-block:: console
$ spack install libelf arch=cray-CNL10-haswell
Normally users don't have to bother specifying the architecture if they
are installing software for their current host, as in that case the
values will be detected automatically. If you need fine-grained control
over which packages use which targets (or over *all* packages' default
target), see :ref:`package-preferences`.
.. admonition:: Cray machines
The situation is a little bit different for Cray machines and a detailed
explanation on how the architecture can be set on them can be found at :ref:`cray-support`
.. _support-for-microarchitectures:
@@ -1613,30 +1511,6 @@ any MPI implementation will do. If another package depends on
error. Likewise, if you try to plug in some package that doesn't
provide MPI, Spack will raise an error.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Explicit binding of virtual dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There are packages that provide more than just one virtual dependency. When interacting with them, users
might want to utilize just a subset of what they could provide, and use other providers for virtuals they
need.
It is possible to be more explicit and tell Spack which dependency should provide which virtual, using a
special syntax:
.. code-block:: console
$ spack spec strumpack ^[virtuals=mpi] intel-parallel-studio+mkl ^[virtuals=lapack] openblas
Concretizing the spec above produces the following DAG:
.. figure:: images/strumpack_virtuals.svg
:scale: 60 %
:align: center
where ``intel-parallel-studio`` *could* provide ``mpi``, ``lapack``, and ``blas`` but is used only for the former. The ``lapack``
and ``blas`` dependencies are satisfied by ``openblas``.
^^^^^^^^^^^^^^^^^^^^^^^^
Specifying Specs by Hash
^^^^^^^^^^^^^^^^^^^^^^^^
@@ -1785,6 +1659,165 @@ check only local packages (as opposed to those used transparently from
``upstream`` spack instances) and the ``-j,--json`` option to output
machine-readable json data for any errors.
.. _extensions:
---------------------------
Extensions & Python support
---------------------------
Spack's installation model assumes that each package will live in its
own install prefix. However, certain packages are typically installed
*within* the directory hierarchy of other packages. For example,
`Python <https://www.python.org>`_ packages are typically installed in the
``$prefix/lib/python-2.7/site-packages`` directory.
In Spack, installation prefixes are immutable, so this type of installation
is not directly supported. However, it is possible to create views that
allow you to merge install prefixes of multiple packages into a single new prefix.
Views are a convenient way to get a more traditional filesystem structure.
Using *extensions*, you can ensure that Python packages always share the
same prefix in the view as Python itself. Suppose you have
Python installed like so:
.. code-block:: console
$ spack find python
==> 1 installed packages.
-- linux-debian7-x86_64 / gcc@4.4.7 --------------------------------
python@2.7.8
.. _cmd-spack-extensions:
^^^^^^^^^^^^^^^^^^^^
``spack extensions``
^^^^^^^^^^^^^^^^^^^^
You can find extensions for your Python installation like this:
.. code-block:: console
$ spack extensions python
==> python@2.7.8%gcc@4.4.7 arch=linux-debian7-x86_64-703c7a96
==> 36 extensions:
geos py-ipython py-pexpect py-pyside py-sip
py-basemap py-libxml2 py-pil py-pytz py-six
py-biopython py-mako py-pmw py-rpy2 py-sympy
py-cython py-matplotlib py-pychecker py-scientificpython py-virtualenv
py-dateutil py-mpi4py py-pygments py-scikit-learn
py-epydoc py-mx py-pylint py-scipy
py-gnuplot py-nose py-pyparsing py-setuptools
py-h5py py-numpy py-pyqt py-shiboken
==> 12 installed:
-- linux-debian7-x86_64 / gcc@4.4.7 --------------------------------
py-dateutil@2.4.0 py-nose@1.3.4 py-pyside@1.2.2
py-dateutil@2.4.0 py-numpy@1.9.1 py-pytz@2014.10
py-ipython@2.3.1 py-pygments@2.0.1 py-setuptools@11.3.1
py-matplotlib@1.4.2 py-pyparsing@2.0.3 py-six@1.9.0
The extensions are a subset of what's returned by ``spack list``, and
they are packages like any other. They are installed into their own
prefixes, and you can see this with ``spack find --paths``:
.. code-block:: console
$ spack find --paths py-numpy
==> 1 installed packages.
-- linux-debian7-x86_64 / gcc@4.4.7 --------------------------------
py-numpy@1.9.1 ~/spack/opt/linux-debian7-x86_64/gcc@4.4.7/py-numpy@1.9.1-66733244
However, even though this package is installed, you cannot use it
directly when you run ``python``:
.. code-block:: console
$ spack load python
$ python
Python 2.7.8 (default, Feb 17 2015, 01:35:25)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-11)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named numpy
>>>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using Extensions in Environments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The recommended way of working with extensions such as ``py-numpy``
above is through :ref:`Environments <environments>`. For example,
the following creates an environment in the current working directory
with a filesystem view in the ``./view`` directory:
.. code-block:: console
$ spack env create --with-view view --dir .
$ spack -e . add py-numpy
$ spack -e . concretize
$ spack -e . install
We recommend environments for two reasons. Firstly, environments
can be activated (requires :ref:`shell-support`):
.. code-block:: console
$ spack env activate .
which sets all the right environment variables such as ``PATH`` and
``PYTHONPATH``. This ensures that
.. code-block:: console
$ python
>>> import numpy
works. Secondly, even without shell support, the view ensures
that Python can locate its extensions:
.. code-block:: console
$ ./view/bin/python
>>> import numpy
See :ref:`environments` for a more in-depth description of Spack
environments and customizations to views.
^^^^^^^^^^^^^^^^^^^^
Using ``spack load``
^^^^^^^^^^^^^^^^^^^^
A more traditional way of using Spack and extensions is ``spack load``
(requires :ref:`shell-support`). This will add the extension to ``PYTHONPATH``
in your current shell, and Python itself will be available in the ``PATH``:
.. code-block:: console
$ spack load py-numpy
$ python
>>> import numpy
The loaded packages can be checked using ``spack find --loaded``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Loading Extensions via Modules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Apart from ``spack env activate`` and ``spack load``, you can load numpy
through your environment modules (using ``environment-modules`` or
``lmod``). This will also add the extension to the ``PYTHONPATH`` in
your current shell.
.. code-block:: console
$ module load <name of numpy module>
If you do not know the name of the specific numpy module you wish to
load, you can use the ``spack module tcl|lmod loads`` command to get
the name of the module from the Spack spec.
-----------------------
Filesystem requirements
-----------------------

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -13,47 +13,49 @@ Some sites may encourage users to set up their own test environments
before carrying out central installations, or some users may prefer to set
up these environments on their own motivation. To reduce the load of
recompiling otherwise identical package specs in different installations,
installed packages can be put into build cache tarballs, pushed to
installed packages can be put into build cache tarballs, uploaded to
your Spack mirror and then downloaded and installed by others.
Whenever a mirror provides prebuilt packages, Spack will take these packages
into account during concretization and installation, making ``spack install``
significantly faster.
--------------------------
Creating build cache files
--------------------------
.. note::
We use the terms "build cache" and "mirror" often interchangeably. Mirrors
are used during installation both for sources and prebuilt packages. Build
caches refer to mirrors that provide prebuilt packages.
----------------------
Creating a build cache
----------------------
A compressed tarball of an installed package is created. Tarballs are created
for all of its link and run dependency packages as well. Compressed tarballs are
signed with gpg and signature and tarball and put in a ``.spack`` file. Optionally,
the rpaths (and ids and deps on macOS) can be changed to paths relative to
the Spack install tree before the tarball is created.
Build caches are created via:
.. code-block:: console
$ spack buildcache push <path/url/mirror name> <spec>
$ spack buildcache create <spec>
This command takes the locally installed spec and its dependencies, and
creates tarballs of their install prefixes. It also generates metadata files,
signed with GPG. These tarballs and metadata files are then pushed to the
provided binary cache, which can be a local directory or a remote URL.
Here is an example where a build cache is created in a local directory named
"spack-cache", to which we push the "ninja" spec:
If you wanted to create a build cache in a local directory, you would provide
the ``-d`` argument to target that directory, again also specifying the spec.
Here is an example creating a local directory, "spack-cache" and creating
build cache files for the "ninja" spec:
.. code-block:: console
$ spack buildcache push ./spack-cache ninja
==> Pushing binary packages to file:///home/spackuser/spack/spack-cache/build_cache
$ mkdir -p ./spack-cache
$ spack buildcache create -d ./spack-cache ninja
==> Buildcache files will be output to file:///home/spackuser/spack/spack-cache/build_cache
gpgconf: socketdir is '/run/user/1000/gnupg'
gpg: using "E6DF6A8BD43208E4D6F392F23777740B7DBD643D" as default secret key for signing
Note that ``ninja`` must be installed locally for this to work.
Note that the targeted spec must already be installed. Once you have a build cache,
you can add it as a mirror, discussed next.
Once you have a build cache, you can add it as a mirror, discussed next.
.. warning::
Spack improved the format used for binary caches in v0.18. The entire v0.18 series
will be able to verify and install binary caches both in the new and in the old format.
Support for using the old format is expected to end in v0.19, so we advise users to
recreate relevant buildcaches using Spack v0.18 or higher.
---------------------------------------
Finding or installing build cache files
@@ -64,10 +66,10 @@ with:
.. code-block:: console
$ spack mirror add <name> <url or path>
$ spack mirror add <name> <url>
Both web URLs and local paths on the filesystem can be specified. In the previous
Note that the url can be a web url _or_ a local filesystem location. In the previous
example, you might add the directory "spack-cache" and call it ``mymirror``:
@@ -92,7 +94,7 @@ this new build cache as follows:
.. code-block:: console
$ spack buildcache update-index ./spack-cache
$ spack buildcache update-index -d spack-cache/
Now you can use list:
@@ -103,38 +105,46 @@ Now you can use list:
-- linux-ubuntu20.04-skylake / gcc@9.3.0 ------------------------
ninja@1.10.2
With ``mymirror`` configured and an index available, Spack will automatically
use it during concretization and installation. That means that you can expect
``spack install ninja`` to fetch prebuilt packages from the mirror. Let's
verify by re-installing ninja:
Great! So now let's say you have a different spack installation, or perhaps just
a different environment for the same one, and you want to install a package from
that build cache. Let's first uninstall the actual library "ninja" to see if we can
re-install it from the cache.
.. code-block:: console
$ spack uninstall ninja
$ spack install ninja
==> Installing ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz
==> Fetching file:///home/spackuser/spack/spack-cache/build_cache/linux-ubuntu20.04-skylake-gcc-9.3.0-ninja-1.10.2-yxferyhmrjkosgta5ei6b4lqf6bxbscz.spec.json.sig
gpg: Signature made Do 12 Jan 2023 16:01:04 CET
gpg: using RSA key 61B82B2B2350E171BD17A1744E3A689061D57BF6
gpg: Good signature from "example (GPG created for Spack) <example@example.com>" [ultimate]
==> Fetching file:///home/spackuser/spack/spack-cache/build_cache/linux-ubuntu20.04-skylake/gcc-9.3.0/ninja-1.10.2/linux-ubuntu20.04-skylake-gcc-9.3.0-ninja-1.10.2-yxferyhmrjkosgta5ei6b4lqf6bxbscz.spack
==> Extracting ninja-1.10.2-yxferyhmrjkosgta5ei6b4lqf6bxbscz from binary cache
==> ninja: Successfully installed ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz
Search: 0.00s. Fetch: 0.17s. Install: 0.12s. Total: 0.29s
[+] /home/harmen/spack/opt/spack/linux-ubuntu20.04-skylake/gcc-9.3.0/ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz
It worked! You've just completed a full example of creating a build cache with
a spec of interest, adding it as a mirror, updating its index, listing the contents,
and finally, installing from it.
By default Spack falls back to building from sources when the mirror is not available
or when the package is simply not already available. To force Spack to only install
prebuilt packages, you can use
And now reinstall from the buildcache
.. code-block:: console
$ spack install --use-buildcache only <package>
$ spack buildcache install ninja
==> buildcache spec(s) matching ninja
==> Fetching file:///home/spackuser/spack/spack-cache/build_cache/linux-ubuntu20.04-skylake/gcc-9.3.0/ninja-1.10.2/linux-ubuntu20.04-skylake-gcc-9.3.0-ninja-1.10.2-i4e5luour7jxdpc3bkiykd4imke3mkym.spack
####################################################################################################################################### 100.0%
==> Installing buildcache for spec ninja@1.10.2%gcc@9.3.0 arch=linux-ubuntu20.04-skylake
gpgconf: socketdir is '/run/user/1000/gnupg'
gpg: Signature made Tue 23 Mar 2021 10:16:29 PM MDT
gpg: using RSA key E6DF6A8BD43208E4D6F392F23777740B7DBD643D
gpg: Good signature from "spackuser (GPG created for Spack) <spackuser@noreply.users.github.com>" [ultimate]
It worked! You've just completed a full example of creating a build cache with
a spec of interest, adding it as a mirror, updating it's index, listing the contents,
and finally, installing from it.
Note that the above command is intended to install a particular package to a
build cache you have created, and not to install a package from a build cache.
For the latter, once a mirror is added, by default when you do ``spack install`` the ``--use-cache``
flag is set, and you will install a package from a build cache if it is available.
If you want to always use the cache, you can do:
.. code-block:: console
$ spack install --cache-only <package>
For example, to combine all of the commands above to add the E4S build cache
and then install from it exclusively, you would do:
@@ -143,7 +153,7 @@ and then install from it exclusively, you would do:
$ spack mirror add E4S https://cache.e4s.io
$ spack buildcache keys --install --trust
$ spack install --use-buildcache only <package>
$ spack install --cache-only <package>
We use ``--install`` and ``--trust`` to say that we are installing keys to our
keyring, and trusting all downloaded keys.
@@ -153,181 +163,18 @@ keyring, and trusting all downloaded keys.
List of popular build caches
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* `Extreme-scale Scientific Software Stack (E4S) <https://e4s-project.github.io/>`_: `build cache <https://oaciss.uoregon.edu/e4s/inventory.html>`_'
* `Extreme-scale Scientific Software Stack (E4S) <https://e4s-project.github.io/>`_: `build cache <https://oaciss.uoregon.edu/e4s/inventory.html>`_
-------------------
Build cache signing
-------------------
By default, Spack will add a cryptographic signature to each package pushed to
a build cache, and verifies the signature when installing from a build cache.
Keys for signing can be managed with the :ref:`spack gpg <cmd-spack-gpg>` command,
as well as ``spack buildcache keys`` as mentioned above.
You can disable signing when pushing with ``spack buildcache push --unsigned``,
and disable verification when installing from any build cache with
``spack install --no-check-signature``.
Alternatively, signing and verification can be enabled or disabled on a per build cache
basis:
.. code-block:: console
$ spack mirror add --signed <name> <url> # enable signing and verification
$ spack mirror add --unsigned <name> <url> # disable signing and verification
$ spack mirror set --signed <name> # enable signing and verification for an existing mirror
$ spack mirror set --unsigned <name> # disable signing and verification for an existing mirror
Or you can directly edit the ``mirrors.yaml`` configuration file:
.. code-block:: yaml
mirrors:
<name>:
url: <url>
signed: false # disable signing and verification
See also :ref:`mirrors`.
----------
Relocation
----------
When using buildcaches across different machines, it is likely that the install
root will be different from the one used to build the binaries.
To address this issue, Spack automatically relocates all paths encoded in binaries
and scripts to their new location upon install.
Note that there are some cases where this is not possible: if binaries are built in
a relatively short path, and then installed to a longer path, there may not be enough
space in the binary to encode the new path. In this case, Spack will fail to install
the package from the build cache, and a source build is required.
To reduce the likelihood of this happening, it is highly recommended to add padding to
the install root during the build, as specified in the :ref:`config <config-yaml>`
section of the configuration:
.. code-block:: yaml
config:
install_tree:
root: /opt/spack
padded_length: 128
.. _binary_caches_oci:
---------------------------------
Automatic push to a build cache
---------------------------------
Sometimes it is convenient to push packages to a build cache as soon as they are installed. Spack can do this by setting autopush flag when adding a mirror:
.. code-block:: console
$ spack mirror add --autopush <name> <url or path>
Or the autopush flag can be set for an existing mirror:
.. code-block:: console
$ spack mirror set --autopush <name> # enable automatic push for an existing mirror
$ spack mirror set --no-autopush <name> # disable automatic push for an existing mirror
Then after installing a package it is automatically pushed to all mirrors with ``autopush: true``. The command
.. code-block:: console
$ spack install <package>
will have the same effect as
.. code-block:: console
$ spack install <package>
$ spack buildcache push <cache> <package> # for all caches with autopush: true
.. note::
Packages are automatically pushed to a build cache only if they are built from source.
-----------------------------------------
OCI / Docker V2 registries as build cache
-----------------------------------------
Spack can also use OCI or Docker V2 registries such as Dockerhub, Quay.io,
Github Packages, GitLab Container Registry, JFrog Artifactory, and others
as build caches. This is a convenient way to share binaries using public
infrastructure, or to cache Spack built binaries in Github Actions and
GitLab CI.
To get started, configure an OCI mirror using ``oci://`` as the scheme,
and optionally specify a username and password (or personal access token):
.. code-block:: console
$ spack mirror add --oci-username username --oci-password password my_registry oci://example.com/my_image
Spack follows the naming conventions of Docker, with Dockerhub as the default
registry. To use Dockerhub, you can omit the registry domain:
.. code-block:: console
$ spack mirror add --oci-username username --oci-password password my_registry oci://username/my_image
From here, you can use the mirror as any other build cache:
.. code-block:: console
$ spack buildcache push my_registry <specs...> # push to the registry
$ spack install <specs...> # install from the registry
A unique feature of buildcaches on top of OCI registries is that it's incredibly
easy to generate get a runnable container image with the binaries installed. This
is a great way to make applications available to users without requiring them to
install Spack -- all you need is Docker, Podman or any other OCI-compatible container
runtime.
To produce container images, all you need to do is add the ``--base-image`` flag
when pushing to the build cache:
.. code-block:: console
$ spack buildcache push --base-image ubuntu:20.04 my_registry ninja
Pushed to example.com/my_image:ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz.spack
$ docker run -it example.com/my_image:ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz.spack
root@e4c2b6f6b3f4:/# ninja --version
1.11.1
If ``--base-image`` is not specified, distroless images are produced. In practice,
you won't be able to run these as containers, since they don't come with libc and
other system dependencies. However, they are still compatible with tools like
``skopeo``, ``podman``, and ``docker`` for pulling and pushing.
.. note::
The docker ``overlayfs2`` storage driver is limited to 128 layers, above which a
``max depth exceeded`` error may be produced when pulling the image. There
are `alternative drivers <https://docs.docker.com/storage/storagedriver/>`_.
------------------------------------
Spack build cache for GitHub Actions
------------------------------------
To significantly speed up Spack in GitHub Actions, binaries can be cached in
GitHub Packages. This service is an OCI registry that can be linked to a GitHub
repository.
Spack offers a public build cache for GitHub Actions with a set of common packages,
which lets you get started quickly. See the following resources for more information:
* `spack/setup-spack <https://github.com/spack/setup-spack>`_ for setting up Spack in GitHub
Actions
* `spack/github-actions-buildcache <https://github.com/spack/github-actions-buildcache>`_ for
more details on the public build cache
Initial build and later installation do not necessarily happen at the same
location. Spack provides a relocation capability and corrects for RPATHs and
non-relocatable scripts. However, many packages compile paths into binary
artifacts directly. In such cases, the build instructions of this package would
need to be adjusted for better re-locatability.
.. _cmd-spack-buildcache:
@@ -336,7 +183,7 @@ which lets you get started quickly. See the following resources for more informa
--------------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^
``spack buildcache push``
``spack buildcache create``
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Create tarball of installed Spack package and all dependencies.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -32,14 +32,9 @@ can't be found. You can readily check if any prerequisite for using Spack is mis
Spack will take care of bootstrapping any missing dependency marked as [B]. Dependencies marked as [-] are instead required to be found on the system.
% echo $?
1
In the case of the output shown above Spack detected that both ``clingo`` and ``gnupg``
are missing and it's giving detailed information on why they are needed and whether
they can be bootstrapped. The return code of this command summarizes the results, if any
dependencies are missing the return code is ``1``, otherwise ``0``. Running a command that
concretizes a spec, like:
they can be bootstrapped. Running a command that concretize a spec, like:
.. code-block:: console
@@ -49,7 +44,7 @@ concretizes a spec, like:
==> Installing "clingo-bootstrap@spack%apple-clang@12.0.0~docs~ipo+python build_type=Release arch=darwin-catalina-x86_64" from a buildcache
[ ... ]
automatically triggers the bootstrapping of clingo from pre-built binaries as expected.
triggers the bootstrapping of clingo from pre-built binaries as expected.
Users can also bootstrap all the dependencies needed by Spack in a single command, which
might be useful to setup containers or other similar environments:
@@ -87,7 +82,7 @@ You can check what is installed in the bootstrapping store at any time using:
.. code-block:: console
% spack -b find
% spack find -b
==> Showing internal bootstrap store at "/Users/spack/.spack/bootstrap/store"
==> 11 installed packages
-- darwin-catalina-x86_64 / apple-clang@12.0.0 ------------------
@@ -101,7 +96,7 @@ In case it is needed you can remove all the software in the current bootstrappin
% spack clean -b
==> Removing bootstrapped software and configuration in "/Users/spack/.spack/bootstrap"
% spack -b find
% spack find -b
==> Showing internal bootstrap store at "/Users/spack/.spack/bootstrap/store"
==> 0 installed packages
@@ -175,4 +170,4 @@ bootstrapping.
This command needs to be run on a machine with internet access and the resulting folder
has to be moved over to the air-gapped system. Once the local sources are added using the
commands suggested at the prompt, they can be used to bootstrap Spack.
commands suggested at the prompt, they can be used to bootstrap Spack.

View File

@@ -1,117 +1,278 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _build-settings:
================================
Package Settings (packages.yaml)
================================
Spack allows you to customize how your software is built through the
``packages.yaml`` file. Using it, you can make Spack prefer particular
implementations of virtual dependencies (e.g., MPI or BLAS/LAPACK),
or you can make it prefer to build with particular compilers. You can
also tell Spack to use *external* software installations already
present on your system.
At a high level, the ``packages.yaml`` file is structured like this:
.. code-block:: yaml
packages:
package1:
# settings for package1
package2:
# settings for package2
# ...
all:
# settings that apply to all packages.
So you can either set build preferences specifically for *one* package,
or you can specify that certain settings should apply to *all* packages.
The types of settings you can customize are described in detail below.
Spack's build defaults are in the default
``etc/spack/defaults/packages.yaml`` file. You can override them in
``~/.spack/packages.yaml`` or ``etc/spack/packages.yaml``. For more
details on how this works, see :ref:`configuration-scopes`.
.. _sec-external-packages:
-----------------
External Packages
-----------------
Spack can be configured to use externally-installed
packages rather than building its own packages. This may be desirable
if machines ship with system packages, such as a customized MPI
that should be used instead of Spack building its own MPI.
External packages are configured through the ``packages.yaml`` file.
Here's an example of an external configuration:
.. code-block:: yaml
packages:
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
This example lists three installations of OpenMPI, one built with GCC,
one built with GCC and debug information, and another built with Intel.
If Spack is asked to build a package that uses one of these MPIs as a
dependency, it will use the pre-installed OpenMPI in
the given directory. Note that the specified path is the top-level
install prefix, not the ``bin`` subdirectory.
``packages.yaml`` can also be used to specify modules to load instead
of the installation prefixes. The following example says that module
``CMake/3.7.2`` provides cmake version 3.7.2.
.. code-block:: yaml
cmake:
externals:
- spec: cmake@3.7.2
modules:
- CMake/3.7.2
Each ``packages.yaml`` begins with a ``packages:`` attribute, followed
by a list of package names. To specify externals, add an ``externals:``
attribute under the package name, which lists externals.
Each external should specify a ``spec:`` string that should be as
well-defined as reasonably possible. If a
package lacks a spec component, such as missing a compiler or
package version, then Spack will guess the missing component based
on its most-favored packages, and it may guess incorrectly.
Each package version and compiler listed in an external should
have entries in Spack's packages and compiler configuration, even
though the package and compiler may not ever be built.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Prevent packages from being built from sources
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding an external spec in ``packages.yaml`` allows Spack to use an external location,
but it does not prevent Spack from building packages from sources. In the above example,
Spack might choose for many valid reasons to start building and linking with the
latest version of OpenMPI rather than continue using the pre-installed OpenMPI versions.
To prevent this, the ``packages.yaml`` configuration also allows packages
to be flagged as non-buildable. The previous example could be modified to
be:
.. code-block:: yaml
packages:
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
buildable: False
The addition of the ``buildable`` flag tells Spack that it should never build
its own version of OpenMPI from sources, and it will instead always rely on a pre-built
OpenMPI.
.. note::
If ``concretizer:reuse`` is on (see :ref:`concretizer-options` for more information on that flag)
pre-built specs include specs already available from a local store, an upstream store, a registered
buildcache or specs marked as externals in ``packages.yaml``. If ``concretizer:reuse`` is off, only
external specs in ``packages.yaml`` are included in the list of pre-built specs.
If an external module is specified as not buildable, then Spack will load the
external module into the build environment which can be used for linking.
The ``buildable`` does not need to be paired with external packages.
It could also be used alone to forbid packages that may be
buggy or otherwise undesirable.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Non-buildable virtual packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Virtual packages in Spack can also be specified as not buildable, and
external implementations can be provided. In the example above,
OpenMPI is configured as not buildable, but Spack will often prefer
other MPI implementations over the externally available OpenMPI. Spack
can be configured with every MPI provider not buildable individually,
but more conveniently:
.. code-block:: yaml
packages:
mpi:
buildable: False
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
Spack can then use any of the listed external implementations of MPI
to satisfy a dependency, and will choose depending on the compiler and
architecture.
In cases where the concretizer is configured to reuse specs, and other ``mpi`` providers
(available via stores or buildcaches) are not wanted, Spack can be configured to require
specs matching only the available externals:
.. code-block:: yaml
packages:
mpi:
buildable: False
require:
- one_of: [
"openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64",
"openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug",
"openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
]
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
This configuration prevents any spec using MPI and originating from stores or buildcaches to be reused,
unless it matches the requirements under ``packages:mpi:require``. For more information on requirements see
:ref:`package-requirements`.
.. _cmd-spack-external-find:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Automatically Find External Packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can run the :ref:`spack external find <spack-external-find>` command
to search for system-provided packages and add them to ``packages.yaml``.
After running this command your ``packages.yaml`` may include new entries:
.. code-block:: yaml
packages:
cmake:
externals:
- spec: cmake@3.17.2
prefix: /usr
Generally this is useful for detecting a small set of commonly-used packages;
for now this is generally limited to finding build-only dependencies.
Specific limitations include:
* Packages are not discoverable by default: For a package to be
discoverable with ``spack external find``, it needs to add special
logic. See :ref:`here <make-package-findable>` for more details.
* The logic does not search through module files, it can only detect
packages with executables defined in ``PATH``; you can help Spack locate
externals which use module files by loading any associated modules for
packages that you want Spack to know about before running
``spack external find``.
* Spack does not overwrite existing entries in the package configuration:
If there is an external defined for a spec at any configuration scope,
then Spack will not add a new external entry (``spack config blame packages``
can help locate all external entries).
.. _concretizer-options:
==========================================
Concretization Settings (concretizer.yaml)
==========================================
----------------------
Concretizer options
----------------------
The ``concretizer.yaml`` configuration file allows to customize aspects of the
algorithm used to select the dependencies you install. The default configuration
is the following:
``packages.yaml`` gives the concretizer preferences for specific packages,
but you can also use ``concretizer.yaml`` to customize aspects of the
algorithm it uses to select the dependencies you install:
.. literalinclude:: _spack_root/etc/spack/defaults/concretizer.yaml
:language: yaml
--------------------------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reuse already installed packages
--------------------------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``reuse`` attribute controls how aggressively Spack reuses binary packages during concretization. The
attribute can either be a single value, or an object for more complex configurations.
In the former case ("single value") it allows Spack to:
1. Reuse installed packages and buildcaches for all the specs to be concretized, when ``true``
2. Reuse installed packages and buildcaches only for the dependencies of the root specs, when ``dependencies``
3. Disregard reusing installed packages and buildcaches, when ``false``
In case a finer control over which specs are reused is needed, then the value of this attribute can be
an object, with the following keys:
1. ``roots``: if ``true`` root specs are reused, if ``false`` only dependencies of root specs are reused
2. ``from``: list of sources from which reused specs are taken
Each source in ``from`` is itself an object:
.. list-table:: Attributes for a source or reusable specs
:header-rows: 1
* - Attribute name
- Description
* - type (mandatory, string)
- Can be ``local``, ``buildcache``, or ``external``
* - include (optional, list of specs)
- If present, reusable specs must match at least one of the constraint in the list
* - exclude (optional, list of specs)
- If present, reusable specs must not match any of the constraint in the list.
For instance, the following configuration:
.. code-block:: yaml
concretizer:
reuse:
roots: true
from:
- type: local
include:
- "%gcc"
- "%clang"
tells the concretizer to reuse all specs compiled with either ``gcc`` or ``clang``, that are installed
in the local store. Any spec from remote buildcaches is disregarded.
To reduce the boilerplate in configuration files, default values for the ``include`` and
``exclude`` options can be pushed up one level:
.. code-block:: yaml
concretizer:
reuse:
roots: true
include:
- "%gcc"
from:
- type: local
- type: buildcache
- type: local
include:
- "foo %oneapi"
In the example above we reuse all specs compiled with ``gcc`` from the local store
and remote buildcaches, and we also reuse ``foo %oneapi``. Note that the last source of
specs override the default ``include`` attribute.
For one-off concretizations, the are command line arguments for each of the simple "single value"
configurations. This means a user can:
The ``reuse`` attribute controls whether Spack will prefer to use installed packages (``true``), or
whether it will do a "fresh" installation and prefer the latest settings from
``package.py`` files and ``packages.yaml`` (``false``).
You can use:
.. code-block:: console
% spack install --reuse <spec>
to enable reuse for a single installation, or:
to enable reuse for a single installation, and you can use:
.. code-block:: console
spack install --fresh <spec>
to do a fresh install if ``reuse`` is enabled by default.
``reuse: true`` is the default.
.. seealso::
FAQ: :ref:`Why does Spack pick particular versions and variants? <faq-concretizer-precedence>`
------------------------------------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Selection of the target microarchitectures
------------------------------------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The options under the ``targets`` attribute control which targets are considered during a solve.
Currently the options in this section are only configurable from the ``concretizer.yaml`` file
Currently the options in this section are only configurable from the ``concretization.yaml`` file
and there are no corresponding command line arguments to enable them for a single solve.
The ``granularity`` option can take two possible values: ``microarchitectures`` and ``generic``.
@@ -141,28 +302,257 @@ microarchitectures considered during the solve are constrained to be compatible
host Spack is currently running on. For instance, if this option is set to ``true``, a
user cannot concretize for ``target=icelake`` while running on an Haswell node.
---------------
Duplicate nodes
---------------
.. _package-requirements:
The ``duplicates`` attribute controls whether the DAG can contain multiple configurations of
the same package. This is mainly relevant for build dependencies, which may have their version
pinned by some nodes, and thus be required at different versions by different nodes in the same
DAG.
--------------------
Package Requirements
--------------------
The ``strategy`` option controls how the solver deals with duplicates. If the value is ``none``,
then a single configuration per package is allowed in the DAG. This means, for instance, that only
a single ``cmake`` or a single ``py-setuptools`` version is allowed. The result would be a slightly
faster concretization, at the expense of making a few specs unsolvable.
Spack can be configured to always use certain compilers, package
versions, and variants during concretization through package
requirements.
If the value is ``minimal`` Spack will allow packages tagged as ``build-tools`` to have duplicates.
This allows, for instance, to concretize specs whose nodes require different, and incompatible, ranges
of some build tool. For instance, in the figure below the latest `py-shapely` requires a newer `py-setuptools`,
while `py-numpy` still needs an older version:
Package requirements are useful when you find yourself repeatedly
specifying the same constraints on the command line, and wish that
Spack respects these constraints whether you mention them explicitly
or not. Another use case is specifying constraints that should apply
to all root specs in an environment, without having to repeat the
constraint everywhere.
.. figure:: images/shapely_duplicates.svg
:scale: 70 %
:align: center
Apart from that, requirements config is more flexible than constraints
on the command line, because it can specify constraints on packages
*when they occur* as a dependency. In contrast, on the command line it
is not possible to specify constraints on dependencies while also keeping
those dependencies optional.
Up to Spack v0.20 ``duplicates:strategy:none`` was the default (and only) behavior. From Spack v0.21 the
default behavior is ``duplicates:strategy:minimal``.
The package requirements configuration is specified in ``packages.yaml``
keyed by package name:
.. code-block:: yaml
packages:
libfabric:
require: "@1.13.2"
openmpi:
require:
- any_of: ["~cuda", "%gcc"]
mpich:
require:
- one_of: ["+cuda", "+rocm"]
Requirements are expressed using Spec syntax (the same as what is provided
to ``spack install``). In the simplest case, you can specify attributes
that you always want the package to have by providing a single spec to
``require``; in the above example, ``libfabric`` will always build
with version 1.13.2.
You can provide a more-relaxed constraint and allow the concretizer to
choose between a set of options using ``any_of`` or ``one_of``:
* ``any_of`` is a list of specs. One of those specs must be satisfied
and it is also allowed for the concretized spec to match more than one.
In the above example, that means you could build ``openmpi+cuda%gcc``,
``openmpi~cuda%clang`` or ``openmpi~cuda%gcc`` (in the last case,
note that both specs in the ``any_of`` for ``openmpi`` are
satisfied).
* ``one_of`` is also a list of specs, and the final concretized spec
must match exactly one of them. In the above example, that means
you could build ``mpich+cuda`` or ``mpich+rocm`` but not
``mpich+cuda+rocm`` (note the current package definition for
``mpich`` already includes a conflict, so this is redundant but
still demonstrates the concept).
.. note::
For ``any_of`` and ``one_of``, the order of specs indicates a
preference: items that appear earlier in the list are preferred
(note that these preferences can be ignored in favor of others).
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting default requirements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can also set default requirements for all packages under ``all``
like this:
.. code-block:: yaml
packages:
all:
require: '%clang'
which means every spec will be required to use ``clang`` as a compiler.
Note that in this case ``all`` represents a *default set of requirements* -
if there are specific package requirements, then the default requirements
under ``all`` are disregarded. For example, with a configuration like this:
.. code-block:: yaml
packages:
all:
require: '%clang'
cmake:
require: '%gcc'
Spack requires ``cmake`` to use ``gcc`` and all other nodes (including ``cmake``
dependencies) to use ``clang``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting requirements on virtual specs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A requirement on a virtual spec applies whenever that virtual is present in the DAG.
This can be useful for fixing which virtual provider you want to use:
.. code-block:: yaml
packages:
mpi:
require: 'mvapich2 %gcc'
With the configuration above the only allowed ``mpi`` provider is ``mvapich2 %gcc``.
Requirements on the virtual spec and on the specific provider are both applied, if
present. For instance with a configuration like:
.. code-block:: yaml
packages:
mpi:
require: 'mvapich2 %gcc'
mvapich2:
require: '~cuda'
you will use ``mvapich2~cuda %gcc`` as an ``mpi`` provider.
.. _package-preferences:
-------------------
Package Preferences
-------------------
In some cases package requirements can be too strong, and package
preferences are the better option. Package preferences do not impose
constraints on packages for particular versions or variants values,
they rather only set defaults -- the concretizer is free to change
them if it must due to other constraints. Also note that package
preferences are of lower priority than reuse of already installed
packages.
Here's an example ``packages.yaml`` file that sets preferred packages:
.. code-block:: yaml
packages:
opencv:
compiler: [gcc@4.9]
variants: +debug
gperftools:
version: [2.2, 2.4, 2.3]
all:
compiler: [gcc@4.4.7, 'gcc@4.6:', intel, clang, pgi]
target: [sandybridge]
providers:
mpi: [mvapich2, mpich, openmpi]
At a high level, this example is specifying how packages are preferably
concretized. The opencv package should prefer using GCC 4.9 and
be built with debug options. The gperftools package should prefer version
2.2 over 2.4. Every package on the system should prefer mvapich2 for
its MPI and GCC 4.4.7 (except for opencv, which overrides this by preferring GCC 4.9).
These options are used to fill in implicit defaults. Any of them can be overwritten
on the command line if explicitly requested.
Package preferences accept the follow keys or components under
the specific package (or ``all``) section: ``compiler``, ``variants``,
``version``, ``providers``, and ``target``. Each component has an
ordered list of spec ``constraints``, with earlier entries in the
list being preferred over later entries.
Sometimes a package installation may have constraints that forbid
the first concretization rule, in which case Spack will use the first
legal concretization rule. Going back to the example, if a user
requests gperftools 2.3 or later, then Spack will install version 2.4
as the 2.4 version of gperftools is preferred over 2.3.
An explicit concretization rule in the preferred section will always
take preference over unlisted concretizations. In the above example,
xlc isn't listed in the compiler list. Every listed compiler from
gcc to pgi will thus be preferred over the xlc compiler.
The syntax for the ``provider`` section differs slightly from other
concretization rules. A provider lists a value that packages may
``depends_on`` (e.g, MPI) and a list of rules for fulfilling that
dependency.
.. _package_permissions:
-------------------
Package Permissions
-------------------
Spack can be configured to assign permissions to the files installed
by a package.
In the ``packages.yaml`` file under ``permissions``, the attributes
``read``, ``write``, and ``group`` control the package
permissions. These attributes can be set per-package, or for all
packages under ``all``. If permissions are set under ``all`` and for a
specific package, the package-specific settings take precedence.
The ``read`` and ``write`` attributes take one of ``user``, ``group``,
and ``world``.
.. code-block:: yaml
packages:
all:
permissions:
write: group
group: spack
my_app:
permissions:
read: group
group: my_team
The permissions settings describe the broadest level of access to
installations of the specified packages. The execute permissions of
the file are set to the same level as read permissions for those files
that are executable. The default setting for ``read`` is ``world``,
and for ``write`` is ``user``. In the example above, installations of
``my_app`` will be installed with user and group permissions but no
world permissions, and owned by the group ``my_team``. All other
packages will be installed with user and group write privileges, and
world read privileges. Those packages will be owned by the group
``spack``.
The ``group`` attribute assigns a Unix-style group to a package. All
files installed by the package will be owned by the assigned group,
and the sticky group bit will be set on the install prefix and all
directories inside the install prefix. This will ensure that even
manually placed files within the install prefix are owned by the
assigned group. If no group is assigned, Spack will allow the OS
default behavior to go as expected.
----------------------------
Assigning Package Attributes
----------------------------
You can assign class-level attributes in the configuration:
.. code-block:: yaml
packages:
mpileaks:
# Override existing attributes
url: http://www.somewhereelse.com/mpileaks-1.0.tar.gz
# ... or add new ones
x: 1
Attributes set this way will be accessible to any method executed
in the package.py file (e.g. the ``install()`` method). Values for these
attributes may be any value parseable by yaml.
These can only be applied to specific packages, not "all" or
virtual packages.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -127,9 +127,9 @@ check out a commit from the ``master`` branch, you would want to add:
.. code-block:: python
depends_on("autoconf", type="build", when="@master")
depends_on("automake", type="build", when="@master")
depends_on("libtool", type="build", when="@master")
depends_on('autoconf', type='build', when='@master')
depends_on('automake', type='build', when='@master')
depends_on('libtool', type='build', when='@master')
It is typically redundant to list the ``m4`` macro processor package as a
dependency, since ``autoconf`` already depends on it.
@@ -145,16 +145,7 @@ example, the ``bash`` shell is used to run the ``autogen.sh`` script.
.. code-block:: python
def autoreconf(self, spec, prefix):
which("bash")("autogen.sh")
If the ``package.py`` has build instructions in a separate
:ref:`builder class <multiple_build_systems>`, the signature for a phase changes slightly:
.. code-block:: python
class AutotoolsBuilder(AutotoolsBuilder):
def autoreconf(self, pkg, spec, prefix):
which("bash")("autogen.sh")
which('bash')('autogen.sh')
"""""""""""""""""""""""""""""""""""""""
patching configure or Makefile.in files
@@ -195,9 +186,9 @@ To opt out of this feature, use the following setting:
To enable it conditionally on different architectures, define a property and
make the package depend on ``gnuconfig`` as a build dependency:
.. code-block:: python
.. code-block
depends_on("gnuconfig", when="@1.0:")
depends_on('gnuconfig', when='@1.0:')
@property
def patch_config_files(self):
@@ -239,7 +230,7 @@ version, this can be done like so:
@property
def force_autoreconf(self):
return self.version == Version("1.2.3")
return self.version == Version('1.2.3')
^^^^^^^^^^^^^^^^^^^^^^^
Finding configure flags
@@ -287,22 +278,13 @@ function like so:
def configure_args(self):
args = []
if self.spec.satisfies("+mpi"):
args.append("--enable-mpi")
if '+mpi' in self.spec:
args.append('--enable-mpi')
else:
args.append("--disable-mpi")
args.append('--disable-mpi')
return args
Alternatively, you can use the :ref:`enable_or_disable <autotools_enable_or_disable>` helper:
.. code-block:: python
def configure_args(self):
return [self.enable_or_disable("mpi")]
Note that we are explicitly disabling MPI support if it is not
requested. This is important, as many Autotools packages will enable
options by default if the dependencies are found, and disable them
@@ -313,11 +295,9 @@ and `here <https://wiki.gentoo.org/wiki/Project:Quality_Assurance/Automagic_depe
for a rationale as to why these so-called "automagic" dependencies
are a problem.
.. note::
By default, Autotools installs packages to ``/usr``. We don't want this,
so Spack automatically adds ``--prefix=/path/to/installation/prefix``
to your list of ``configure_args``. You don't need to add this yourself.
By default, Autotools installs packages to ``/usr``. We don't want this,
so Spack automatically adds ``--prefix=/path/to/installation/prefix``
to your list of ``configure_args``. You don't need to add this yourself.
^^^^^^^^^^^^^^^^
Helper functions
@@ -328,8 +308,6 @@ You may have noticed that most of the Autotools flags are of the form
``--without-baz``. Since these flags are so common, Spack provides a
couple of helper functions to make your life easier.
.. _autotools_enable_or_disable:
"""""""""""""""""
enable_or_disable
"""""""""""""""""
@@ -341,11 +319,11 @@ typically used to enable or disable some feature within the package.
.. code-block:: python
variant(
"memchecker",
'memchecker',
default=False,
description="Memchecker support for debugging [degrades performance]"
description='Memchecker support for debugging [degrades performance]'
)
config_args.extend(self.enable_or_disable("memchecker"))
config_args.extend(self.enable_or_disable('memchecker'))
In this example, specifying the variant ``+memchecker`` will generate
the following configuration options:
@@ -365,15 +343,15 @@ the ``with_or_without`` method.
.. code-block:: python
variant(
"schedulers",
'schedulers',
values=disjoint_sets(
("auto",), ("alps", "lsf", "tm", "slurm", "sge", "loadleveler")
).with_non_feature_values("auto", "none"),
('auto',), ('alps', 'lsf', 'tm', 'slurm', 'sge', 'loadleveler')
).with_non_feature_values('auto', 'none'),
description="List of schedulers for which support is enabled; "
"'auto' lets openmpi determine",
)
if not spec.satisfies("schedulers=auto"):
config_args.extend(self.with_or_without("schedulers"))
if 'schedulers=auto' not in spec:
config_args.extend(self.with_or_without('schedulers'))
In this example, specifying the variant ``schedulers=slurm,sge`` will
generate the following configuration options:
@@ -398,16 +376,16 @@ generated, using the ``activation_value`` argument to
.. code-block:: python
variant(
"fabrics",
'fabrics',
values=disjoint_sets(
("auto",), ("psm", "psm2", "verbs", "mxm", "ucx", "libfabric")
).with_non_feature_values("auto", "none"),
('auto',), ('psm', 'psm2', 'verbs', 'mxm', 'ucx', 'libfabric')
).with_non_feature_values('auto', 'none'),
description="List of fabrics that are enabled; "
"'auto' lets openmpi determine",
)
if not spec.satisfies("fabrics=auto"):
config_args.extend(self.with_or_without("fabrics",
activation_value="prefix"))
if 'fabrics=auto' not in spec:
config_args.extend(self.with_or_without('fabrics',
activation_value='prefix'))
``activation_value`` accepts a callable that generates the configure
parameter value given the variant value; but the special value
@@ -431,16 +409,16 @@ When Spack variants and configure flags do not correspond one-to-one, the
.. code-block:: python
variant("debug_tools", default=False)
config_args += self.enable_or_disable("debug-tools", variant="debug_tools")
variant('debug_tools', default=False)
config_args += self.enable_or_disable('debug-tools', variant='debug_tools')
Or when one variant controls multiple flags:
.. code-block:: python
variant("debug_tools", default=False)
config_args += self.with_or_without("memchecker", variant="debug_tools")
config_args += self.with_or_without("profiler", variant="debug_tools")
variant('debug_tools', default=False)
config_args += self.with_or_without('memchecker', variant='debug_tools')
config_args += self.with_or_without('profiler', variant='debug_tools')
""""""""""""""""""""
@@ -454,8 +432,8 @@ For example:
.. code-block:: python
variant("profiler", when="@2.0:")
config_args += self.with_or_without("profiler")
variant('profiler', when='@2.0:')
config_args += self.with_or_without('profiler')
will neither add ``--with-profiler`` nor ``--without-profiler`` when the version is
below ``2.0``.
@@ -474,10 +452,10 @@ the variant values require atypical behavior.
def with_or_without_verbs(self, activated):
# Up through version 1.6, this option was named --with-openib.
# In version 1.7, it was renamed to be --with-verbs.
opt = "verbs" if self.spec.satisfies("@1.7:") else "openib"
opt = 'verbs' if self.spec.satisfies('@1.7:') else 'openib'
if not activated:
return f"--without-{opt}"
return f"--with-{opt}={self.spec['rdma-core'].prefix}"
return '--without-{0}'.format(opt)
return '--with-{0}={1}'.format(opt, self.spec['rdma-core'].prefix)
Defining ``with_or_without_verbs`` overrides the behavior of a
``fabrics=verbs`` variant, changing the configure-time option to
@@ -501,7 +479,7 @@ do this like so:
.. code-block:: python
configure_directory = "src"
configure_directory = 'src'
^^^^^^^^^^^^^^^^^^^^^^
Building out of source
@@ -513,7 +491,7 @@ This can be done using the ``build_directory`` variable:
.. code-block:: python
build_directory = "spack-build"
build_directory = 'spack-build'
By default, Spack will build the package in the same directory that
contains the ``configure`` script
@@ -536,8 +514,8 @@ library or build the documentation, you can add these like so:
.. code-block:: python
build_targets = ["all", "docs"]
install_targets = ["install", "docs"]
build_targets = ['all', 'docs']
install_targets = ['install', 'docs']
^^^^^^^
Testing

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -9,32 +9,9 @@
Bundle
------
``BundlePackage`` represents a set of packages that are expected to work
well together, such as a collection of commonly used software libraries.
The associated software is specified as dependencies.
If it makes sense, variants, conflicts, and requirements can be added to
the package. :ref:`Variants <variants>` ensure that common build options
are consistent across the packages supporting them. :ref:`Conflicts
and requirements <packaging_conflicts>` prevent attempts to build with known
bugs or limitations.
For example, if ``MyBundlePackage`` is known to only build on ``linux``,
it could use the ``require`` directive as follows:
.. code-block:: python
require("platform=linux", msg="MyBundlePackage only builds on linux")
Spack has a number of built-in bundle packages, such as:
* `AmdAocl <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/amd-aocl/package.py>`_
* `EcpProxyApps <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/ecp-proxy-apps/package.py>`_
* `Libc <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/libc/package.py>`_
* `Xsdk <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/xsdk/package.py>`_
where ``Xsdk`` also inherits from ``CudaPackage`` and ``RocmPackage`` and
``Libc`` is a virtual bundle package for the C standard library.
``BundlePackage`` represents a set of packages that are expected to work well
together, such as a collection of commonly used software libraries. The
associated software is specified as bundle dependencies.
^^^^^^^^

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -87,7 +87,7 @@ A typical usage of these methods may look something like this:
.. code-block:: python
def initconfig_mpi_entries(self):
def initconfig_mpi_entries(self)
# Get existing MPI configurations
entries = super(self, Foo).initconfig_mpi_entries()
@@ -95,25 +95,25 @@ A typical usage of these methods may look something like this:
# This spec has an MPI variant, and we need to enable MPI when it is on.
# This hypothetical package controls MPI with the ``FOO_MPI`` option to
# cmake.
if self.spec.satisfies("+mpi"):
entries.append(cmake_cache_option("FOO_MPI", True, "enable mpi"))
if '+mpi' in self.spec:
entries.append(cmake_cache_option('FOO_MPI', True, "enable mpi"))
else:
entries.append(cmake_cache_option("FOO_MPI", False, "disable mpi"))
entries.append(cmake_cache_option('FOO_MPI', False, "disable mpi"))
def initconfig_package_entries(self):
# Package specific options
entries = []
entries.append("#Entries for build options")
entries.append('#Entries for build options')
bar_on = self.spec.satisfies("+bar")
entries.append(cmake_cache_option("FOO_BAR", bar_on, "toggle bar"))
bar_on = '+bar' in self.spec
entries.append(cmake_cache_option('FOO_BAR', bar_on, 'toggle bar'))
entries.append("#Entries for dependencies")
entries.append('#Entries for dependencies')
if self.spec["blas"].name == "baz": # baz is our blas provider
entries.append(cmake_cache_string("FOO_BLAS", "baz", "Use baz"))
entries.append(cmake_cache_path("BAZ_PREFIX", self.spec["baz"].prefix))
if self.spec['blas'].name == 'baz': # baz is our blas provider
entries.append(cmake_cache_string('FOO_BLAS', 'baz', 'Use baz'))
entries.append(cmake_cache_path('BAZ_PREFIX', self.spec['baz'].prefix))
^^^^^^^^^^^^^^^^^^^^^^
External documentation

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -82,7 +82,7 @@ class already contains:
.. code-block:: python
depends_on("cmake", type="build")
depends_on('cmake', type='build')
If you need to specify a particular version requirement, you can
@@ -90,7 +90,7 @@ override this in your package:
.. code-block:: python
depends_on("cmake@2.8.12:", type="build")
depends_on('cmake@2.8.12:', type='build')
^^^^^^^^^^^^^^^^^^^
@@ -137,10 +137,10 @@ and without the :meth:`~spack.build_systems.cmake.CMakeBuilder.define` and
def cmake_args(self):
args = [
"-DWHATEVER:STRING=somevalue",
self.define("ENABLE_BROKEN_FEATURE", False),
self.define_from_variant("DETECT_HDF5", "hdf5"),
self.define_from_variant("THREADS"), # True if +threads
'-DWHATEVER:STRING=somevalue',
self.define('ENABLE_BROKEN_FEATURE', False),
self.define_from_variant('DETECT_HDF5', 'hdf5'),
self.define_from_variant('THREADS'), # True if +threads
]
return args
@@ -151,10 +151,10 @@ and CMake simply ignores the empty command line argument. For example the follow
.. code-block:: python
variant("example", default=True, when="@2.0:")
variant('example', default=True, when='@2.0:')
def cmake_args(self):
return [self.define_from_variant("EXAMPLE", "example")]
return [self.define_from_variant('EXAMPLE', 'example')]
will generate ``'cmake' '-DEXAMPLE=ON' ...`` when `@2.0: +example` is met, but will
result in ``'cmake' '' ...`` when the spec version is below ``2.0``.
@@ -193,9 +193,9 @@ a variant to control this:
.. code-block:: python
variant("build_type", default="RelWithDebInfo",
description="CMake build type",
values=("Debug", "Release", "RelWithDebInfo", "MinSizeRel"))
variant('build_type', default='RelWithDebInfo',
description='CMake build type',
values=('Debug', 'Release', 'RelWithDebInfo', 'MinSizeRel'))
However, not every CMake package accepts all four of these options.
Grep the ``CMakeLists.txt`` file to see if the default values are
@@ -205,9 +205,9 @@ package overrides the default variant with:
.. code-block:: python
variant("build_type", default="DebugRelease",
description="The build type to build",
values=("Debug", "Release", "DebugRelease"))
variant('build_type', default='DebugRelease',
description='The build type to build',
values=('Debug', 'Release', 'DebugRelease'))
For more information on ``CMAKE_BUILD_TYPE``, see:
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
@@ -250,7 +250,7 @@ generator is Ninja. To switch to the Ninja generator, simply add:
.. code-block:: python
generator("ninja")
generator = 'Ninja'
``CMakePackage`` defaults to "Unix Makefiles". If you switch to the
@@ -258,7 +258,7 @@ Ninja generator, make sure to add:
.. code-block:: python
depends_on("ninja", type="build")
depends_on('ninja', type='build')
to the package as well. Aside from that, you shouldn't need to do
anything else. Spack will automatically detect that you are using
@@ -288,7 +288,7 @@ like so:
.. code-block:: python
root_cmakelists_dir = "src"
root_cmakelists_dir = 'src'
Note that this path is relative to the root of the extracted tarball,
@@ -304,7 +304,7 @@ different sub-directory, simply override ``build_directory`` like so:
.. code-block:: python
build_directory = "my-build"
build_directory = 'my-build'
^^^^^^^^^^^^^^^^^^^^^^^^^
Build and install targets
@@ -324,8 +324,8 @@ library or build the documentation, you can add these like so:
.. code-block:: python
build_targets = ["all", "docs"]
install_targets = ["install", "docs"]
build_targets = ['all', 'docs']
install_targets = ['install', 'docs']
^^^^^^^
Testing

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -28,14 +28,11 @@ This package provides the following variants:
* **cuda_arch**
This variant supports the optional specification of one or multiple architectures.
This variant supports the optional specification of the architecture.
Valid values are maintained in the ``cuda_arch_values`` property and
are the numeric character equivalent of the compute capability version
(e.g., '10' for version 1.0). Each provided value affects associated
``CUDA`` dependencies and compiler conflicts.
The variant builds both PTX code for the _virtual_ architecture
(e.g. ``compute_10``) and binary code for the _real_ architecture (e.g. ``sm_10``).
GPUs and their compute capability versions are listed at
https://developer.nvidia.com/cuda-gpus .
@@ -54,8 +51,8 @@ to terminate such build attempts with a suitable message:
.. code-block:: python
conflicts("cuda_arch=none", when="+cuda",
msg="CUDA architecture is required")
conflicts('cuda_arch=none', when='+cuda',
msg='CUDA architecture is required')
Similarly, if your software does not support all versions of the property,
you could add ``conflicts`` to your package for those versions. For example,
@@ -66,13 +63,13 @@ custom message should a user attempt such a build:
.. code-block:: python
unsupported_cuda_archs = [
"10", "11", "12", "13",
"20", "21",
"30", "32", "35", "37"
'10', '11', '12', '13',
'20', '21',
'30', '32', '35', '37'
]
for value in unsupported_cuda_archs:
conflicts(f"cuda_arch={value}", when="+cuda",
msg=f"CUDA architecture {value} is not supported")
conflicts('cuda_arch={0}'.format(value), when='+cuda',
msg='CUDA architecture {0} is not supported'.format(value))
^^^^^^^
Methods
@@ -107,16 +104,16 @@ class of your package. For example, you can add it to your
spec = self.spec
args = []
...
if spec.satisfies("+cuda"):
if '+cuda' in spec:
# Set up the cuda macros needed by the build
args.append("-DWITH_CUDA=ON")
cuda_arch_list = spec.variants["cuda_arch"].value
args.append('-DWITH_CUDA=ON')
cuda_arch_list = spec.variants['cuda_arch'].value
cuda_arch = cuda_arch_list[0]
if cuda_arch != "none":
args.append(f"-DCUDA_FLAGS=-arch=sm_{cuda_arch}")
if cuda_arch != 'none':
args.append('-DCUDA_FLAGS=-arch=sm_{0}'.format(cuda_arch))
else:
# Ensure build with cuda is disabled
args.append("-DWITH_CUDA=OFF")
args.append('-DWITH_CUDA=OFF')
...
return args
@@ -125,7 +122,7 @@ You will need to customize options as needed for your build.
This example also illustrates how to check for the ``cuda`` variant using
``self.spec`` and how to retrieve the ``cuda_arch`` variant's value, which
is a list, using ``self.spec.variants["cuda_arch"].value``.
is a list, using ``self.spec.variants['cuda_arch'].value``.
With over 70 packages using ``CudaPackage`` as of January 2021 there are
lots of examples to choose from to get more ideas for using this package.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -57,13 +57,13 @@ If you look at the ``perl`` package, you'll see:
.. code-block:: python
phases = ["configure", "build", "install"]
phases = ['configure', 'build', 'install']
Similarly, ``cmake`` defines:
.. code-block:: python
phases = ["bootstrap", "build", "install"]
phases = ['bootstrap', 'build', 'install']
If we look at the ``cmake`` example, this tells Spack's ``PackageBase``
class to run the ``bootstrap``, ``build``, and ``install`` functions
@@ -78,7 +78,7 @@ If we look at ``perl``, we see that it defines a ``configure`` method:
.. code-block:: python
def configure(self, spec, prefix):
configure = Executable("./Configure")
configure = Executable('./Configure')
configure(*self.configure_args())
There is also a corresponding ``configure_args`` function that handles
@@ -92,7 +92,7 @@ phases are pretty simple:
make()
def install(self, spec, prefix):
make("install")
make('install')
The ``cmake`` package looks very similar, but with a ``bootstrap``
function instead of ``configure``:
@@ -100,14 +100,14 @@ function instead of ``configure``:
.. code-block:: python
def bootstrap(self, spec, prefix):
bootstrap = Executable("./bootstrap")
bootstrap = Executable('./bootstrap')
bootstrap(*self.bootstrap_args())
def build(self, spec, prefix):
make()
def install(self, spec, prefix):
make("install")
make('install')
Again, there is a ``boostrap_args`` function that determines the
correct bootstrap flags to use.
@@ -128,16 +128,16 @@ before or after a particular phase. For example, in ``perl``, we see:
.. code-block:: python
@run_after("install")
@run_after('install')
def install_cpanm(self):
spec = self.spec
if spec.satisfies("+cpanm"):
with working_dir(join_path("cpanm", "cpanm")):
perl = spec["perl"].command
perl("Makefile.PL")
if '+cpanm' in spec:
with working_dir(join_path('cpanm', 'cpanm')):
perl = spec['perl'].command
perl('Makefile.PL')
make()
make("install")
make('install')
This extra step automatically installs ``cpanm`` in addition to the
base Perl installation.
@@ -174,10 +174,10 @@ In the ``perl`` package, we can see:
.. code-block:: python
@run_after("build")
@run_after('build')
@on_package_attributes(run_tests=True)
def test(self):
make("test")
make('test')
As you can guess, this runs ``make test`` *after* building the package,
if and only if testing is requested. Again, this is not specific to
@@ -189,7 +189,7 @@ custom build systems, it can be added to existing build systems as well.
.. code-block:: python
@run_after("install")
@run_after('install')
@on_package_attributes(run_tests=True)
works as expected. However, if you reverse the ordering:
@@ -197,7 +197,7 @@ custom build systems, it can be added to existing build systems as well.
.. code-block:: python
@on_package_attributes(run_tests=True)
@run_after("install")
@run_after('install')
the tests will always be run regardless of whether or not
``--test=root`` is requested. See https://github.com/spack/spack/issues/3833

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -25,8 +25,8 @@ use Spack to build packages with the tools.
The Spack Python class ``IntelOneapiPackage`` is a base class that is
used by ``IntelOneapiCompilers``, ``IntelOneapiMkl``,
``IntelOneapiTbb`` and other classes to implement the oneAPI
packages. Search for ``oneAPI`` at `packages.spack.io <https://packages.spack.io>`_ for the full
list of available oneAPI packages, or use::
packages. See the :ref:`package-list` for the full list of available
oneAPI packages or use::
spack list -d oneAPI
@@ -53,24 +53,18 @@ Install the oneAPI compilers::
Add the compilers to your ``compilers.yaml`` so spack can use them::
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/bin
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin/intel64
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin
Verify that the compilers are available::
spack compiler list
Note that 2024 and later releases do not include ``icc``. Before 2024,
the package layout was different::
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin/intel64
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin
The ``intel-oneapi-compilers`` package includes 2 families of
compilers:
* ``intel``: ``icc``, ``icpc``, ``ifort``. Intel's *classic*
compilers. 2024 and later releases contain ``ifort``, but not
``icc`` and ``icpc``.
compilers.
* ``oneapi``: ``icx``, ``icpx``, ``ifx``. Intel's new generation of
compilers based on LLVM.
@@ -82,55 +76,6 @@ To build with with ``icx``, do ::
spack install patchelf%oneapi
Using oneAPI Spack environment
-------------------------------
In this example, we build lammps with ``icx`` using Spack environment for oneAPI packages created by Intel. The
compilers are installed with Spack like in example above.
Install the oneAPI compilers::
spack install intel-oneapi-compilers
Add the compilers to your ``compilers.yaml`` so Spack can use them::
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/bin
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/bin
Verify that the compilers are available::
spack compiler list
Clone `spack-configs <https://github.com/spack/spack-configs>`_ repo and activate Intel oneAPI CPU environment::
git clone https://github.com/spack/spack-configs
spack env activate spack-configs/INTEL/CPU
spack concretize -f
`Intel oneAPI CPU environment <https://github.com/spack/spack-configs/blob/main/INTEL/CPU/spack.yaml>`_ contains applications tested and validated by Intel, this list is constantly extended. And currently it supports:
- `Devito <https://www.devitoproject.org/>`_
- `GROMACS <https://www.gromacs.org/>`_
- `HPCG <https://www.hpcg-benchmark.org/>`_
- `HPL <https://netlib.org/benchmark/hpl/>`_
- `LAMMPS <https://www.lammps.org/#gsc.tab=0>`_
- `OpenFOAM <https://www.openfoam.com/>`_
- `Quantum Espresso <https://www.quantum-espresso.org/>`_
- `STREAM <https://www.cs.virginia.edu/stream/>`_
- `WRF <https://github.com/wrf-model/WRF>`_
To build lammps with oneAPI compiler from this environment just run::
spack install lammps
Compiled binaries can be find using::
spack cd -i lammps
You can do the same for all other applications from this environment.
Using oneAPI MPI to Satisfy a Virtual Dependence
------------------------------------------------------
@@ -152,7 +97,8 @@ Compilers
To use the compilers, add some information about the installation to
``compilers.yaml``. For most users, it is sufficient to do::
spack compiler add /opt/intel/oneapi/compiler/latest/bin
spack compiler add /opt/intel/oneapi/compiler/latest/linux/bin/intel64
spack compiler add /opt/intel/oneapi/compiler/latest/linux/bin
Adapt the paths above if you did not install the tools in the default
location. After adding the compilers, using them is the same
@@ -161,12 +107,6 @@ Another option is to manually add the configuration to
``compilers.yaml`` as described in :ref:`Compiler configuration
<compiler-config>`.
Before 2024, the directory structure was different::
spack compiler add /opt/intel/oneapi/compiler/latest/linux/bin/intel64
spack compiler add /opt/intel/oneapi/compiler/latest/linux/bin
Libraries
---------
@@ -184,7 +124,7 @@ Using oneAPI Tools Installed by Spack
=====================================
Spack can be a convenient way to install and configure compilers and
libraries, even if you do not intend to build a Spack package. If you
libaries, even if you do not intend to build a Spack package. If you
want to build a Makefile project using Spack-installed oneAPI compilers,
then use spack to configure your environment::

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -90,7 +90,7 @@ and optimizers do require a paid license. In Spack, they are packaged as:
TODO: Confirm and possible change(!) the scope of MPI components (runtime
vs. devel) in current (and previous?) *cluster/professional/composer*
editions, i.e., presence in downloads, possibly subject to license
coverage(!); see `discussion in PR #4300
coverage(!); see `disussion in PR #4300
<https://github.com/spack/spack/pull/4300#issuecomment-305582898>`_. [NB:
An "mpi" subdirectory is not indicative of the full MPI SDK being present
(i.e., ``mpicc``, ..., and header files). The directory may just as well
@@ -392,12 +392,12 @@ See section
:ref:`Configuration Scopes <configuration-scopes>`
for an explanation about the different files
and section
:ref:`Build customization <packages-config>`
:ref:`Build customization <build-settings>`
for specifics and examples for ``packages.yaml`` files.
.. If your system administrator did not provide modules for pre-installed Intel
tools, you could do well to ask for them, because installing multiple copies
of the Intel tools, as is won't to happen once Spack is in the picture, is
of the Intel tools, as is wont to happen once Spack is in the picture, is
bound to stretch disk space and patience thin. If you *are* the system
administrator and are still new to modules, then perhaps it's best to follow
the `next section <Installing Intel tools within Spack_>`_ and install the tools
@@ -653,7 +653,7 @@ follow `the next section <intel-install-libs_>`_ instead.
* If you specified a custom variant (for example ``+vtune``) you may want to add this as your
preferred variant in the packages configuration for the ``intel-parallel-studio`` package
as described in :ref:`package-preferences`. Otherwise you will have to specify
the variant every time ``intel-parallel-studio`` is being used as ``mkl``, ``fftw`` or ``mpi``
the variant everytime ``intel-parallel-studio`` is being used as ``mkl``, ``fftw`` or ``mpi``
implementation to avoid pulling in a different variant.
* To set the Intel compilers for default use in Spack, instead of the usual ``%gcc``,
@@ -934,9 +934,9 @@ a *virtual* ``mkl`` package is declared in Spack.
.. code-block:: python
# Examples for absolute and conditional dependencies:
depends_on("mkl")
depends_on("mkl", when="+mkl")
depends_on("mkl", when="fftw=mkl")
depends_on('mkl')
depends_on('mkl', when='+mkl')
depends_on('mkl', when='fftw=mkl')
The ``MKLROOT`` environment variable (part of the documented API) will be set
during all stages of client package installation, and is available to both
@@ -972,8 +972,8 @@ a *virtual* ``mkl`` package is declared in Spack.
def configure_args(self):
args = []
...
args.append("--with-blas=%s" % self.spec["blas"].libs.ld_flags)
args.append("--with-lapack=%s" % self.spec["lapack"].libs.ld_flags)
args.append('--with-blas=%s' % self.spec['blas'].libs.ld_flags)
args.append('--with-lapack=%s' % self.spec['lapack'].libs.ld_flags)
...
.. tip::
@@ -989,13 +989,13 @@ a *virtual* ``mkl`` package is declared in Spack.
.. code-block:: python
self.spec["blas"].headers.include_flags
self.spec['blas'].headers.include_flags
and to generate linker options (``-L<dir> -llibname ...``), use the same as above,
.. code-block:: python
self.spec["blas"].libs.ld_flags
self.spec['blas'].libs.ld_flags
See
:ref:`MakefilePackage <makefilepackage>`

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -88,7 +88,7 @@ override the ``luarocks_args`` method like so:
.. code-block:: python
def luarocks_args(self):
return ["flag1", "flag2"]
return ['flag1', 'flag2']
One common use of this is to override warnings or flags for newer compilers, as in:

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -59,7 +59,7 @@ using GNU Make, you should add a dependency on ``gmake``:
.. code-block:: python
depends_on("gmake", type="build")
depends_on('gmake', type='build')
^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -88,13 +88,13 @@ command-line. However, Makefiles that use ``?=`` for assignment honor
environment variables. Since Spack already sets ``CC``, ``CXX``, ``F77``,
and ``FC``, you won't need to worry about setting these variables. If
there are any other variables you need to set, you can do this in the
``setup_build_environment`` method:
``edit`` method:
.. code-block:: python
def setup_build_environment(self, env):
env.set("PREFIX", prefix)
env.set("BLASLIB", spec["blas"].libs.ld_flags)
def edit(self, spec, prefix):
env['PREFIX'] = prefix
env['BLASLIB'] = spec['blas'].libs.ld_flags
`cbench <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/cbench/package.py>`_
@@ -113,7 +113,7 @@ you can do this like so:
.. code-block:: python
build_targets = ["CC=cc"]
build_targets = ['CC=cc']
If you do need access to the spec, you can create a property like so:
@@ -125,8 +125,8 @@ If you do need access to the spec, you can create a property like so:
spec = self.spec
return [
"CC=cc",
f"BLASLIB={spec['blas'].libs.ld_flags}",
'CC=cc',
'BLASLIB={0}'.format(spec['blas'].libs.ld_flags),
]
@@ -140,17 +140,17 @@ Edit Makefile
Some Makefiles are just plain stubborn and will ignore command-line
variables. The only way to ensure that these packages build correctly
is to directly edit the Makefile. Spack provides a ``FileFilter`` class
and a ``filter`` method to help with this. For example:
and a ``filter_file`` method to help with this. For example:
.. code-block:: python
def edit(self, spec, prefix):
makefile = FileFilter("Makefile")
makefile = FileFilter('Makefile')
makefile.filter(r"^\s*CC\s*=.*", f"CC = {spack_cc}")
makefile.filter(r"^\s*CXX\s*=.*", f"CXX = {spack_cxx}")
makefile.filter(r"^\s*F77\s*=.*", f"F77 = {spack_f77}")
makefile.filter(r"^\s*FC\s*=.*", f"FC = {spack_fc}")
makefile.filter(r'^\s*CC\s*=.*', 'CC = ' + spack_cc)
makefile.filter(r'^\s*CXX\s*=.*', 'CXX = ' + spack_cxx)
makefile.filter(r'^\s*F77\s*=.*', 'F77 = ' + spack_f77)
makefile.filter(r'^\s*FC\s*=.*', 'FC = ' + spack_fc)
`stream <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/stream/package.py>`_
@@ -181,16 +181,16 @@ well for storing variables:
def edit(self, spec, prefix):
config = {
"CC": "cc",
"MAKE": "make",
'CC': 'cc',
'MAKE': 'make',
}
if spec.satisfies("+blas"):
config["BLAS_LIBS"] = spec["blas"].libs.joined()
if '+blas' in spec:
config['BLAS_LIBS'] = spec['blas'].libs.joined()
with open("make.inc", "w") as inc:
with open('make.inc', 'w') as inc:
for key in config:
inc.write(f"{key} = {config[key]}\n")
inc.write('{0} = {1}\n'.format(key, config[key]))
`elk <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/elk/package.py>`_
@@ -204,14 +204,14 @@ them in a list:
def edit(self, spec, prefix):
config = [
f"INSTALL_DIR = {prefix}",
"INCLUDE_DIR = $(INSTALL_DIR)/include",
"LIBRARY_DIR = $(INSTALL_DIR)/lib",
'INSTALL_DIR = {0}'.format(prefix),
'INCLUDE_DIR = $(INSTALL_DIR)/include',
'LIBRARY_DIR = $(INSTALL_DIR)/lib',
]
with open("make.inc", "w") as inc:
with open('make.inc', 'w') as inc:
for var in config:
inc.write(f"{var}\n")
inc.write('{0}\n'.format(var))
`hpl <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/hpl/package.py>`_
@@ -284,7 +284,7 @@ can tell Spack where to locate it like so:
.. code-block:: python
build_directory = "src"
build_directory = 'src'
^^^^^^^^^^^^^^^^^^^
@@ -299,8 +299,8 @@ install the package:
def install(self, spec, prefix):
mkdir(prefix.bin)
install("foo", prefix.bin)
install_tree("lib", prefix.lib)
install('foo', prefix.bin)
install_tree('lib', prefix.lib)
^^^^^^^^^^^^^^^^^^^^^^

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -48,8 +48,8 @@ class automatically adds the following dependencies:
.. code-block:: python
depends_on("java", type=("build", "run"))
depends_on("maven", type="build")
depends_on('java', type=('build', 'run'))
depends_on('maven', type='build')
In the ``pom.xml`` file, you may see sections like:
@@ -72,8 +72,8 @@ should add:
.. code-block:: python
depends_on("java@7:", type="build")
depends_on("maven@3.5.4:", type="build")
depends_on('java@7:', type='build')
depends_on('maven@3.5.4:', type='build')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -88,9 +88,9 @@ the build phase. For example:
def build_args(self):
return [
"-Pdist,native",
"-Dtar",
"-Dmaven.javadoc.skip=true"
'-Pdist,native',
'-Dtar',
'-Dmaven.javadoc.skip=true'
]

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -86,8 +86,8 @@ the ``MesonPackage`` base class already contains:
.. code-block:: python
depends_on("meson", type="build")
depends_on("ninja", type="build")
depends_on('meson', type='build')
depends_on('ninja', type='build')
If you need to specify a particular version requirement, you can
@@ -95,8 +95,8 @@ override this in your package:
.. code-block:: python
depends_on("meson@0.43.0:", type="build")
depends_on("ninja", type="build")
depends_on('meson@0.43.0:', type='build')
depends_on('ninja', type='build')
^^^^^^^^^^^^^^^^^^^
@@ -121,7 +121,7 @@ override the ``meson_args`` method like so:
.. code-block:: python
def meson_args(self):
return ["--warnlevel=3"]
return ['--warnlevel=3']
This method can be used to pass flags as well as variables.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -118,7 +118,7 @@ so ``PerlPackage`` contains:
.. code-block:: python
extends("perl")
extends('perl')
If your package requires a specific version of Perl, you should
@@ -132,14 +132,14 @@ properly. If your package uses ``Makefile.PL`` to build, add:
.. code-block:: python
depends_on("perl-extutils-makemaker", type="build")
depends_on('perl-extutils-makemaker', type='build')
If your package uses ``Build.PL`` to build, add:
.. code-block:: python
depends_on("perl-module-build", type="build")
depends_on('perl-module-build', type='build')
^^^^^^^^^^^^^^^^^
@@ -165,80 +165,14 @@ arguments to ``Makefile.PL`` or ``Build.PL`` by overriding
.. code-block:: python
def configure_args(self):
expat = self.spec["expat"].prefix
expat = self.spec['expat'].prefix
return [
"EXPATLIBPATH={0}".format(expat.lib),
"EXPATINCPATH={0}".format(expat.include),
'EXPATLIBPATH={0}'.format(expat.lib),
'EXPATINCPATH={0}'.format(expat.include),
]
^^^^^^^
Testing
^^^^^^^
``PerlPackage`` provides a simple stand-alone test of the successfully
installed package to confirm that installed perl module(s) can be used.
These tests can be performed any time after the installation using
``spack -v test run``. (For more information on the command, see
:ref:`cmd-spack-test-run`.)
The base class automatically detects perl modules based on the presence
of ``*.pm`` files under the package's library directory. For example,
the files under ``perl-bignum``'s perl library are:
.. code-block:: console
$ find . -name "*.pm"
./bigfloat.pm
./bigrat.pm
./Math/BigFloat/Trace.pm
./Math/BigInt/Trace.pm
./Math/BigRat/Trace.pm
./bigint.pm
./bignum.pm
which results in the package having the ``use_modules`` property containing:
.. code-block:: python
use_modules = [
"bigfloat",
"bigrat",
"Math::BigFloat::Trace",
"Math::BigInt::Trace",
"Math::BigRat::Trace",
"bigint",
"bignum",
]
.. note::
This list can often be used to catch missing dependencies.
If the list is somehow wrong, you can provide the names of the modules
yourself by overriding ``use_modules`` like so:
.. code-block:: python
use_modules = ["bigfloat", "bigrat", "bigint", "bignum"]
If you only want a subset of the automatically detected modules to be
tested, you could instead define the ``skip_modules`` property on the
package. So, instead of overriding ``use_modules`` as shown above, you
could define the following:
.. code-block:: python
skip_modules = [
"Math::BigFloat::Trace",
"Math::BigInt::Trace",
"Math::BigRat::Trace",
]
for the same use tests.
^^^^^^^^^^^^^^^^^^^^^
Alternatives to Spack
^^^^^^^^^^^^^^^^^^^^^

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -152,16 +152,16 @@ set. Once set, ``pypi`` will be used to define the ``homepage``,
.. code-block:: python
homepage = "https://pypi.org/project/setuptools/"
url = "https://pypi.org/packages/source/s/setuptools/setuptools-49.2.0.zip"
list_url = "https://pypi.org/simple/setuptools/"
homepage = 'https://pypi.org/project/setuptools/'
url = 'https://pypi.org/packages/source/s/setuptools/setuptools-49.2.0.zip'
list_url = 'https://pypi.org/simple/setuptools/'
is equivalent to:
.. code-block:: python
pypi = "setuptools/setuptools-49.2.0.zip"
pypi = 'setuptools/setuptools-49.2.0.zip'
If a package has a different homepage listed on PyPI, you can
@@ -208,7 +208,7 @@ dependencies to your package:
.. code-block:: python
depends_on("py-setuptools@42:", type="build")
depends_on('py-setuptools@42:', type='build')
Note that ``py-wheel`` is already listed as a build dependency in the
@@ -232,7 +232,7 @@ Look for dependencies under the following keys:
* ``dependencies`` under ``[project]``
These packages are required for building and installation. You can
add them with ``type=("build", "run")``.
add them with ``type=('build', 'run')``.
* ``[project.optional-dependencies]``
@@ -279,12 +279,12 @@ distutils library, and has almost the exact same API. In addition to
* ``setup_requires``
These packages are usually only needed at build-time, so you can
add them with ``type="build"``.
add them with ``type='build'``.
* ``install_requires``
These packages are required for building and installation. You can
add them with ``type=("build", "run")``.
add them with ``type=('build', 'run')``.
* ``extras_require``
@@ -296,7 +296,7 @@ distutils library, and has almost the exact same API. In addition to
These are packages that are required to run the unit tests for the
package. These dependencies can be specified using the
``type="test"`` dependency type. However, the PyPI tarballs rarely
``type='test'`` dependency type. However, the PyPI tarballs rarely
contain unit tests, so there is usually no reason to add these.
See https://setuptools.pypa.io/en/latest/userguide/dependency_management.html
@@ -321,7 +321,7 @@ older versions of flit may use the following keys:
* ``requires`` under ``[tool.flit.metadata]``
These packages are required for building and installation. You can
add them with ``type=("build", "run")``.
add them with ``type=('build', 'run')``.
* ``[tool.flit.metadata.requires-extra]``
@@ -366,7 +366,7 @@ If the ``pyproject.toml`` lists ``mesonpy`` as the ``build-backend``,
it uses the meson build system. Meson uses the default
``pyproject.toml`` keys to list dependencies.
See https://meson-python.readthedocs.io/en/latest/tutorials/introduction.html
See https://meson-python.readthedocs.io/en/latest/usage/start.html
for more information.
"""
@@ -434,12 +434,12 @@ the BLAS/LAPACK library you want pkg-config to search for:
.. code-block:: python
depends_on("py-pip@22.1:", type="build")
depends_on('py-pip@22.1:', type='build')
def config_settings(self, spec, prefix):
return {
"blas": spec["blas"].libs.names[0],
"lapack": spec["lapack"].libs.names[0],
'blas': spec['blas'].libs.names[0],
'lapack': spec['lapack'].libs.names[0],
}
@@ -463,10 +463,10 @@ has an optional dependency on ``libyaml`` that can be enabled like so:
def global_options(self, spec, prefix):
options = []
if spec.satisfies("+libyaml"):
options.append("--with-libyaml")
if '+libyaml' in spec:
options.append('--with-libyaml')
else:
options.append("--without-libyaml")
options.append('--without-libyaml')
return options
@@ -492,10 +492,10 @@ allows you to specify the directories to search for ``libyaml``:
def install_options(self, spec, prefix):
options = []
if spec.satisfies("+libyaml"):
if '+libyaml' in spec:
options.extend([
spec["libyaml"].libs.search_flags,
spec["libyaml"].headers.include_flags,
spec['libyaml'].libs.search_flags,
spec['libyaml'].headers.include_flags,
])
return options
@@ -556,7 +556,7 @@ detected are wrong, you can provide the names yourself by overriding
.. code-block:: python
import_modules = ["six"]
import_modules = ['six']
Sometimes the list of module names to import depends on how the
@@ -571,9 +571,9 @@ This can be expressed like so:
@property
def import_modules(self):
modules = ["yaml"]
if self.spec.satisfies("+libyaml"):
modules.append("yaml.cyaml")
modules = ['yaml']
if '+libyaml' in self.spec:
modules.append('yaml.cyaml')
return modules
@@ -582,18 +582,18 @@ libraries. Make sure not to add modules/packages containing the word
"test", as these likely won't end up in the installation directory,
or may require test dependencies like pytest to be installed.
Instead of defining the ``import_modules`` explicitly, only the subset
Instead of defining the ``import_modules`` explicity, only the subset
of module names to be skipped can be defined by using ``skip_modules``.
If a defined module has submodules, they are skipped as well, e.g.,
in case the ``plotting`` modules should be excluded from the
automatically detected ``import_modules`` ``["nilearn", "nilearn.surface",
"nilearn.plotting", "nilearn.plotting.data"]`` set:
automatically detected ``import_modules`` ``['nilearn', 'nilearn.surface',
'nilearn.plotting', 'nilearn.plotting.data']`` set:
.. code-block:: python
skip_modules = ["nilearn.plotting"]
skip_modules = ['nilearn.plotting']
This will set ``import_modules`` to ``["nilearn", "nilearn.surface"]``
This will set ``import_modules`` to ``['nilearn', 'nilearn.surface']``
Import tests can be run during the installation using ``spack install
--test=root`` or at any time after the installation using
@@ -612,11 +612,11 @@ after the ``install`` phase:
.. code-block:: python
@run_after("install")
@run_after('install')
@on_package_attributes(run_tests=True)
def install_test(self):
with working_dir("spack-test", create=True):
python("-c", "import numpy; numpy.test('full', verbose=2)")
with working_dir('spack-test', create=True):
python('-c', 'import numpy; numpy.test("full", verbose=2)')
when testing is enabled during the installation (i.e., ``spack install
@@ -638,7 +638,7 @@ provides Python bindings in a ``python`` directory, you can use:
.. code-block:: python
build_directory = "python"
build_directory = 'python'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -718,45 +718,23 @@ command-line tool, or C/C++/Fortran program with optional Python
modules? The former should be prepended with ``py-``, while the
latter should not.
""""""""""""""""""""""""""""""
``extends`` vs. ``depends_on``
""""""""""""""""""""""""""""""
""""""""""""""""""""""
extends vs. depends_on
""""""""""""""""""""""
This is very similar to the naming dilemma above, with a slight twist.
As mentioned in the :ref:`Packaging Guide <packaging_extensions>`,
``extends`` and ``depends_on`` are very similar, but ``extends`` ensures
that the extension and extendee share the same prefix in views.
This allows the user to import a Python module without
having to add that module to ``PYTHONPATH``.
Additionally, ``extends("python")`` adds a dependency on the package
``python-venv``. This improves isolation from the system, whether
it's during the build or at runtime: user and system site packages
cannot accidentally be used by any package that ``extends("python")``.
As a rule of thumb: if a package does not install any Python modules
of its own, and merely puts a Python script in the ``bin`` directory,
then there is no need for ``extends``. If the package installs modules
in the ``site-packages`` directory, it requires ``extends``.
"""""""""""""""""""""""""""""""""""""
Executing ``python`` during the build
"""""""""""""""""""""""""""""""""""""
Whenever you need to execute a Python command or pass the path of the
Python interpreter to the build system, it is best to use the global
variable ``python`` directly. For example:
.. code-block:: python
@run_before("install")
def recythonize(self):
python("setup.py", "clean") # use the `python` global
As mentioned in the previous section, ``extends("python")`` adds an
automatic dependency on ``python-venv``, which is a virtual environment
that guarantees build isolation. The ``python`` global always refers to
the correct Python interpreter, whether the package uses ``extends("python")``
or ``depends_on("python")``.
When deciding between ``extends`` and ``depends_on``, the best rule of
thumb is to check the installation prefix. If Python libraries are
installed to ``<prefix>/lib/pythonX.Y/site-packages``, then you
should use ``extends``. If Python libraries are installed elsewhere
or the only files that get installed reside in ``<prefix>/bin``, then
don't use ``extends``.
^^^^^^^^^^^^^^^^^^^^^
Alternatives to Spack

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -83,7 +83,7 @@ base class already contains:
.. code-block:: python
depends_on("qt", type="build")
depends_on('qt', type='build')
If you want to specify a particular version requirement, or need to
@@ -91,7 +91,7 @@ link to the ``qt`` libraries, you can override this in your package:
.. code-block:: python
depends_on("qt@5.6.0:")
depends_on('qt@5.6.0:')
^^^^^^^^^^^^^^^^^^^^^^^^^^
Passing arguments to qmake
@@ -103,7 +103,7 @@ override the ``qmake_args`` method like so:
.. code-block:: python
def qmake_args(self):
return ["-recursive"]
return ['-recursive']
This method can be used to pass flags as well as variables.
@@ -118,7 +118,7 @@ sub-directory by adding the following to the package:
.. code-block:: python
build_directory = "src"
build_directory = 'src'
^^^^^^^^^^^^^^^^^^^^^^

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -81,27 +81,28 @@ class of your package. For example, you can add it to your
class MyRocmPackage(CMakePackage, ROCmPackage):
...
# Ensure +rocm and amdgpu_targets are passed to dependencies
depends_on("mydeppackage", when="+rocm")
depends_on('mydeppackage', when='+rocm')
for val in ROCmPackage.amdgpu_targets:
depends_on(f"mydeppackage amdgpu_target={val}",
when=f"amdgpu_target={val}")
depends_on('mydeppackage amdgpu_target={0}'.format(val),
when='amdgpu_target={0}'.format(val))
...
def cmake_args(self):
spec = self.spec
args = []
...
if spec.satisfies("+rocm"):
if '+rocm' in spec:
# Set up the hip macros needed by the build
args.extend([
"-DENABLE_HIP=ON",
f"-DHIP_ROOT_DIR={spec['hip'].prefix}"])
rocm_archs = spec.variants["amdgpu_target"].value
if "none" not in rocm_archs:
args.append(f"-DHIP_HIPCC_FLAGS=--amdgpu-target={','.join(rocm_archs}")
'-DENABLE_HIP=ON',
'-DHIP_ROOT_DIR={0}'.format(spec['hip'].prefix)])
rocm_archs = spec.variants['amdgpu_target'].value
if 'none' not in rocm_archs:
args.append('-DHIP_HIPCC_FLAGS=--amdgpu-target={0}'
.format(",".join(rocm_archs)))
else:
# Ensure build with hip is disabled
args.append("-DENABLE_HIP=OFF")
args.append('-DENABLE_HIP=OFF')
...
return args
...
@@ -113,7 +114,7 @@ build.
This example also illustrates how to check for the ``rocm`` variant using
``self.spec`` and how to retrieve the ``amdgpu_target`` variant's value
using ``self.spec.variants["amdgpu_target"].value``.
using ``self.spec.variants['amdgpu_target'].value``.
All five packages using ``ROCmPackage`` as of January 2021 also use the
:ref:`CudaPackage <cudapackage>`. So it is worth looking at those packages

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -163,28 +163,28 @@ attributes that can be used to set ``homepage``, ``url``, ``list_url``, and
.. code-block:: python
cran = "caret"
cran = 'caret'
is equivalent to:
.. code-block:: python
homepage = "https://cloud.r-project.org/package=caret"
url = "https://cloud.r-project.org/src/contrib/caret_6.0-86.tar.gz"
list_url = "https://cloud.r-project.org/src/contrib/Archive/caret"
homepage = 'https://cloud.r-project.org/package=caret'
url = 'https://cloud.r-project.org/src/contrib/caret_6.0-86.tar.gz'
list_url = 'https://cloud.r-project.org/src/contrib/Archive/caret'
Likewise, the following ``bioc`` attribute:
.. code-block:: python
bioc = "BiocVersion"
bioc = 'BiocVersion'
is equivalent to:
.. code-block:: python
homepage = "https://bioconductor.org/packages/BiocVersion/"
git = "https://git.bioconductor.org/packages/BiocVersion"
homepage = 'https://bioconductor.org/packages/BiocVersion/'
git = 'https://git.bioconductor.org/packages/BiocVersion'
^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -200,7 +200,7 @@ base class contains:
.. code-block:: python
extends("r")
extends('r')
Take a close look at the homepage for ``caret``. If you look at the
@@ -209,7 +209,7 @@ You should add this to your package like so:
.. code-block:: python
depends_on("r@3.2.0:", type=("build", "run"))
depends_on('r@3.2.0:', type=('build', 'run'))
^^^^^^^^^^^^^^
@@ -227,7 +227,7 @@ and list all of their dependencies in the following sections:
* LinkingTo
As far as Spack is concerned, all 3 of these dependency types
correspond to ``type=("build", "run")``, so you don't have to worry
correspond to ``type=('build', 'run')``, so you don't have to worry
about the details. If you are curious what they mean,
https://github.com/spack/spack/issues/2951 has a pretty good summary:
@@ -330,7 +330,7 @@ the dependency:
.. code-block:: python
depends_on("r-lattice@0.20:", type=("build", "run"))
depends_on('r-lattice@0.20:', type=('build', 'run'))
^^^^^^^^^^^^^^^^^^
@@ -361,20 +361,20 @@ like so:
.. code-block:: python
def configure_args(self):
mpi_name = self.spec["mpi"].name
mpi_name = self.spec['mpi'].name
# The type of MPI. Supported values are:
# OPENMPI, LAM, MPICH, MPICH2, or CRAY
if mpi_name == "openmpi":
Rmpi_type = "OPENMPI"
elif mpi_name == "mpich":
Rmpi_type = "MPICH2"
if mpi_name == 'openmpi':
Rmpi_type = 'OPENMPI'
elif mpi_name == 'mpich':
Rmpi_type = 'MPICH2'
else:
raise InstallError("Unsupported MPI type")
raise InstallError('Unsupported MPI type')
return [
"--with-Rmpi-type={0}".format(Rmpi_type),
"--with-mpi={0}".format(spec["mpi"].prefix),
'--with-Rmpi-type={0}'.format(Rmpi_type),
'--with-mpi={0}'.format(spec['mpi'].prefix),
]

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -84,8 +84,8 @@ The ``*.gemspec`` file may contain something like:
.. code-block:: ruby
summary = "An implementation of the AsciiDoc text processor and publishing toolchain"
description = "A fast, open source text processor and publishing toolchain for converting AsciiDoc content to HTML 5, DocBook 5, and other formats."
summary = 'An implementation of the AsciiDoc text processor and publishing toolchain'
description = 'A fast, open source text processor and publishing toolchain for converting AsciiDoc content to HTML 5, DocBook 5, and other formats.'
Either of these can be used for the description of the Spack package.
@@ -98,7 +98,7 @@ The ``*.gemspec`` file may contain something like:
.. code-block:: ruby
homepage = "https://asciidoctor.org"
homepage = 'https://asciidoctor.org'
This should be used as the official homepage of the Spack package.
@@ -112,21 +112,21 @@ the base class contains:
.. code-block:: python
extends("ruby")
extends('ruby')
The ``*.gemspec`` file may contain something like:
.. code-block:: ruby
required_ruby_version = ">= 2.3.0"
required_ruby_version = '>= 2.3.0'
This can be added to the Spack package using:
.. code-block:: python
depends_on("ruby@2.3.0:", type=("build", "run"))
depends_on('ruby@2.3.0:', type=('build', 'run'))
^^^^^^^^^^^^^^^^^

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -57,7 +57,7 @@ overridden like so:
.. code-block:: python
def test(self):
scons("check")
scons('check')
^^^^^^^^^^^^^^^
@@ -88,7 +88,7 @@ base class already contains:
.. code-block:: python
depends_on("scons", type="build")
depends_on('scons', type='build')
If you want to specify a particular version requirement, you can override
@@ -96,7 +96,7 @@ this in your package:
.. code-block:: python
depends_on("scons@2.3.0:", type="build")
depends_on('scons@2.3.0:', type='build')
^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -238,14 +238,14 @@ the package build phase. This is done by overriding ``build_args`` like so:
def build_args(self, spec, prefix):
args = [
f"PREFIX={prefix}",
f"ZLIB={spec['zlib'].prefix}",
'PREFIX={0}'.format(prefix),
'ZLIB={0}'.format(spec['zlib'].prefix),
]
if spec.satisfies("+debug"):
args.append("DEBUG=yes")
if '+debug' in spec:
args.append('DEBUG=yes')
else:
args.append("DEBUG=no")
args.append('DEBUG=no')
return args
@@ -275,8 +275,8 @@ environment variables. For example, cantera has the following option:
* env_vars: [ string ]
Environment variables to propagate through to SCons. Either the
string "all" or a comma separated list of variable names, e.g.
"LD_LIBRARY_PATH,HOME".
- default: "LD_LIBRARY_PATH,PYTHONPATH"
'LD_LIBRARY_PATH,HOME'.
- default: 'LD_LIBRARY_PATH,PYTHONPATH'
In the case of cantera, using ``env_vars=all`` allows us to use

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -32,7 +32,7 @@ By default, these phases run:
.. code-block:: console
$ sip-build --verbose --target-dir ...
$ python configure.py --bindir ... --destdir ...
$ make
$ make install
@@ -41,30 +41,30 @@ By default, these phases run:
Important files
^^^^^^^^^^^^^^^
Each SIP package comes with a custom configuration file written in Python.
For newer packages, this is called ``project.py``, while in older packages,
it may be called ``configure.py``. This script contains instructions to build
the project.
Each SIP package comes with a custom ``configure.py`` build script,
written in Python. This script contains instructions to build the project.
^^^^^^^^^^^^^^^^^^^^^^^^^
Build system dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^
``SIPPackage`` requires several dependencies. Python and SIP are needed at build-time
to run the aforementioned configure script. Python is also needed at run-time to
actually use the installed Python library. And as we are building Python bindings
for C/C++ libraries, Python is also needed as a link dependency. All of these
dependencies are automatically added via the base class.
``SIPPackage`` requires several dependencies. Python is needed to run
the ``configure.py`` build script, and to run the resulting Python
libraries. Qt is needed to provide the ``qmake`` command. SIP is also
needed to build the package. All of these dependencies are automatically
added via the base class
.. code-block:: python
extends("python", type=("build", "link", "run"))
depends_on("py-sip", type="build")
extends('python')
depends_on('qt', type='build')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Passing arguments to ``sip-build``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
depends_on('py-sip', type='build')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Passing arguments to ``configure.py``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Each phase comes with a ``<phase_args>`` function that can be used to pass
arguments to that particular phase. For example, if you need to pass
@@ -72,11 +72,11 @@ arguments to the configure phase, you can use:
.. code-block:: python
def configure_args(self):
return ["--no-python-dbus"]
def configure_args(self, spec, prefix):
return ['--no-python-dbus']
A list of valid options can be found by running ``sip-build --help``.
A list of valid options can be found by running ``python configure.py --help``.
^^^^^^^
Testing
@@ -124,7 +124,7 @@ are wrong, you can provide the names yourself by overriding
.. code-block:: python
import_modules = ["PyQt5"]
import_modules = ['PyQt5']
These tests often catch missing dependencies and non-RPATHed

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -58,13 +58,15 @@ Testing
``WafPackage`` also provides ``test`` and ``installtest`` methods,
which are run after the ``build`` and ``install`` phases, respectively.
By default, these phases do nothing, but you can override them to
run package-specific unit tests.
run package-specific unit tests. For example, the
`py-py2cairo <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/py-py2cairo/package.py>`_
package uses:
.. code-block:: python
def installtest(self):
with working_dir("test"):
pytest = which("py.test")
with working_dir('test'):
pytest = which('py.test')
pytest()
@@ -93,7 +95,7 @@ the following dependency automatically:
.. code-block:: python
depends_on("python@2.5:", type="build")
depends_on('python@2.5:', type='build')
Waf only supports Python 2.5 and up.
@@ -113,7 +115,7 @@ phase, you can use:
args = []
if self.run_tests:
args.append("--test")
args.append('--test')
return args

View File

@@ -1,18 +1,17 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. chain:
=============================================
Chaining Spack Installations (upstreams.yaml)
=============================================
============================
Chaining Spack Installations
============================
You can point your Spack installation to another installation to use any
packages that are installed there. To register the other Spack instance,
you can add it as an entry to ``upstreams.yaml`` at any of the
:ref:`configuration-scopes`:
you can add it as an entry to ``upstreams.yaml``:
.. code-block:: yaml
@@ -23,8 +22,7 @@ you can add it as an entry to ``upstreams.yaml`` at any of the
install_tree: /path/to/another/spack/opt/spack
``install_tree`` must point to the ``opt/spack`` directory inside of the
Spack base directory, or the location of the ``install_tree`` defined
in :ref:`config.yaml <config-yaml>`.
Spack base directory.
Once the upstream Spack instance has been added, ``spack find`` will
automatically check the upstream instance when querying installed packages,

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -36,7 +36,7 @@
if not os.path.exists(link_name):
os.symlink(os.path.abspath("../../.."), link_name, target_is_directory=True)
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external"))
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external/_vendoring"))
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external/pytest-fallback"))
sys.path.append(os.path.abspath("_spack_root/lib/spack/"))
# Add the Spack bin directory to the path so that we can use its output in docs.
@@ -48,6 +48,9 @@
os.environ["COLIFY_SIZE"] = "25x120"
os.environ["COLUMNS"] = "120"
# Generate full package list if needed
subprocess.call(["spack", "list", "--format=html", "--update=package_list.html"])
# Generate a command index if an update is needed
subprocess.call(
[
@@ -71,22 +74,13 @@
"--force", # Overwrite existing files
"--no-toc", # Don't create a table of contents file
"--output-dir=.", # Directory to place all output
"--module-first", # emit module docs before submodule docs
]
sphinx_apidoc(
apidoc_args
+ [
"_spack_root/lib/spack/spack",
"_spack_root/lib/spack/spack/test/*.py",
"_spack_root/lib/spack/spack/test/cmd/*.py",
]
)
sphinx_apidoc(apidoc_args + ["_spack_root/lib/spack/spack"])
sphinx_apidoc(apidoc_args + ["_spack_root/lib/spack/llnl"])
# Enable todo items
todo_include_todos = True
#
# Disable duplicate cross-reference warnings.
#
@@ -94,7 +88,9 @@ class PatchedPythonDomain(PythonDomain):
def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode):
if "refspecific" in node:
del node["refspecific"]
return super().resolve_xref(env, fromdocname, builder, typ, target, node, contnode)
return super(PatchedPythonDomain, self).resolve_xref(
env, fromdocname, builder, typ, target, node, contnode
)
#
@@ -144,6 +140,7 @@ def setup(sphinx):
# Get nice vector graphics
graphviz_output_format = "svg"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
@@ -158,7 +155,7 @@ def setup(sphinx):
# General information about the project.
project = "Spack"
copyright = "2013-2023, Lawrence Livermore National Laboratory."
copyright = "2013-2021, Lawrence Livermore National Laboratory."
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
@@ -199,26 +196,16 @@ def setup(sphinx):
("py:class", "contextlib.contextmanager"),
("py:class", "module"),
("py:class", "_io.BufferedReader"),
("py:class", "_io.BytesIO"),
("py:class", "unittest.case.TestCase"),
("py:class", "_frozen_importlib_external.SourceFileLoader"),
("py:class", "clingo.Control"),
("py:class", "six.moves.urllib.parse.ParseResult"),
("py:class", "TextIO"),
("py:class", "hashlib._Hash"),
("py:class", "concurrent.futures._base.Executor"),
# Spack classes that are private and we don't want to expose
("py:class", "spack.provider_index._IndexBase"),
("py:class", "spack.repo._PrependFileLoader"),
("py:class", "spack.build_systems._checks.BaseBuilder"),
# Spack classes that intersphinx is unable to resolve
("py:class", "spack.version.StandardVersion"),
("py:class", "spack.spec.DependencySpec"),
("py:class", "spack.spec.InstallStatus"),
("py:class", "spack.spec.SpecfileReaderBase"),
("py:class", "spack.install_test.Pb"),
("py:class", "spack.filesystem_view.SimpleFilesystemView"),
("py:class", "spack.traverse.EdgeAndDepth"),
("py:class", "spack.version.VersionBase"),
]
# The reST default role (used for this markup: `text`) to use for all documents.
@@ -234,8 +221,30 @@ def setup(sphinx):
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
# show_authors = False
sys.path.append("./_pygments")
pygments_style = "style.SpackStyle"
# The name of the Pygments (syntax highlighting) style to use.
# We use our own extension of the default style with a few modifications
from pygments.style import Style
from pygments.styles.default import DefaultStyle
from pygments.token import Comment, Generic, Text
class SpackStyle(DefaultStyle):
styles = DefaultStyle.styles.copy()
background_color = "#f4f4f8"
styles[Generic.Output] = "#355"
styles[Generic.Prompt] = "bold #346ec9"
import pkg_resources
dist = pkg_resources.Distribution(__file__)
sys.path.append(".") # make 'conf' module findable
ep = pkg_resources.EntryPoint.parse("spack = conf:SpackStyle", dist=dist)
dist._ep_map = {"pygments.styles": {"plugin1": ep}}
pkg_resources.working_set.add(dist)
pygments_style = "spack"
# A list of ignored prefixes for module index sorting.
# modindex_common_prefix = []
@@ -320,20 +329,23 @@ def setup(sphinx):
# Output file base name for HTML help builder.
htmlhelp_basename = "Spackdoc"
# -- Options for LaTeX output --------------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
# 'papersize': 'letterpaper',
#'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
# 'pointsize': '10pt',
#'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
# 'preamble': '',
#'preamble': '',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass [howto/manual]).
latex_documents = [("index", "Spack.tex", "Spack Documentation", "Todd Gamblin", "manual")]
latex_documents = [
("index", "Spack.tex", "Spack Documentation", "Todd Gamblin", "manual"),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
@@ -380,7 +392,7 @@ def setup(sphinx):
"Spack",
"One line description of project.",
"Miscellaneous",
)
),
]
# Documents to append as an appendix to all manuals.
@@ -396,4 +408,6 @@ def setup(sphinx):
# -- Extension configuration -------------------------------------------------
# sphinx.ext.intersphinx
intersphinx_mapping = {"python": ("https://docs.python.org/3", None)}
intersphinx_mapping = {
"python": ("https://docs.python.org/3", None),
}

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -145,25 +145,6 @@ hosts when making ``ssl`` connections. Set to ``false`` to disable, and
tools like ``curl`` will use their ``--insecure`` options. Disabling
this can expose you to attacks. Use at your own risk.
--------------------
``ssl_certs``
--------------------
Path to custom certificats for SSL verification. The value can be a
filesytem path, or an environment variable that expands to an absolute file path.
The default value is set to the environment variable ``SSL_CERT_FILE``
to use the same syntax used by many other applications that automatically
detect custom certificates.
When ``url_fetch_method:curl`` the ``config:ssl_certs`` should resolve to
a single file. Spack will then set the environment variable ``CURL_CA_BUNDLE``
in the subprocess calling ``curl``.
If ``url_fetch_method:urllib`` then files and directories are supported i.e.
``config:ssl_certs:$SSL_CERT_FILE`` or ``config:ssl_certs:$SSL_CERT_DIR``
will work.
In all cases the expanded path must be absolute for Spack to use the certificates.
Certificates relative to an environment can be created by prepending the path variable
with the Spack configuration variable``$env``.
--------------------
``checksum``
--------------------
@@ -241,7 +222,7 @@ and location. (See the *Configuration settings* section of ``man
ccache`` to learn more about the default settings and how to change
them). Please note that we currently disable ccache's ``hash_dir``
feature to avoid an issue with the stage directory (see
https://github.com/spack/spack/pull/3761#issuecomment-294352232).
https://github.com/LLNL/spack/pull/3761#issuecomment-294352232).
-----------------------
``shared_linking:type``
@@ -311,29 +292,14 @@ It is also worth noting that:
non_bindable_shared_objects = ["libinterface.so"]
----------------------
``install_status``
``terminal_title``
----------------------
When set to ``true``, Spack will show information about its current progress
as well as the current and total package numbers. Progress is shown both
in the terminal title and inline. Setting it to ``false`` will not show any
progress information.
By setting this option to ``true``, Spack will update the terminal's title to
provide information about its current progress as well as the current and
total package numbers.
To work properly, this requires your terminal to reset its title after
Spack has finished its work, otherwise Spack's status information will
remain in the terminal's title indefinitely. Most terminals should already
be set up this way and clear Spack's status information.
-----------
``aliases``
-----------
Aliases can be used to define new Spack commands. They can be either shortcuts
for longer commands or include specific arguments for convenience. For instance,
if users want to use ``spack install``'s ``-v`` argument all the time, they can
create a new alias called ``inst`` that will always call ``install -v``:
.. code-block:: yaml
aliases:
inst: install -v

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -17,12 +17,11 @@ case you want to skip directly to specific docs:
* :ref:`config.yaml <config-yaml>`
* :ref:`mirrors.yaml <mirrors>`
* :ref:`modules.yaml <modules>`
* :ref:`packages.yaml <packages-config>`
* :ref:`packages.yaml <build-settings>`
* :ref:`repos.yaml <repositories>`
You can also add any of these as inline configuration in the YAML
manifest file (``spack.yaml``) describing an :ref:`environment
<environment-configuration>`.
You can also add any of these as inline configuration in ``spack.yaml``
in an :ref:`environment <environment-configuration>`.
-----------
YAML Format
@@ -73,12 +72,9 @@ are six configuration scopes. From lowest to highest:
Spack instance per project) or for site-wide settings on a multi-user
machine (e.g., for a common Spack instance).
#. **plugin**: Read from a Python project's entry points. Settings here affect
all instances of Spack running with the same Python installation. This scope takes higher precedence than site, system, and default scopes.
#. **user**: Stored in the home directory: ``~/.spack/``. These settings
affect all instances of Spack and take higher precedence than site,
system, plugin, or defaults scopes.
system, or defaults scopes.
#. **custom**: Stored in a custom directory specified by ``--config-scope``.
If multiple scopes are listed on the command line, they are ordered
@@ -199,45 +195,6 @@ with MPICH. You can create different configuration scopes for use with
mpi: [mpich]
.. _plugin-scopes:
^^^^^^^^^^^^^
Plugin scopes
^^^^^^^^^^^^^
.. note::
Python version >= 3.8 is required to enable plugin configuration.
Spack can be made aware of configuration scopes that are installed as part of a python package. To do so, register a function that returns the scope's path to the ``"spack.config"`` entry point. Consider the Python package ``my_package`` that includes Spack configurations:
.. code-block:: console
my-package/
├── src
│   ├── my_package
│   │   ├── __init__.py
│   │   └── spack/
│   │   │   └── config.yaml
└── pyproject.toml
adding the following to ``my_package``'s ``pyproject.toml`` will make ``my_package``'s ``spack/`` configurations visible to Spack when ``my_package`` is installed:
.. code-block:: toml
[project.entry_points."spack.config"]
my_package = "my_package:get_config_path"
The function ``my_package.get_extension_path`` in ``my_package/__init__.py`` might look like
.. code-block:: python
import importlib.resources
def get_config_path():
dirname = importlib.resources.files("my_package").joinpath("spack")
if dirname.exists():
return str(dirname)
.. _platform-scopes:
------------------------
@@ -270,9 +227,6 @@ You can get the name to use for ``<platform>`` by running ``spack arch
--platform``. The system config scope has a ``<platform>`` section for
sites at which ``/etc`` is mounted on multiple heterogeneous machines.
.. _config-scope-precedence:
----------------
Scope Precedence
----------------
@@ -285,13 +239,6 @@ lower-precedence settings. Completely ignoring higher-level configuration
options is supported with the ``::`` notation for keys (see
:ref:`config-overrides` below).
There are also special notations for string concatenation and precendense override:
* ``+:`` will force *prepending* strings or lists. For lists, this is the default behavior.
* ``-:`` works similarly, but for *appending* values.
:ref:`config-prepend-append`
^^^^^^^^^^^
Simple keys
^^^^^^^^^^^
@@ -332,47 +279,6 @@ command:
- ~/.spack/stage
.. _config-prepend-append:
^^^^^^^^^^^^^^^^^^^^
String Concatenation
^^^^^^^^^^^^^^^^^^^^
Above, the user ``config.yaml`` *completely* overrides specific settings in the
default ``config.yaml``. Sometimes, it is useful to add a suffix/prefix
to a path or name. To do this, you can use the ``-:`` notation for *append*
string concatenation at the end of a key in a configuration file. For example:
.. code-block:: yaml
:emphasize-lines: 1
:caption: ~/.spack/config.yaml
config:
install_tree-: /my/custom/suffix/
Spack will then append to the lower-precedence configuration under the
``install_tree-:`` section:
.. code-block:: console
$ spack config get config
config:
install_tree: /some/other/directory/my/custom/suffix
build_stage:
- $tempdir/$user/spack-stage
- ~/.spack/stage
Similarly, ``+:`` can be used to *prepend* to a path or name:
.. code-block:: yaml
:emphasize-lines: 1
:caption: ~/.spack/config.yaml
config:
install_tree+: /my/custom/suffix/
.. _config-overrides:
^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -9,96 +9,24 @@
Container Images
================
Spack :ref:`environments` can easily be turned into container images. This page
outlines two ways in which this can be done:
1. By installing the environment on the host system, and copying the installations
into the container image. This approach does not require any tools like Docker
or Singularity to be installed.
2. By generating a Docker or Singularity recipe that can be used to build the
container image. In this approach, Spack builds the software inside the
container runtime, not on the host system.
The first approach is easiest if you already have an installed environment,
the second approach gives more control over the container image.
---------------------------
From existing installations
---------------------------
If you already have a Spack environment installed on your system, you can
share the binaries as an OCI compatible container image. To get started you
just have to configure and OCI registry and run ``spack buildcache push``.
.. code-block:: console
# Create and install an environment in the current directory
spack env create -d .
spack -e . add pkg-a pkg-b
spack -e . install
# Configure the registry
spack -e . mirror add --oci-username ... --oci-password ... container-registry oci://example.com/name/image
# Push the image
spack -e . buildcache push --update-index --base-image ubuntu:22.04 --tag my_env container-registry
The resulting container image can then be run as follows:
.. code-block:: console
$ docker run -it example.com/name/image:my_env
The image generated by Spack consists of the specified base image with each package from the
environment as a separate layer on top. The image is minimal by construction, it only contains the
environment roots and its runtime dependencies.
.. note::
When using registries like GHCR and Docker Hub, the ``--oci-password`` flag is not
the password for your account, but a personal access token you need to generate separately.
The specified ``--base-image`` should have a libc that is compatible with the host system.
For example if your host system is Ubuntu 20.04, you can use ``ubuntu:20.04``, ``ubuntu:22.04``
or newer: the libc in the container image must be at least the version of the host system,
assuming ABI compatibility. It is also perfectly fine to use a completely different
Linux distribution as long as the libc is compatible.
For convenience, Spack also turns the OCI registry into a :ref:`build cache <binary_caches_oci>`,
so that future ``spack install`` of the environment will simply pull the binaries from the
registry instead of doing source builds. The flag ``--update-index`` is needed to make Spack
take the build cache into account when concretizing.
.. note::
When generating container images in CI, the approach above is recommended when CI jobs
already run in a sandboxed environment. You can simply use ``spack`` directly
in the CI job and push the resulting image to a registry. Subsequent CI jobs should
run faster because Spack can install from the same registry instead of rebuilding from
sources.
---------------------------------------------
Generating recipes for Docker and Singularity
---------------------------------------------
Apart from copying existing installations into container images, Spack can also
generate recipes for container images. This is useful if you want to run Spack
itself in a sandboxed environment instead of on the host system.
Since recipes need a little bit more boilerplate than
Spack :ref:`environments` are a great tool to create container images, but
preparing one that is suitable for production requires some more boilerplate
than just:
.. code-block:: docker
COPY spack.yaml /environment
RUN spack -e /environment install
Spack provides a command to generate customizable recipes for container images. Customizations
include minimizing the size of the image, installing packages in the base image using the system
package manager, and setting up a proper entrypoint to run the image.
Additional actions may be needed to minimize the size of the
container, or to update the system software that is installed in the base
image, or to set up a proper entrypoint to run the image. These tasks are
usually both necessary and repetitive, so Spack comes with a command
to generate recipes for container images starting from a ``spack.yaml``.
~~~~~~~~~~~~~~~~~~~~
--------------------
A Quick Introduction
~~~~~~~~~~~~~~~~~~~~
--------------------
Consider having a Spack environment like the following:
@@ -109,8 +37,8 @@ Consider having a Spack environment like the following:
- gromacs+mpi
- mpich
Producing a ``Dockerfile`` from it is as simple as changing directories to
where the ``spack.yaml`` file is stored and running the following command:
Producing a ``Dockerfile`` from it is as simple as moving to the directory
where the ``spack.yaml`` file is stored and giving the following command:
.. code-block:: console
@@ -176,9 +104,9 @@ configuration are discussed in details in the sections below.
.. _container_spack_images:
~~~~~~~~~~~~~~~~~~~~~~~~~~
--------------------------
Spack Images on Docker Hub
~~~~~~~~~~~~~~~~~~~~~~~~~~
--------------------------
Docker images with Spack preinstalled and ready to be used are
built when a release is tagged, or nightly on ``develop``. The images
@@ -194,44 +122,27 @@ The OS that are currently supported are summarized in the table below:
* - Operating System
- Base Image
- Spack Image
* - Ubuntu 18.04
- ``ubuntu:18.04``
- ``spack/ubuntu-bionic``
* - Ubuntu 20.04
- ``ubuntu:20.04``
- ``spack/ubuntu-focal``
* - Ubuntu 22.04
- ``ubuntu:22.04``
- ``spack/ubuntu-jammy``
* - Ubuntu 24.04
- ``ubuntu:24.04``
- ``spack/ubuntu-noble``
* - CentOS Stream9
- ``quay.io/centos/centos:stream9``
- ``spack/centos-stream9``
* - CentOS 7
- ``centos:7``
- ``spack/centos7``
* - CentOS Stream
- ``quay.io/centos/centos:stream``
- ``spack/centos-stream``
* - openSUSE Leap
- ``opensuse/leap``
- ``spack/leap15``
* - Amazon Linux 2
- ``amazonlinux:2``
- ``spack/amazon-linux``
* - AlmaLinux 8
- ``almalinux:8``
- ``spack/almalinux8``
* - AlmaLinux 9
- ``almalinux:9``
- ``spack/almalinux9``
* - Rocky Linux 8
- ``rockylinux:8``
- ``spack/rockylinux8``
* - Rocky Linux 9
- ``rockylinux:9``
- ``spack/rockylinux9``
* - Fedora Linux 39
- ``fedora:39``
- ``spack/fedora39``
* - Fedora Linux 40
- ``fedora:40``
- ``spack/fedora40``
All the images are tagged with the corresponding release of Spack:
@@ -245,9 +156,9 @@ by Spack use them as default base images for their ``build`` stage,
even though handles to use custom base images provided by users are
available to accommodate complex use cases.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Configuring the Container Recipe
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
---------------------------------
Creating Images From Environments
---------------------------------
Any Spack Environment can be used for the automatic generation of container
recipes. Sensible defaults are provided for things like the base image or the
@@ -281,25 +192,31 @@ under the ``container`` attribute of environments:
final:
- libgomp
# Extra instructions
extra_instructions:
final: |
RUN echo 'export PS1="\[$(tput bold)\]\[$(tput setaf 1)\][gromacs]\[$(tput setaf 2)\]\u\[$(tput sgr0)\]:\w $ "' >> ~/.bashrc
# Labels for the image
labels:
app: "gromacs"
mpi: "mpich"
A detailed description of the options available can be found in the :ref:`container_config_options` section.
A detailed description of the options available can be found in the
:ref:`container_config_options` section.
~~~~~~~~~~~~~~~~~~~
-------------------
Setting Base Images
~~~~~~~~~~~~~~~~~~~
-------------------
The ``images`` subsection is used to select both the image where
Spack builds the software and the image where the built software
is installed. This attribute can be set in different ways and
which one to use depends on the use case at hand.
""""""""""""""""""""""""""""""""""""""""
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use Official Spack Images From Dockerhub
""""""""""""""""""""""""""""""""""""""""
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To generate a recipe that uses an official Docker image from the
Spack organization to build the software and the corresponding official OS image
@@ -504,9 +421,9 @@ responsibility to ensure that:
Therefore we don't recommend its use in cases that can be otherwise
covered by the simplified mode shown first.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
----------------------------
Singularity Definition Files
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
----------------------------
In addition to producing recipes in ``Dockerfile`` format Spack can produce
Singularity Definition Files by just changing the value of the ``format``
@@ -527,132 +444,11 @@ attribute:
The minimum version of Singularity required to build a SIF (Singularity Image Format)
image from the recipes generated by Spack is ``3.5.3``.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Extending the Jinja2 Templates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Dockerfile and the Singularity definition file that Spack can generate are based on
a few Jinja2 templates that are rendered according to the environment being containerized.
Even though Spack allows a great deal of customization by just setting appropriate values for
the configuration options, sometimes that is not enough.
In those cases, a user can directly extend the template that Spack uses to render the image
to e.g. set additional environment variables or perform specific operations either before or
after a given stage of the build. Let's consider as an example the following structure:
.. code-block:: console
$ tree /opt/environment
/opt/environment
├── data
│ └── data.csv
├── spack.yaml
├── data
└── templates
└── container
└── CustomDockerfile
containing both the custom template extension and the environment manifest file. To use a custom
template, the environment must register the directory containing it, and declare its use under the
``container`` configuration:
.. code-block:: yaml
:emphasize-lines: 7-8,12
spack:
specs:
- hdf5~mpi
concretizer:
unify: true
config:
template_dirs:
- /opt/environment/templates
container:
format: docker
depfile: true
template: container/CustomDockerfile
The template extension can override two blocks, named ``build_stage`` and ``final_stage``, similarly to
the example below:
.. code-block::
:emphasize-lines: 3,8
{% extends "container/Dockerfile" %}
{% block build_stage %}
RUN echo "Start building"
{{ super() }}
{% endblock %}
{% block final_stage %}
{{ super() }}
COPY data /share/myapp/data
{% endblock %}
The Dockerfile is generated by running:
.. code-block:: console
$ spack -e /opt/environment containerize
Note that the environment must be active for spack to read the template.
The recipe that gets generated contains the two extra instruction that we added in our template extension:
.. code-block:: Dockerfile
:emphasize-lines: 4,43
# Build stage with Spack pre-installed and ready to be used
FROM spack/ubuntu-jammy:latest as builder
RUN echo "Start building"
# What we want to install and how we want to install it
# is specified in a manifest file (spack.yaml)
RUN mkdir /opt/spack-environment \
&& (echo "spack:" \
&& echo " specs:" \
&& echo " - hdf5~mpi" \
&& echo " concretizer:" \
&& echo " unify: true" \
&& echo " config:" \
&& echo " template_dirs:" \
&& echo " - /tmp/environment/templates" \
&& echo " install_tree: /opt/software" \
&& echo " view: /opt/view") > /opt/spack-environment/spack.yaml
# Install the software, remove unnecessary deps
RUN cd /opt/spack-environment && spack env activate . && spack concretize && spack env depfile -o Makefile && make -j $(nproc) && spack gc -y
# Strip all the binaries
RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
xargs file -i | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: '{print $1}' | xargs strip -s
# Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh
# Bare OS image to run the installed executables
FROM ubuntu:22.04
COPY --from=builder /opt/spack-environment /opt/spack-environment
COPY --from=builder /opt/software /opt/software
COPY --from=builder /opt/._view /opt/._view
COPY --from=builder /opt/view /opt/view
COPY --from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_environment.sh
COPY data /share/myapp/data
ENTRYPOINT ["/bin/bash", "--rcfile", "/etc/profile", "-l", "-c", "$*", "--" ]
CMD [ "/bin/bash" ]
.. _container_config_options:
~~~~~~~~~~~~~~~~~~~~~~~
-----------------------
Configuration Reference
~~~~~~~~~~~~~~~~~~~~~~~
-----------------------
The tables below describe all the configuration options that are currently supported
to customize the generation of container recipes:
@@ -668,10 +464,6 @@ to customize the generation of container recipes:
- The format of the recipe
- ``docker`` or ``singularity``
- Yes
* - ``depfile``
- Whether to use a depfile for installation, or not
- True or False (default)
- No
* - ``images:os``
- Operating system used as a base for the image
- See :ref:`containers-supported-os`
@@ -706,7 +498,7 @@ to customize the generation of container recipes:
- No
* - ``os_packages:command``
- Tool used to manage system packages
- ``apt``, ``yum``, ``dnf``, ``dnf_epel``, ``zypper``, ``apk``, ``yum_amazon``
- ``apt``, ``yum``
- Only with custom base images
* - ``os_packages:update``
- Whether or not to update the list of available packages
@@ -720,6 +512,14 @@ to customize the generation of container recipes:
- System packages needed at run-time
- Valid packages for the current OS
- No
* - ``extra_instructions:build``
- Extra instructions (e.g. `RUN`, `COPY`, etc.) at the end of the ``build`` stage
- Anything understood by the current ``format``
- No
* - ``extra_instructions:final``
- Extra instructions (e.g. `RUN`, `COPY`, etc.) at the end of the ``final`` stage
- Anything understood by the current ``format``
- No
* - ``labels``
- Labels to tag the image
- Pairs of key-value strings
@@ -749,13 +549,13 @@ to customize the generation of container recipes:
- Description string
- No
~~~~~~~~~~~~~~
--------------
Best Practices
~~~~~~~~~~~~~~
--------------
"""
^^^
MPI
"""
^^^
Due to the dependency on Fortran for OpenMPI, which is the spack default
implementation, consider adding ``gfortran`` to the ``apt-get install`` list.
@@ -766,9 +566,9 @@ For execution on HPC clusters, it can be helpful to import the docker
image into Singularity in order to start a program with an *external*
MPI. Otherwise, also add ``openssh-server`` to the ``apt-get install`` list.
""""
^^^^
CUDA
""""
^^^^
Starting from CUDA 9.0, Nvidia provides minimal CUDA images based on
Ubuntu. Please see `their instructions <https://hub.docker.com/r/nvidia/cuda/>`_.
Avoid double-installing CUDA by adding, e.g.
@@ -787,9 +587,9 @@ to your ``spack.yaml``.
Users will either need ``nvidia-docker`` or e.g. Singularity to *execute*
device kernels.
"""""""""""""""""""""""""
^^^^^^^^^^^^^^^^^^^^^^^^^
Docker on Windows and OSX
"""""""""""""""""""""""""
^^^^^^^^^^^^^^^^^^^^^^^^^
On Mac OS and Windows, docker runs on a hypervisor that is not allocated much
memory by default, and some spack packages may fail to build due to lack of

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -118,7 +118,7 @@ make another change, test that change, etc. We use `pytest
<http://pytest.org/>`_ as our tests framework, and these types of
arguments are just passed to the ``pytest`` command underneath. See `the
pytest docs
<https://doc.pytest.org/en/latest/how-to/usage.html#specifying-which-tests-to-run>`_
<http://doc.pytest.org/en/latest/usage.html#specifying-tests-selecting-tests>`_
for more details on test selection syntax.
``spack unit-test`` has a few special options that can help you
@@ -147,7 +147,7 @@ you want to know about. For example, to see just the tests in
You can also combine any of these options with a ``pytest`` keyword
search. See the `pytest usage docs
<https://doc.pytest.org/en/latest/how-to/usage.html#specifying-which-tests-to-run>`_
<https://docs.pytest.org/en/stable/usage.html#specifying-tests-selecting-tests>`_:
for more details on test selection syntax. For example, to see the names of all tests that have "spec"
or "concretize" somewhere in their names:
@@ -310,11 +310,53 @@ Once all of the dependencies are installed, you can try building the documentati
$ make clean
$ make
If you see any warning or error messages, you will have to correct those before your PR
is accepted. If you are editing the documentation, you should be running the
documentation tests to make sure there are no errors. Documentation changes can result
in some obfuscated warning messages. If you don't understand what they mean, feel free
to ask when you submit your PR.
If you see any warning or error messages, you will have to correct those before
your PR is accepted.
If you are editing the documentation, you should obviously be running the
documentation tests. But even if you are simply adding a new package, your
changes could cause the documentation tests to fail:
.. code-block:: console
package_list.rst:8745: WARNING: Block quote ends without a blank line; unexpected unindent.
At first, this error message will mean nothing to you, since you didn't edit
that file. Until you look at line 8745 of the file in question:
.. code-block:: rst
Description:
NetCDF is a set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing
of array-oriented scientific data.
Our documentation includes :ref:`a list of all Spack packages <package-list>`.
If you add a new package, its docstring is added to this page. The problem in
this case was that the docstring looked like:
.. code-block:: python
class Netcdf(Package):
"""
NetCDF is a set of software libraries and self-describing,
machine-independent data formats that support the creation,
access, and sharing of array-oriented scientific data.
"""
Docstrings cannot start with a newline character, or else Sphinx will complain.
Instead, they should look like:
.. code-block:: python
class Netcdf(Package):
"""NetCDF is a set of software libraries and self-describing,
machine-independent data formats that support the creation,
access, and sharing of array-oriented scientific data."""
Documentation changes can result in much more obfuscated warning messages.
If you don't understand what they mean, feel free to ask when you submit
your PR.
--------
Coverage

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -181,6 +181,10 @@ Spec-related modules
:mod:`spack.parser`
Contains :class:`~spack.parser.SpecParser` and functions related to parsing specs.
:mod:`spack.concretize`
Contains :class:`~spack.concretize.Concretizer` implementation,
which allows site administrators to change Spack's :ref:`concretization-policies`.
:mod:`spack.version`
Implements a simple :class:`~spack.version.Version` class with simple
comparison semantics. Also implements :class:`~spack.version.VersionRange`
@@ -228,7 +232,7 @@ Spack Subcommands
Unit tests
^^^^^^^^^^
``spack.test``
:mod:`spack.test`
Implements Spack's test suite. Add a module and put its name in
the test suite in ``__init__.py`` to add more unit tests.
@@ -353,23 +357,91 @@ If there is a hook that you would like and is missing, you can propose to add a
``pre_install(spec)``
"""""""""""""""""""""
A ``pre_install`` hook is run within the install subprocess, directly before the install starts.
It expects a single argument of a spec.
A ``pre_install`` hook is run within an install subprocess, directly before
the install starts. It expects a single argument of a spec, and is run in
a multiprocessing subprocess. Note that if you see ``pre_install`` functions associated with packages these are not hooks
as we have defined them here, but rather callback functions associated with
a package install.
"""""""""""""""""""""""""""""""""""""
``post_install(spec, explicit=None)``
"""""""""""""""""""""""""""""""""""""
""""""""""""""""""""""
``post_install(spec)``
""""""""""""""""""""""
A ``post_install`` hook is run within the install subprocess, directly after the install finishes,
but before the build stage is removed and the spec is registered in the database. It expects two
arguments: spec and an optional boolean indicating whether this spec is being installed explicitly.
A ``post_install`` hook is run within an install subprocess, directly after
the install finishes, but before the build stage is removed. If you
write one of these hooks, you should expect it to accept a spec as the only
argument. This is run in a multiprocessing subprocess. This ``post_install`` is
also seen in packages, but in this context not related to the hooks described
here.
""""""""""""""""""""""""""""""""""""""""""""""""""""
``pre_uninstall(spec)`` and ``post_uninstall(spec)``
""""""""""""""""""""""""""""""""""""""""""""""""""""
These hooks are currently used for cleaning up module files after uninstall.
""""""""""""""""""""""""""
``on_install_start(spec)``
""""""""""""""""""""""""""
This hook is run at the beginning of ``lib/spack/spack/installer.py``,
in the install function of a ``PackageInstaller``,
and importantly is not part of a build process, but before it. This is when
we have just newly grabbed the task, and are preparing to install. If you
write a hook of this type, you should provide the spec to it.
.. code-block:: python
def on_install_start(spec):
"""On start of an install, we want to...
"""
print('on_install_start')
""""""""""""""""""""""""""""
``on_install_success(spec)``
""""""""""""""""""""""""""""
This hook is run on a successful install, and is also run inside the build
process, akin to ``post_install``. The main difference is that this hook
is run outside of the context of the stage directory, meaning after the
build stage has been removed and the user is alerted that the install was
successful. If you need to write a hook that is run on success of a particular
phase, you should use ``on_phase_success``.
""""""""""""""""""""""""""""
``on_install_failure(spec)``
""""""""""""""""""""""""""""
This hook is run given an install failure that happens outside of the build
subprocess, but somewhere in ``installer.py`` when something else goes wrong.
If you need to write a hook that is relevant to a failure within a build
process, you would want to instead use ``on_phase_failure``.
"""""""""""""""""""""""""""
``on_install_cancel(spec)``
"""""""""""""""""""""""""""
The same, but triggered if a spec install is cancelled for any reason.
"""""""""""""""""""""""""""""""""""""""""""""""
``on_phase_success(pkg, phase_name, log_file)``
"""""""""""""""""""""""""""""""""""""""""""""""
This hook is run within the install subprocess, and specifically when a phase
successfully finishes. Since we are interested in the package, the name of
the phase, and any output from it, we require:
- **pkg**: the package variable, which also has the attached spec at ``pkg.spec``
- **phase_name**: the name of the phase that was successful (e.g., configure)
- **log_file**: the path to the file with output, in case you need to inspect or otherwise interact with it.
"""""""""""""""""""""""""""""""""""""""""""""
``on_phase_error(pkg, phase_name, log_file)``
"""""""""""""""""""""""""""""""""""""""""""""
In the case of an error during a phase, we might want to trigger some event
with a hook, and this is the purpose of this particular hook. Akin to
``on_phase_success`` we require the same variables - the package that failed,
the name of the phase, and the log file where we might find errors.
^^^^^^^^^^^^^^^^^^^^^^
@@ -400,7 +472,7 @@ use my new hook as follows:
.. code-block:: python
def post_log_write(message, level):
"""Do something custom with the message and level every time we write
"""Do something custom with the messsage and level every time we write
to the log
"""
print('running post_log_write!')
@@ -548,11 +620,11 @@ With either interpreter you can run a single command:
.. code-block:: console
$ spack python -c 'from spack.spec import Spec; Spec("python").concretized()'
...
$ spack python -c 'import distro; distro.linux_distribution()'
('Ubuntu', '18.04', 'Bionic Beaver')
$ spack python -i ipython -c 'from spack.spec import Spec; Spec("python").concretized()'
Out[1]: ...
$ spack python -i ipython -c 'import distro; distro.linux_distribution()'
Out[1]: ('Ubuntu', '18.04', 'Bionic Beaver')
or a file:
@@ -1067,9 +1139,9 @@ Announcing a release
We announce releases in all of the major Spack communication channels.
Publishing the release takes care of GitHub. The remaining channels are
X, Slack, and the mailing list. Here are the steps:
Twitter, Slack, and the mailing list. Here are the steps:
#. Announce the release on X.
#. Announce the release on Twitter.
* Compose the tweet on the ``@spackpm`` account per the
``spack-twitter`` slack channel.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -58,9 +58,9 @@ Using Environments
Here we follow a typical use case of creating, concretizing,
installing and loading an environment.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Creating a managed Environment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Creating a named Environment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
An environment is created by:
@@ -72,8 +72,7 @@ Spack then creates the directory ``var/spack/environments/myenv``.
.. note::
All managed environments by default are stored in the ``var/spack/environments`` folder.
This location can be changed by setting the ``environments_root`` variable in ``config.yaml``.
All named environments are stored in the ``var/spack/environments`` folder.
In the ``var/spack/environments/myenv`` directory, Spack creates the
file ``spack.yaml`` and the hidden directory ``.spack-env``.
@@ -94,9 +93,9 @@ an Environment, the ``.spack-env`` directory also contains:
* ``logs/``: A directory containing the build logs for the packages
in this Environment.
Spack Environments can also be created from either a manifest file
(usually but not necessarily named, ``spack.yaml``) or a lockfile.
To create an Environment from a manifest:
Spack Environments can also be created from either a ``spack.yaml``
manifest or a ``spack.lock`` lockfile. To create an Environment from a
``spack.yaml`` manifest:
.. code-block:: console
@@ -142,17 +141,6 @@ user's prompt to begin with the environment name in brackets.
$ spack env activate -p myenv
[myenv] $ ...
The ``activate`` command can also be used to create a new environment if it does not already
exist.
.. code-block:: console
$ spack env activate --create -p myenv
# ...
# [creates if myenv does not exist yet]
# ...
[myenv] $ ...
To deactivate an environment, use the command:
.. code-block:: console
@@ -172,36 +160,21 @@ environment will remove the view from the user environment.
Anonymous Environments
^^^^^^^^^^^^^^^^^^^^^^
Apart from managed environments, Spack also supports anonymous environments.
Anonymous environments can be placed in any directory of choice.
.. note::
When uninstalling packages, Spack asks the user to confirm the removal of packages
that are still used in a managed environment. This is not the case for anonymous
environments.
To create an anonymous environment, use one of the following commands:
Any directory can be treated as an environment if it contains a file
``spack.yaml``. To load an anonymous environment, use:
.. code-block:: console
$ spack env create --dir my_env
$ spack env create ./my_env
$ spack env activate -d /path/to/directory
As a shorthand, you can also create an anonymous environment upon activation if it does not
already exist:
Anonymous specs can be created in place using the command:
.. code-block:: console
$ spack env activate --create ./my_env
For convenience, Spack can also place an anonymous environment in a temporary directory for you:
.. code-block:: console
$ spack env activate --temp
$ spack env create -d .
In this case Spack simply creates a spack.yaml file in the requested
directory.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Environment Sensitive Commands
@@ -373,7 +346,7 @@ the Environment and then install the concretized specs.
(see :ref:`build-jobs`). To speed up environment builds further, independent
packages can be installed in parallel by launching more Spack instances. For
example, the following will build at most four packages in parallel using
three background jobs:
three background jobs:
.. code-block:: console
@@ -421,29 +394,12 @@ version (and other constraints) passed as the spec argument to the
For packages with ``git`` attributes, git branches, tags, and commits can
also be used as valid concrete versions (see :ref:`version-specifier`).
This means that for a package ``foo``, ``spack develop foo@git.main`` will clone
This means that for a package ``foo``, ``spack develop foo@git.main`` will clone
the ``main`` branch of the package, and ``spack install`` will install from
that git clone if ``foo`` is in the environment.
Further development on ``foo`` can be tested by reinstalling the environment,
and eventually committed and pushed to the upstream git repo.
If the package being developed supports out-of-source builds then users can use the
``--build_directory`` flag to control the location and name of the build directory.
This is a shortcut to set the ``package_attributes:build_directory`` in the
``packages`` configuration (see :ref:`assigning-package-attributes`).
The supplied location will become the build-directory for that package in all future builds.
.. warning::
Potential pitfalls of setting the build directory
Spack does not check for out-of-source build compatibility with the packages and
so the onerous of making sure the package supports out-of-source builds is on
the user.
For example, most ``autotool`` and ``makefile`` packages do not support out-of-source builds
while all ``CMake`` packages do.
Understanding these nuances are on the software developers and we strongly encourage
developers to only redirect the build directory if they understand their package's
build-system.
^^^^^^^
Loading
^^^^^^^
@@ -460,125 +416,6 @@ Sourcing that file in Bash will make the environment available to the
user; and can be included in ``.bashrc`` files, etc. The ``loads``
file may also be copied out of the environment, renamed, etc.
.. _environment_include_concrete:
------------------------------
Included Concrete Environments
------------------------------
Spack environments can create an environment based off of information in already
established environments. You can think of it as a combination of existing
environments. It will gather information from the existing environment's
``spack.lock`` and use that during the creation of this included concrete
environment. When an included concrete environment is created it will generate
a ``spack.lock`` file for the newly created environment.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Creating included environments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To create a combined concrete environment, you must have at least one existing
concrete environment. You will use the command ``spack env create`` with the
argument ``--include-concrete`` followed by the name or path of the environment
you'd like to include. Here is an example of how to create a combined environment
from the command line.
.. code-block:: console
$ spack env create myenv
$ spack -e myenv add python
$ spack -e myenv concretize
$ spack env create --include-concrete myenv included_env
You can also include an environment directly in the ``spack.yaml`` file. It
involves adding the ``include_concrete`` heading in the yaml followed by the
absolute path to the independent environments.
.. code-block:: yaml
spack:
specs: []
concretizer:
unify: true
include_concrete:
- /absolute/path/to/environment1
- /absolute/path/to/environment2
Once the ``spack.yaml`` has been updated you must concretize the environment to
get the concrete specs from the included environments.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Updating an included environment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If changes were made to the base environment and you want that reflected in the
included environment you will need to reconcretize both the base environment and the
included environment for the change to be implemented. For example:
.. code-block:: console
$ spack env create myenv
$ spack -e myenv add python
$ spack -e myenv concretize
$ spack env create --include-concrete myenv included_env
$ spack -e myenv find
==> In environment myenv
==> Root specs
python
==> 0 installed packages
$ spack -e included_env find
==> In environment included_env
==> No root specs
==> Included specs
python
==> 0 installed packages
Here we see that ``included_env`` has access to the python package through
the ``myenv`` environment. But if we were to add another spec to ``myenv``,
``included_env`` will not be able to access the new information.
.. code-block:: console
$ spack -e myenv add perl
$ spack -e myenv concretize
$ spack -e myenv find
==> In environment myenv
==> Root specs
perl python
==> 0 installed packages
$ spack -e included_env find
==> In environment included_env
==> No root specs
==> Included specs
python
==> 0 installed packages
It isn't until you run the ``spack concretize`` command that the combined
environment will get the updated information from the reconcretized base environmennt.
.. code-block:: console
$ spack -e included_env concretize
$ spack -e included_env find
==> In environment included_env
==> No root specs
==> Included specs
perl python
==> 0 installed packages
.. _environment-configuration:
------------------------
@@ -619,11 +456,11 @@ a ``packages.yaml`` file) could contain:
.. code-block:: yaml
spack:
# ...
...
packages:
all:
compiler: [intel]
# ...
...
This configuration sets the default compiler for all packages to
``intel``.
@@ -751,11 +588,10 @@ user support groups providing a large software stack for their HPC center.
.. admonition:: Re-concretization of user specs
The ``spack concretize`` command without additional arguments will *not* change any
previously concretized specs. This may prevent it from finding a solution when using
``unify: true``, and it may prevent it from finding a minimal solution when using
``unify: when_possible``. You can force Spack to ignore the existing concrete environment
with ``spack concretize -f``.
When using *unified* concretization (when possible), the entire set of specs will be
re-concretized after any addition of new user specs, to ensure that
the environment remains consistent / minimal. When instead unified concretization is
disabled, only the new specs will be concretized after any addition.
^^^^^^^^^^^^^
Spec Matrices
@@ -863,7 +699,7 @@ named list ``compilers`` is ``['%gcc', '%clang', '%intel']`` on
spack:
definitions:
- compilers: ['%gcc', '%clang']
- when: arch.satisfies('target=x86_64:')
- when: arch.satisfies('x86_64:')
compilers: ['%intel']
.. note::
@@ -930,85 +766,32 @@ For example, the following environment has three root packages:
This allows for a much-needed reduction in redundancy between packages
and constraints.
----------------
Filesystem Views
----------------
-----------------
Environment Views
-----------------
Spack Environments can have an associated filesystem view, which is a directory
with a more traditional structure ``<view>/bin``, ``<view>/lib``, ``<view>/include``
in which all files of the installed packages are linked.
By default a view is created for each environment, thanks to the ``view: true``
option in the ``spack.yaml`` manifest file:
.. code-block:: yaml
spack:
specs: [perl, python]
view: true
The view is created in a hidden directory ``.spack-env/view`` relative to the environment.
If you've used ``spack env activate``, you may have already interacted with this view. Spack
prepends its ``<view>/bin`` dir to ``PATH`` when the environment is activated, so that
you can directly run executables from all installed packages in the environment.
Views are highly customizable: you can control where they are put, modify their structure,
include and exclude specs, change how files are linked, and you can even generate multiple
views for a single environment.
Spack Environments can define filesystem views, which provide a direct access point
for software similar to the directory hierarchy that might exist under ``/usr/local``.
Filesystem views are updated every time the environment is written out to the lock
file ``spack.lock``, so the concrete environment and the view are always compatible.
The files of the view's installed packages are brought into the view by symbolic or
hard links, referencing the original Spack installation, or by copy.
.. _configuring_environment_views:
^^^^^^^^^^^^^^^^^^^^^^^^^^
Minimal view configuration
^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Configuration in ``spack.yaml``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The minimal configuration
.. code-block:: yaml
spack:
# ...
view: true
lets Spack generate a single view with default settings under the
``.spack-env/view`` directory of the environment.
Another short way to configure a view is to specify just where to put it:
.. code-block:: yaml
spack:
# ...
view: /path/to/view
Views can also be disabled by setting ``view: false``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Advanced view configuration
^^^^^^^^^^^^^^^^^^^^^^^^^^^
One or more **view descriptors** can be defined under ``view``, keyed by a name.
The example from the previous section with ``view: /path/to/view`` is equivalent
to defining a view descriptor named ``default`` with a ``root`` attribute:
.. code-block:: yaml
spack:
# ...
view:
default: # name of the view
root: /path/to/view # view descriptor attribute
The ``default`` view descriptor name is special: when you ``spack env activate`` your
environment, this view will be used to update (among other things) your ``PATH``
variable.
View descriptors must contain the root of the view, and optionally projections,
``select`` and ``exclude`` lists and link information via ``link`` and
The Spack Environment manifest file has a top-level keyword
``view``. Each entry under that heading is a **view descriptor**, headed
by a name. Any number of views may be defined under the ``view`` heading.
The view descriptor contains the root of the view, and
optionally the projections for the view, ``select`` and
``exclude`` lists for the view and link information via ``link`` and
``link_type``.
As a more advanced example, in the following manifest
For example, in the following manifest
file snippet we define a view named ``mpis``, rooted at
``/path/to/view`` in which all projections use the package name,
version, and compiler name to determine the path for a given
@@ -1022,7 +805,7 @@ directories.
.. code-block:: yaml
spack:
# ...
...
view:
mpis:
root: /path/to/view
@@ -1053,10 +836,59 @@ of ``hardlink`` or ``copy``.
when the environment is not activated, and linked libraries will be located
*outside* of the view thanks to rpaths.
There are two shorthands for environments with a single view. If the
environment at ``/path/to/env`` has a single view, with a root at
``/path/to/env/.spack-env/view``, with default selection and exclusion
and the default projection, we can put ``view: True`` in the
environment manifest. Similarly, if the environment has a view with a
different root, but default selection, exclusion, and projections, the
manifest can say ``view: /path/to/view``. These views are
automatically named ``default``, so that
.. code-block:: yaml
spack:
...
view: True
is equivalent to
.. code-block:: yaml
spack:
...
view:
default:
root: .spack-env/view
and
.. code-block:: yaml
spack:
...
view: /path/to/view
is equivalent to
.. code-block:: yaml
spack:
...
view:
default:
root: /path/to/view
By default, Spack environments are configured with ``view: True`` in
the manifest. Environments can be configured without views using
``view: False``. For backwards compatibility reasons, environments
with no ``view`` key are treated the same as ``view: True``.
From the command line, the ``spack env create`` command takes an
argument ``--with-view [PATH]`` that sets the path for a single, default
view. If no path is specified, the default path is used (``view:
true``). The argument ``--without-view`` can be used to create an
True``). The argument ``--without-view`` can be used to create an
environment without any view configured.
The ``spack env view`` command can be used to change the manage views
@@ -1082,20 +914,9 @@ function, as shown in the example below:
.. code-block:: yaml
projections:
zlib: "{name}-{version}"
^mpi: "{name}-{version}/{^mpi.name}-{^mpi.version}-{compiler.name}-{compiler.version}"
all: "{name}-{version}/{compiler.name}-{compiler.version}"
Projections also permit environment and spack configuration variable
expansions as shown below:
.. code-block:: yaml
projections:
all: "{name}-{version}/{compiler.name}-{compiler.version}/$date/$SYSTEM_ENV_VARIBLE"
where ``$date`` is the spack configuration variable that will expand with the ``YYYY-MM-DD``
format and ``$SYSTEM_ENV_VARIABLE`` is an environment variable defined in the shell.
zlib: {name}-{version}
^mpi: {name}-{version}/{^mpi.name}-{^mpi.version}-{compiler.name}-{compiler.version}
all: {name}-{version}/{compiler.name}-{compiler.version}
The entries in the projections configuration file must all be either
specs or the keyword ``all``. For each spec, the projection used will
@@ -1122,18 +943,11 @@ the projection under ``all`` before reaching those entries.
Activating environment views
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``spack env activate <env>`` has two effects:
1. It activates the environment so that further Spack commands such
as ``spack install`` will run in the context of the environment.
2. It activates the view so that environment variables such as
``PATH`` are updated to include the view.
Without further arguments, the ``default`` view of the environment is
activated. If a view with a different name has to be activated,
``spack env activate --with-view <name> <env>`` can be
used instead. You can also activate the environment without modifying
further environment variables using ``--without-view``.
The ``spack env activate`` command will put the default view for the
environment into the user's path, in addition to activating the
environment for Spack commands. The arguments ``-v,--with-view`` and
``-V,--without-view`` can be used to tune this behavior. The default
behavior is to activate with the environment view if there is one.
The environment variables affected by the ``spack env activate``
command and the paths that are used to update them are determined by
@@ -1156,8 +970,8 @@ relevant variable if the path exists. For this reason, it is not
recommended to use non-default projections with the default view of an
environment.
The ``spack env deactivate`` command will remove the active view of
the Spack environment from the user's environment variables.
The ``spack env deactivate`` command will remove the default view of
the environment from the user's path.
.. _env-generate-depfile:
@@ -1174,7 +988,7 @@ other targets to depend on the environment installation.
A typical workflow is as follows:
.. code-block:: console
.. code:: console
spack env create -d .
spack -e . add perl
@@ -1225,7 +1039,7 @@ gets installed and is available for use in the ``env`` target.
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-prefix spack
$(SPACK) -e . env depfile -o $@ --make-target-prefix spack
env: spack/env
$(info Environment installed!)
@@ -1248,9 +1062,9 @@ the include is conditional.
.. note::
When including generated ``Makefile``\s, it is important to use
the ``--make-prefix`` flag and use the non-phony target
``<prefix>/env`` as prerequisite, instead of the phony target
``<prefix>/all``.
the ``--make-target-prefix`` flag and use the non-phony target
``<target-prefix>/env`` as prerequisite, instead of the phony target
``<target-prefix>/all``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Building a subset of the environment
@@ -1267,7 +1081,7 @@ its dependencies. This can be useful when certain flags should only apply to
dependencies. Below we show a use case where a spec is installed with verbose
output (``spack install --verbose``) while its dependencies are installed silently:
.. code-block:: console
.. code:: console
$ spack env depfile -o Makefile
@@ -1275,52 +1089,4 @@ output (``spack install --verbose``) while its dependencies are installed silent
$ make -j16 install-deps/python-3.11.0-<hash> SPACK_INSTALL_FLAGS=--show-log-on-error
# Install the root spec with verbose output.
$ make -j16 install/python-3.11.0-<hash> SPACK_INSTALL_FLAGS=--verbose
^^^^^^^^^^^^^^^^^^^^^^^^^
Adding post-install hooks
^^^^^^^^^^^^^^^^^^^^^^^^^
Another advanced use-case of generated ``Makefile``\s is running a post-install
command for each package. These "hooks" could be anything from printing a
post-install message, running tests, or pushing just-built binaries to a buildcache.
This can be accomplished through the generated ``[<prefix>/]SPACK_PACKAGE_IDS``
variable. Assuming we have an active and concrete environment, we generate the
associated ``Makefile`` with a prefix ``example``:
.. code-block:: console
$ spack env depfile -o env.mk --make-prefix example
And we now include it in a different ``Makefile``, in which we create a target
``example/push/%`` with ``%`` referring to a package identifier. This target
depends on the particular package installation. In this target we automatically
have the target-specific ``HASH`` and ``SPEC`` variables at our disposal. They
are respectively the spec hash (excluding leading ``/``), and a human-readable spec.
Finally, we have an entrypoint target ``push`` that will update the buildcache
index once every package is pushed. Note how this target uses the generated
``example/SPACK_PACKAGE_IDS`` variable to define its prerequisites.
.. code:: Makefile
SPACK ?= spack
BUILDCACHE_DIR = $(CURDIR)/tarballs
.PHONY: all
all: push
include env.mk
example/push/%: example/install/%
@mkdir -p $(dir $@)
$(info About to push $(SPEC) to a buildcache)
$(SPACK) -e . buildcache push --only=package $(BUILDCACHE_DIR) /$(HASH)
@touch $@
push: $(addprefix example/push/,$(example/SPACK_PACKAGE_IDS))
$(info Updating the buildcache index)
$(SPACK) -e . buildcache update-index $(BUILDCACHE_DIR)
$(info Done!)
@touch $@
$ make -j16 install/python-3.11.0-<hash> SPACK_INSTALL_FLAGS=--verbose

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -9,42 +9,46 @@
Custom Extensions
=================
*Spack extensions* allow you to extend Spack capabilities by deploying your
*Spack extensions* permit you to extend Spack capabilities by deploying your
own custom commands or logic in an arbitrary location on your filesystem.
This might be extremely useful e.g. to develop and maintain a command whose purpose is
too specific to be considered for reintegration into the mainline or to
evolve a command through its early stages before starting a discussion to merge
it upstream.
From Spack's point of view an extension is any path in your filesystem which
respects the following naming and layout for files:
respects a prescribed naming and layout for files:
.. code-block:: console
spack-scripting/ # The top level directory must match the format 'spack-{extension_name}'
├── pytest.ini # Optional file if the extension ships its own tests
├── scripting # Folder that may contain modules that are needed for the extension commands
│   ── cmd # Folder containing extension commands
│   │   └── filter.py # A new command that will be available
│   └── functions.py # Module with internal details
└── tests # Tests for this extension
│   ── cmd # Folder containing extension commands
│   └── filter.py # A new command that will be available
├── tests # Tests for this extension
│ ├── conftest.py
│ └── test_filter.py
└── templates # Templates that may be needed by the extension
In the example above, the extension is named *scripting*. It adds an additional command
(``spack filter``) and unit tests to verify its behavior.
In the example above the extension named *scripting* adds an additional command (``filter``)
and unit tests to verify its behavior. The code for this example can be
obtained by cloning the corresponding git repository:
The extension can import any core Spack module in its implementation. When loaded by
the ``spack`` command, the extension itself is imported as a Python package in the
``spack.extensions`` namespace. In the example above, since the extension is named
"scripting", the corresponding Python module is ``spack.extensions.scripting``.
The code for this example extension can be obtained by cloning the corresponding git repository:
.. TODO: write an ad-hoc "hello world" extension and make it part of the spack organization
.. code-block:: console
$ git -C /tmp clone https://github.com/spack/spack-scripting.git
$ cd ~/
$ mkdir tmp && cd tmp
$ git clone https://github.com/alalazo/spack-scripting.git
Cloning into 'spack-scripting'...
remote: Counting objects: 11, done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 11 (delta 0), reused 11 (delta 0), pack-reused 0
Receiving objects: 100% (11/11), done.
As you can see by inspecting the sources, Python modules that are part of the extension
can import any core Spack module.
---------------------------------
Configure Spack to Use Extensions
@@ -57,7 +61,7 @@ paths to ``config.yaml``. In the case of our example this means ensuring that:
config:
extensions:
- /tmp/spack-scripting
- ~/tmp/spack-scripting
is part of your configuration file. Once this is setup any command that the extension provides
will be available from the command line:
@@ -82,68 +86,37 @@ will be available from the command line:
--implicit select specs that are not installed or were installed implicitly
--output OUTPUT where to dump the result
The corresponding unit tests can be run giving the appropriate options to ``spack unit-test``:
The corresponding unit tests can be run giving the appropriate options
to ``spack unit-test``:
.. code-block:: console
$ spack unit-test --extension=scripting
========================================== test session starts ===========================================
platform linux -- Python 3.11.5, pytest-7.4.3, pluggy-1.3.0
rootdir: /home/culpo/github/spack-scripting
configfile: pytest.ini
testpaths: tests
plugins: xdist-3.5.0
============================================================== test session starts ===============================================================
platform linux2 -- Python 2.7.15rc1, pytest-3.2.5, py-1.4.34, pluggy-0.4.0
rootdir: /home/mculpo/tmp/spack-scripting, inifile: pytest.ini
collected 5 items
tests/test_filter.py ..... [100%]
tests/test_filter.py ...XX
============================================================ short test summary info =============================================================
XPASS tests/test_filter.py::test_filtering_specs[flags3-specs3-expected3]
XPASS tests/test_filter.py::test_filtering_specs[flags4-specs4-expected4]
========================================== slowest 30 durations ==========================================
2.31s setup tests/test_filter.py::test_filtering_specs[kwargs0-specs0-expected0]
0.57s call tests/test_filter.py::test_filtering_specs[kwargs2-specs2-expected2]
0.56s call tests/test_filter.py::test_filtering_specs[kwargs4-specs4-expected4]
0.54s call tests/test_filter.py::test_filtering_specs[kwargs3-specs3-expected3]
0.54s call tests/test_filter.py::test_filtering_specs[kwargs1-specs1-expected1]
0.48s call tests/test_filter.py::test_filtering_specs[kwargs0-specs0-expected0]
0.01s setup tests/test_filter.py::test_filtering_specs[kwargs4-specs4-expected4]
0.01s setup tests/test_filter.py::test_filtering_specs[kwargs2-specs2-expected2]
0.01s setup tests/test_filter.py::test_filtering_specs[kwargs1-specs1-expected1]
0.01s setup tests/test_filter.py::test_filtering_specs[kwargs3-specs3-expected3]
(5 durations < 0.005s hidden. Use -vv to show these durations.)
=========================================== 5 passed in 5.06s ============================================
---------------------------------------
Registering Extensions via Entry Points
---------------------------------------
.. note::
Python version >= 3.8 is required to register extensions via entry points.
Spack can be made aware of extensions that are installed as part of a python package. To do so, register a function that returns the extension path, or paths, to the ``"spack.extensions"`` entry point. Consider the Python package ``my_package`` that includes a Spack extension:
.. code-block:: console
my-package/
├── src
│   ├── my_package
│   │   └── __init__.py
│   └── spack-scripting/ # the spack extensions
└── pyproject.toml
adding the following to ``my_package``'s ``pyproject.toml`` will make the ``spack-scripting`` extension visible to Spack when ``my_package`` is installed:
.. code-block:: toml
[project.entry_points."spack.extenions"]
my_package = "my_package:get_extension_path"
The function ``my_package.get_extension_path`` in ``my_package/__init__.py`` might look like
.. code-block:: python
import importlib.resources
def get_extension_path():
dirname = importlib.resources.files("my_package").joinpath("spack-scripting")
if dirname.exists():
return str(dirname)
=========================================================== slowest 20 test durations ============================================================
3.74s setup tests/test_filter.py::test_filtering_specs[flags0-specs0-expected0]
0.17s call tests/test_filter.py::test_filtering_specs[flags3-specs3-expected3]
0.16s call tests/test_filter.py::test_filtering_specs[flags2-specs2-expected2]
0.15s call tests/test_filter.py::test_filtering_specs[flags1-specs1-expected1]
0.13s call tests/test_filter.py::test_filtering_specs[flags4-specs4-expected4]
0.08s call tests/test_filter.py::test_filtering_specs[flags0-specs0-expected0]
0.04s teardown tests/test_filter.py::test_filtering_specs[flags4-specs4-expected4]
0.00s setup tests/test_filter.py::test_filtering_specs[flags4-specs4-expected4]
0.00s setup tests/test_filter.py::test_filtering_specs[flags3-specs3-expected3]
0.00s setup tests/test_filter.py::test_filtering_specs[flags1-specs1-expected1]
0.00s setup tests/test_filter.py::test_filtering_specs[flags2-specs2-expected2]
0.00s teardown tests/test_filter.py::test_filtering_specs[flags2-specs2-expected2]
0.00s teardown tests/test_filter.py::test_filtering_specs[flags1-specs1-expected1]
0.00s teardown tests/test_filter.py::test_filtering_specs[flags0-specs0-expected0]
0.00s teardown tests/test_filter.py::test_filtering_specs[flags3-specs3-expected3]
====================================================== 3 passed, 2 xpassed in 4.51 seconds =======================================================

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -116,7 +116,7 @@ creates a simple python file:
# FIXME: Add a list of GitHub accounts to
# notify when the package is updated.
# maintainers("github_user1", "github_user2")
# maintainers = ["github_user1", "github_user2"]
version("0.8.13", sha256="591a9b4ec81c1f2042a97aa60564e0cb79d041c52faa7416acb38bc95bd2c76d")

View File

@@ -1,77 +0,0 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
==========================
Frequently Asked Questions
==========================
This page contains answers to frequently asked questions about Spack.
If you have questions that are not answered here, feel free to ask on
`Slack <https://slack.spack.io>`_ or `GitHub Discussions
<https://github.com/spack/spack/discussions>`_. If you've learned the
answer to a question that you think should be here, please consider
contributing to this page.
.. _faq-concretizer-precedence:
-----------------------------------------------------
Why does Spack pick particular versions and variants?
-----------------------------------------------------
This question comes up in a variety of forms:
1. Why does Spack seem to ignore my package preferences from ``packages.yaml`` config?
2. Why does Spack toggle a variant instead of using the default from the ``package.py`` file?
The short answer is that Spack always picks an optimal configuration
based on a complex set of criteria\ [#f1]_. These criteria are more nuanced
than always choosing the latest versions or default variants.
.. note::
As a rule of thumb: requirements + constraints > reuse > preferences > defaults.
The following set of criteria (from lowest to highest precedence) explain
common cases where concretization output may seem surprising at first.
1. :ref:`Package preferences <package-preferences>` configured in ``packages.yaml``
override variant defaults from ``package.py`` files, and influence the optimal
ordering of versions. Preferences are specified as follows:
.. code-block:: yaml
packages:
foo:
version: [1.0, 1.1]
variants: ~mpi
2. :ref:`Reuse concretization <concretizer-options>` configured in ``concretizer.yaml``
overrides preferences, since it's typically faster to reuse an existing spec than to
build a preferred one from sources. When build caches are enabled, specs may be reused
from a remote location too. Reuse concretization is configured as follows:
.. code-block:: yaml
concretizer:
reuse: dependencies # other options are 'true' and 'false'
3. :ref:`Package requirements <package-requirements>` configured in ``packages.yaml``,
and constraints from the command line as well as ``package.py`` files override all
of the above. Requirements are specified as follows:
.. code-block:: yaml
packages:
foo:
require:
- "@1.2: +mpi"
Requirements and constraints restrict the set of possible solutions, while reuse
behavior and preferences influence what an optimal solution looks like.
.. rubric:: Footnotes
.. [#f1] The exact list of criteria can be retrieved with the ``spack solve`` command

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -21,7 +21,7 @@ be present on the machine where Spack is run:
:header-rows: 1
These requirements can be easily installed on most modern Linux systems;
on macOS, the Command Line Tools package is required, and a full XCode suite
on macOS, the Command Line Tools package is required, and a full XCode suite
may be necessary for some packages such as Qt and apple-gl. Spack is designed
to run on HPC platforms like Cray. Not all packages should be expected
to work on all platforms.
@@ -41,9 +41,12 @@ A build matrix showing which packages are working on which systems is shown belo
.. code-block:: console
dnf install epel-release
dnf group install "Development Tools"
dnf install curl findutils gcc-gfortran gnupg2 hostname iproute redhat-lsb-core python3 python3-pip python3-setuptools unzip python3-boto3
yum update -y
yum install -y epel-release
yum update -y
yum --enablerepo epel groupinstall -y "Development Tools"
yum --enablerepo epel install -y curl findutils gcc-c++ gcc gcc-gfortran git gnupg2 hostname iproute redhat-lsb-core make patch python3 python3-pip python3-setuptools unzip
python3 -m pip install boto3
.. tab-item:: macOS Brew
@@ -250,10 +253,9 @@ Compiler configuration
Spack has the ability to build packages with multiple compilers and
compiler versions. Compilers can be made available to Spack by
specifying them manually in ``compilers.yaml`` or ``packages.yaml``,
or automatically by running ``spack compiler find``, but for
convenience Spack will automatically detect compilers the first time
it needs them.
specifying them manually in ``compilers.yaml``, or automatically by
running ``spack compiler find``, but for convenience Spack will
automatically detect compilers the first time it needs them.
.. _cmd-spack-compilers:
@@ -318,7 +320,7 @@ installed, but you know that new compilers have been added to your
.. code-block:: console
$ module load gcc/4.9.0
$ module load gcc-4.9.0
$ spack compiler find
==> Added 1 new compiler to ~/.spack/linux/compilers.yaml
gcc@4.9.0
@@ -366,8 +368,7 @@ Manual compiler configuration
If auto-detection fails, you can manually configure a compiler by
editing your ``~/.spack/<platform>/compilers.yaml`` file. You can do this by running
``spack config edit compilers``, which will open the file in
:ref:`your favorite editor <controlling-the-editor>`.
``spack config edit compilers``, which will open the file in your ``$EDITOR``.
Each compiler configuration in the file looks like this:
@@ -458,54 +459,6 @@ specification. The operations available to modify the environment are ``set``, `
prepend_path: # Similar for append|remove_path
LD_LIBRARY_PATH: /ld/paths/added/by/setvars/sh
.. note::
Spack is in the process of moving compilers from a separate
attribute to be handled like all other packages. As part of this
process, the ``compilers.yaml`` section will eventually be replaced
by configuration in the ``packages.yaml`` section. This new
configuration is now available, although it is not yet the default
behavior.
Compilers can also be configured as external packages in the
``packages.yaml`` config file. Any external package for a compiler
(e.g. ``gcc`` or ``llvm``) will be treated as a configured compiler
assuming the paths to the compiler executables are determinable from
the prefix.
If the paths to the compiler executable are not determinable from the
prefix, you can add them to the ``extra_attributes`` field. Similarly,
all other fields from the compilers config can be added to the
``extra_attributes`` field for an external representing a compiler.
Note that the format for the ``paths`` field in the
``extra_attributes`` section is different than in the ``compilers``
config. For compilers configured as external packages, the section is
named ``compilers`` and the dictionary maps language names (``c``,
``cxx``, ``fortran``) to paths, rather than using the names ``cc``,
``fc``, and ``f77``.
.. code-block:: yaml
packages:
gcc:
external:
- spec: gcc@12.2.0 arch=linux-rhel8-skylake
prefix: /usr
extra_attributes:
environment:
set:
GCC_ROOT: /usr
external:
- spec: llvm+clang@15.0.0 arch=linux-rhel8-skylake
prefix: /usr
extra_attributes:
compilers:
c: /usr/bin/clang-with-suffix
cxx: /usr/bin/clang++-with-extra-info
fortran: /usr/bin/gfortran
extra_rpaths:
- /usr/lib/llvm/
^^^^^^^^^^^^^^^^^^^^^^^
Build Your Own Compiler
@@ -672,7 +625,7 @@ Fortran.
compilers:
- compiler:
# ...
...
paths:
cc: /usr/bin/clang
cxx: /usr/bin/clang++
@@ -1364,6 +1317,187 @@ This will write the private key to the file `dinosaur.priv`.
or for help on an issue or the Spack slack.
.. _cray-support:
-------------
Spack on Cray
-------------
Spack differs slightly when used on a Cray system. The architecture spec
can differentiate between the front-end and back-end processor and operating system.
For example, on Edison at NERSC, the back-end target processor
is "Ivy Bridge", so you can specify to use the back-end this way:
.. code-block:: console
$ spack install zlib target=ivybridge
You can also use the operating system to build against the back-end:
.. code-block:: console
$ spack install zlib os=CNL10
Notice that the name includes both the operating system name and the major
version number concatenated together.
Alternatively, if you want to build something for the front-end,
you can specify the front-end target processor. The processor for a login node
on Edison is "Sandy bridge" so we specify on the command line like so:
.. code-block:: console
$ spack install zlib target=sandybridge
And the front-end operating system is:
.. code-block:: console
$ spack install zlib os=SuSE11
^^^^^^^^^^^^^^^^^^^^^^^
Cray compiler detection
^^^^^^^^^^^^^^^^^^^^^^^
Spack can detect compilers using two methods. For the front-end, we treat
everything the same. The difference lies in back-end compiler detection.
Back-end compiler detection is made via the Tcl module avail command.
Once it detects the compiler it writes the appropriate PrgEnv and compiler
module name to compilers.yaml and sets the paths to each compiler with Cray\'s
compiler wrapper names (i.e. cc, CC, ftn). During build time, Spack will load
the correct PrgEnv and compiler module and will call appropriate wrapper.
The compilers.yaml config file will also differ. There is a
modules section that is filled with the compiler's Programming Environment
and module name. On other systems, this field is empty []:
.. code-block:: yaml
- compiler:
modules:
- PrgEnv-intel
- intel/15.0.109
As mentioned earlier, the compiler paths will look different on a Cray system.
Since most compilers are invoked using cc, CC and ftn, the paths for each
compiler are replaced with their respective Cray compiler wrapper names:
.. code-block:: yaml
paths:
cc: cc
cxx: CC
f77: ftn
fc: ftn
As opposed to an explicit path to the compiler executable. This allows Spack
to call the Cray compiler wrappers during build time.
For more on compiler configuration, check out :ref:`compiler-config`.
Spack sets the default Cray link type to dynamic, to better match other
other platforms. Individual packages can enable static linking (which is the
default outside of Spack on cray systems) using the ``-static`` flag.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting defaults and using Cray modules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you want to use default compilers for each PrgEnv and also be able
to load cray external modules, you will need to set up a ``packages.yaml``.
Here's an example of an external configuration for cray modules:
.. code-block:: yaml
packages:
mpich:
externals:
- spec: "mpich@7.3.1%gcc@5.2.0 arch=cray_xc-haswell-CNL10"
modules:
- cray-mpich
- spec: "mpich@7.3.1%intel@16.0.0.109 arch=cray_xc-haswell-CNL10"
modules:
- cray-mpich
all:
providers:
mpi: [mpich]
This tells Spack that for whatever package that depends on mpi, load the
cray-mpich module into the environment. You can then be able to use whatever
environment variables, libraries, etc, that are brought into the environment
via module load.
.. note::
For Cray-provided packages, it is best to use ``modules:`` instead of ``prefix:``
in ``packages.yaml``, because the Cray Programming Environment heavily relies on
modules (e.g., loading the ``cray-mpich`` module adds MPI libraries to the
compiler wrapper link line).
You can set the default compiler that Spack can use for each compiler type.
If you want to use the Cray defaults, then set them under ``all:`` in packages.yaml.
In the compiler field, set the compiler specs in your order of preference.
Whenever you build with that compiler type, Spack will concretize to that version.
Here is an example of a full packages.yaml used at NERSC
.. code-block:: yaml
packages:
mpich:
externals:
- spec: "mpich@7.3.1%gcc@5.2.0 arch=cray_xc-CNL10-ivybridge"
modules:
- cray-mpich
- spec: "mpich@7.3.1%intel@16.0.0.109 arch=cray_xc-SuSE11-ivybridge"
modules:
- cray-mpich
buildable: False
netcdf:
externals:
- spec: "netcdf@4.3.3.1%gcc@5.2.0 arch=cray_xc-CNL10-ivybridge"
modules:
- cray-netcdf
- spec: "netcdf@4.3.3.1%intel@16.0.0.109 arch=cray_xc-CNL10-ivybridge"
modules:
- cray-netcdf
buildable: False
hdf5:
externals:
- spec: "hdf5@1.8.14%gcc@5.2.0 arch=cray_xc-CNL10-ivybridge"
modules:
- cray-hdf5
- spec: "hdf5@1.8.14%intel@16.0.0.109 arch=cray_xc-CNL10-ivybridge"
modules:
- cray-hdf5
buildable: False
all:
compiler: [gcc@5.2.0, intel@16.0.0.109]
providers:
mpi: [mpich]
Here we tell spack that whenever we want to build with gcc use version 5.2.0 or
if we want to build with intel compilers, use version 16.0.0.109. We add a spec
for each compiler type for each cray modules. This ensures that for each
compiler on our system we can use that external module.
For more on external packages check out the section :ref:`sec-external-packages`.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using Linux containers on Cray machines
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Spack uses environment variables particular to the Cray programming
environment to determine which systems are Cray platforms. These
environment variables may be propagated into containers that are not
using the Cray programming environment.
To ensure that Spack does not autodetect the Cray programming
environment, unset the environment variable ``MODULEPATH``. This
will cause Spack to treat a linux container on a Cray system as a base
linux distro.
.. _windows_support:
----------------
@@ -1372,7 +1506,7 @@ Spack On Windows
Windows support for Spack is currently under development. While this work is still in an early stage,
it is currently possible to set up Spack and perform a few operations on Windows. This section will guide
you through the steps needed to install Spack and start running it on a fresh Windows machine.
you through the steps needed to install Spack and start running it on a fresh Windows machine.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Step 1: Install prerequisites
@@ -1382,7 +1516,7 @@ To use Spack on Windows, you will need the following packages:
Required:
* Microsoft Visual Studio
* Python
* Python
* Git
Optional:
@@ -1397,8 +1531,6 @@ Microsoft Visual Studio
"""""""""""""""""""""""
Microsoft Visual Studio provides the only Windows C/C++ compiler that is currently supported by Spack.
Spack additionally requires that the Windows SDK (including WGL) to be installed as part of your
visual studio installation as it is required to build many packages from source.
We require several specific components to be included in the Visual Studio installation.
One is the C/C++ toolset, which can be selected as "Desktop development with C++" or "C++ build tools,"
@@ -1406,7 +1538,6 @@ depending on installation type (Professional, Build Tools, etc.) The other requ
"C++ CMake tools for Windows," which can be selected from among the optional packages.
This provides CMake and Ninja for use during Spack configuration.
If you already have Visual Studio installed, you can make sure these components are installed by
rerunning the installer. Next to your installation, select "Modify" and look at the
"Installation details" pane on the right.
@@ -1416,8 +1547,8 @@ Intel Fortran
"""""""""""""
For Fortran-based packages on Windows, we strongly recommend Intel's oneAPI Fortran compilers.
The suite is free to download from Intel's website, located at
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html.
The suite is free to download from Intel's website, located at
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html#gs.70t5tw.
The executable of choice for Spack will be Intel's Beta Compiler, ifx, which supports the classic
compiler's (ifort's) frontend and runtime libraries by using LLVM.
@@ -1466,8 +1597,8 @@ in a Windows CMD prompt.
.. note::
If you chose to install Spack into a directory on Windows that is set up to require Administrative
Privileges, Spack will require elevated privileges to run.
Administrative Privileges can be denoted either by default such as
Privleges, Spack will require elevated privleges to run.
Administrative Privleges can be denoted either by default such as
``C:\Program Files``, or aministrator applied administrative restrictions
on a directory that spack installs files to such as ``C:\Users``
@@ -1475,14 +1606,16 @@ in a Windows CMD prompt.
Step 3: Run and configure Spack
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
On Windows, Spack supports both primary native shells, Powershell and the traditional command prompt.
To use Spack, pick your favorite shell, and run ``bin\spack_cmd.bat`` or ``share/spack/setup-env.ps1``
(you may need to Run as Administrator) from the top-level spack
directory. This will provide a Spack enabled shell. If you receive a warning message that Python is not in your ``PATH``
To use Spack, run ``bin\spack_cmd.bat`` (you may need to Run as Administrator) from the top-level spack
directory. This will provide a Windows command prompt with an environment properly set up with Spack
and its prerequisites. If you receive a warning message that Python is not in your ``PATH``
(which may happen if you installed Python from the website and not the Windows Store) add the location
of the Python executable to your ``PATH`` now. You can permanently add Python to your ``PATH`` variable
by using the ``Edit the system environment variables`` utility in Windows Control Panel.
.. note::
Alternatively, Powershell can be used in place of CMD
To configure Spack, first run the following command inside the Spack console:
.. code-block:: console
@@ -1547,7 +1680,7 @@ and not tabs, so ensure that this is the case when editing one directly.
.. note:: Cygwin
The use of Cygwin is not officially supported by Spack and is not tested.
However Spack will not prevent this, so use if choosing to use Spack
However Spack will not throw an error, so use if choosing to use Spack
with Cygwin, know that no functionality is garunteed.
^^^^^^^^^^^^^^^^^
@@ -1561,12 +1694,35 @@ Spack console via:
spack install cpuinfo
If in the previous step, you did not have CMake or Ninja installed, running the command above should install both packages
If in the previous step, you did not have CMake or Ninja installed, running the command above should boostrap both packages
.. note:: Spec Syntax Caveats
Windows has a few idiosyncrasies when it comes to the Spack spec syntax and the use of certain shells
See the Spack spec syntax doc for more information
"""""""""""""""""""""""""""
Windows Compatible Packages
"""""""""""""""""""""""""""
Many Spack packages are not currently compatible with Windows, due to Unix
dependencies or incompatible build tools like autoconf. Here are several
packages known to work on Windows:
* abseil-cpp
* bzip2
* clingo
* cpuinfo
* cmake
* hdf5
* glm
* nasm
* netlib-lapack (requires Intel Fortran)
* ninja
* openssl
* perl
* python
* ruby
* wrf
* zlib
.. note::
This is by no means a comprehensive list
^^^^^^^^^^^^^^
For developers
@@ -1577,3 +1733,4 @@ Python, Git, and Spack, instead of requiring the user to do so manually.
Instructions for creating the installer are at
https://github.com/spack/spack/blob/develop/lib/spack/spack/cmd/installer/README.md
Alternatively a pre-built copy of the Windows installer is available as an artifact of Spack's Windows CI

View File

@@ -1,138 +0,0 @@
.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
==========================
Using External GPU Support
==========================
Many packages come with a ``+cuda`` or ``+rocm`` variant. With no added
configuration Spack will download and install the needed components.
It may be preferable to use existing system support: the following sections
help with using a system installation of GPU libraries.
-----------------------------------
Using an External ROCm Installation
-----------------------------------
Spack breaks down ROCm into many separate component packages. The following
is an example ``packages.yaml`` that organizes a consistent set of ROCm
components for use by dependent packages:
.. code-block:: yaml
packages:
all:
compiler: [rocmcc@=5.3.0]
variants: amdgpu_target=gfx90a
hip:
buildable: false
externals:
- spec: hip@5.3.0
prefix: /opt/rocm-5.3.0/hip
hsa-rocr-dev:
buildable: false
externals:
- spec: hsa-rocr-dev@5.3.0
prefix: /opt/rocm-5.3.0/
llvm-amdgpu:
buildable: false
externals:
- spec: llvm-amdgpu@5.3.0
prefix: /opt/rocm-5.3.0/llvm/
comgr:
buildable: false
externals:
- spec: comgr@5.3.0
prefix: /opt/rocm-5.3.0/
hipsparse:
buildable: false
externals:
- spec: hipsparse@5.3.0
prefix: /opt/rocm-5.3.0/
hipblas:
buildable: false
externals:
- spec: hipblas@5.3.0
prefix: /opt/rocm-5.3.0/
rocblas:
buildable: false
externals:
- spec: rocblas@5.3.0
prefix: /opt/rocm-5.3.0/
rocprim:
buildable: false
externals:
- spec: rocprim@5.3.0
prefix: /opt/rocm-5.3.0/rocprim/
This is in combination with the following compiler definition:
.. code-block:: yaml
compilers:
- compiler:
spec: rocmcc@=5.3.0
paths:
cc: /opt/rocm-5.3.0/bin/amdclang
cxx: /opt/rocm-5.3.0/bin/amdclang++
f77: null
fc: /opt/rocm-5.3.0/bin/amdflang
operating_system: rhel8
target: x86_64
This includes the following considerations:
- Each of the listed externals specifies ``buildable: false`` to force Spack
to use only the externals we defined.
- ``spack external find`` can automatically locate some of the ``hip``/``rocm``
packages, but not all of them, and furthermore not in a manner that
guarantees a complementary set if multiple ROCm installations are available.
- The ``prefix`` is the same for several components, but note that others
require listing one of the subdirectories as a prefix.
-----------------------------------
Using an External CUDA Installation
-----------------------------------
CUDA is split into fewer components and is simpler to specify:
.. code-block:: yaml
packages:
all:
variants:
- cuda_arch=70
cuda:
buildable: false
externals:
- spec: cuda@11.0.2
prefix: /opt/cuda/cuda-11.0.2/
where ``/opt/cuda/cuda-11.0.2/lib/`` contains ``libcudart.so``.
-----------------------------------
Using an External OpenGL API
-----------------------------------
Depending on whether we have a graphics card or not, we may choose to use OSMesa or GLX to implement the OpenGL API.
If a graphics card is unavailable, OSMesa is recommended and can typically be built with Spack.
However, if we prefer to utilize the system GLX tailored to our graphics card, we need to declare it as an external. Here's how to do it:
.. code-block:: yaml
packages:
libglx:
require: [opengl]
opengl:
buildable: false
externals:
- prefix: /usr/
spec: opengl@4.6
Note that prefix has to be the root of both the libraries and the headers, using is /usr not the path the the lib.
To know which spec for opengl is available use ``cd /usr/include/GL && grep -Ri gl_version``.

Some files were not shown because too many files have changed in this diff Show More