Compare commits

..

7 Commits

Author SHA1 Message Date
Todd Gamblin
4c6564f10a update changelog for v0.18.0 (#30905) 2022-05-28 17:33:52 +02:00
Massimiliano Culpo
82919cb6a5 Remove the warning that Spack prints at each spec (#30872)
Add instead a warning box in the documentation
2022-05-28 16:37:51 +02:00
Greg Becker
844c799299 target optimization: re-norm optimization scale so that 0 is best. (#29926)
referred targets are currently the only minimization criteria for Spack for which we allow
negative values. That means Spack may be incentivized to add nodes to the DAG if they
match the preferred target.

This PR re-norms the minimization criteria so that preferred targets are weighted from 0,
and default target weights are offset by the number of preferred targets per-package to
calculate node_target_weight.

Also fixes a bug in the test for preferred targets that was making the test easier to pass
than it should be.
2022-05-27 22:51:03 -07:00
Greg Becker
9198ab63ae update tutorial command for v0.18.0 and new gpg key 2022-05-27 18:45:19 -07:00
Todd Gamblin
8f9bc5bba4 Revert "strip -Werror: all specific or none (#30284)"
This reverts commit 330832c22c.

`-Werror` chagnes were unfortunately causing the `rdma-core` build to fail.
Reverting on `v0.18`; we can fix this in `develop`
2022-05-26 12:13:40 -07:00
Scott Wittenburg
ca0c968639 ci: Support secure binary signing on protected pipelines (#30753)
This PR supports the creation of securely signed binaries built from spack
develop as well as release branches and tags. Specifically:

- remove internal pr mirror url generation logic in favor of buildcache destination
on command line
    - with a single mirror url specified in the spack.yaml, this makes it clearer where 
    binaries from various pipelines are pushed
- designate some tags as reserved: ['public', 'protected', 'notary']
    - these tags are stripped from all jobs by default and provisioned internally
    based on pipeline type
- update gitlab ci yaml to include pipelines on more protected branches than just
develop (so include releases and tags)
    - binaries from all protected pipelines are pushed into mirrors including the
    branch name so releases, tags, and develop binaries are kept separate
- update rebuild jobs running on protected pipelines to run on special runners
provisioned with an intermediate signing key
    - protected rebuild jobs no longer use "SPACK_SIGNING_KEY" env var to
    obtain signing key (in fact, final signing key is nowhere available to rebuild jobs)
    - these intermediate signatures are verified at the end of each pipeline by a new
    signing job to ensure binaries were produced by a protected pipeline
- optionallly schedule a signing/notary job at the end of the pipeline to sign all
packges in the mirror
    - add signing-job-attributes to gitlab-ci section of spack environment to allow
    configuration
    - signing job runs on special runner (separate from protected rebuild runners)
    provisioned with public intermediate key and secret signing key
2022-05-26 09:10:18 -07:00
Gregory Becker
d99a1b1047 release number for v0.18.0 2022-05-25 20:29:03 -07:00
8654 changed files with 239633 additions and 298908 deletions

43
.flake8
View File

@@ -1,25 +1,43 @@
# -*- conf -*-
# flake8 settings for Spack.
# flake8 settings for Spack core files.
#
# These exceptions are for Spack core files. We're slightly more lenient
# with packages. See .flake8_packages for that.
#
# This is the only flake8 rule Spack violates somewhat flagrantly
# E1: Indentation
# - E129: visually indented line with same indent as next logical line
#
# E2: Whitespace
# - E221: multiple spaces before operator
# - E241: multiple spaces after ','
# - E272: multiple spaces before keyword
#
# E7: Statement
# - E731: do not assign a lambda expression, use a def
#
# This is the only flake8 exception needed when using Black.
# - E203: white space around slice operators can be required, ignore : warn
# W5: Line break warning
# - W503: line break before binary operator
# - W504: line break after binary operator
#
# We still allow these in packages (Would like to get rid of them or rely on mypy
# in the future)
# - F403: from/import * used; unable to detect undefined names
# These are required to get the package.py files to test clean:
# - F999: syntax error in doctest
#
# N8: PEP8-naming
# - N801: class names should use CapWords convention
# - N813: camelcase imported as lowercase
# - N814: camelcase imported as constant
#
# F4: pyflakes import checks, these are now checked by mypy more precisely
# - F403: from module import *
# - F405: undefined name or from *
# - F821: undefined name (needed with from/import *)
#
# Black ignores, these are incompatible with black style and do not follow PEP-8
# - E203: white space around slice operators can be required, ignore : warn
# - W503: see above, already ignored for line-breaks
#
[flake8]
#ignore = E129,,W503,W504,F999,N801,N813,N814,F403,F405,E203
extend-ignore = E731,E203
max-line-length = 99
ignore = E129,E221,E241,E272,E731,W503,W504,F999,N801,N813,N814,F403,F405
max-line-length = 88
# F4: Import
# - F405: `name` may be undefined, or undefined from star imports: `module`
@@ -28,8 +46,7 @@ max-line-length = 99
# - F821: undefined name `name`
#
per-file-ignores =
var/spack/repos/*/package.py:F403,F405,F821
*-ci-package.py:F403,F405,F821
var/spack/repos/*/package.py:F405,F821
# exclude things we usually do not want linting for.
# These still get linted when passed explicitly, as when spack flake8 passes

View File

@@ -1,3 +0,0 @@
# .git-blame-ignore-revs
# Formatted entire codebase with black
f52f6e99dbf1131886a80112b8c79dfc414afb7c

View File

@@ -1,62 +0,0 @@
name: "\U0001F4A5 Tests error"
description: Some package in Spack had stand-alone tests that didn't pass
title: "Testing issue: "
labels: [test-error]
body:
- type: textarea
id: reproduce
attributes:
label: Steps to reproduce the failure(s) or link(s) to test output(s)
description: |
Fill in the test output from the exact spec that is having stand-alone test failures. Links to test outputs (e.g., CDash) can also be provided.
value: |
```console
$ spack spec -I <spec>
...
```
- type: textarea
id: error
attributes:
label: Error message
description: |
Please post the error message from spack inside the `<details>` tag below:
value: |
<details><summary>Error message</summary><pre>
...
</pre></details>
validations:
required: true
- type: textarea
id: information
attributes:
label: Information on your system or the test runner
description: Please include the output of `spack debug report` for your system.
validations:
required: true
- type: markdown
attributes:
value: |
If you have any relevant configuration detail (custom `packages.yaml` or `modules.yaml`, etc.) you can add that here as well.
- type: textarea
id: additional_information
attributes:
label: Additional information
description: |
Please upload test logs or any additional information about the problem.
- type: markdown
attributes:
value: |
Some packages have maintainers who have volunteered to debug build failures. Run `spack maintainers <name-of-the-package>` and **@mention** them here if they exist.
- type: checkboxes
id: checks
attributes:
label: General information
options:
- label: I have reported the version of Spack/Python/Platform/Runner
required: true
- label: I have run `spack maintainers <name-of-the-package>` and **@mentioned** any maintainers
required: true
- label: I have uploaded any available logs
required: true
- label: I have searched the issues of this repo and believe this is not a duplicate
required: true

View File

@@ -1,44 +0,0 @@
name: audit
on:
workflow_call:
inputs:
with_coverage:
required: true
type: string
python_version:
required: true
type: string
concurrency:
group: audit-${{inputs.python_version}}-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
# Run audits on all the packages in the built-in repository
package-audits:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435 # @v2
with:
python-version: ${{inputs.python_version}}
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov coverage[toml]
- name: Package audits (with coverage)
if: ${{ inputs.with_coverage == 'true' }}
run: |
. share/spack/setup-env.sh
coverage run $(which spack) audit packages
coverage combine
coverage xml
- name: Package audits (without coverage)
if: ${{ inputs.with_coverage == 'false' }}
run: |
. share/spack/setup-env.sh
$(which spack) audit packages
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70 # @v2.1.0
if: ${{ inputs.with_coverage == 'true' }}
with:
flags: unittests,linux,audits

View File

@@ -1,7 +0,0 @@
#!/bin/bash
set -ex
source share/spack/setup-env.sh
$PYTHON bin/spack bootstrap disable spack-install
$PYTHON bin/spack -d solve zlib
tree $BOOTSTRAP/store
exit 0

View File

@@ -3,19 +3,28 @@ name: Bootstrapping
on:
# This Workflow can be triggered manually
workflow_dispatch:
workflow_call:
pull_request:
branches:
- develop
- releases/**
paths-ignore:
# Don't run if we only modified packages in the
# built-in repository or documentation
- 'var/spack/repos/builtin/**'
- '!var/spack/repos/builtin/packages/clingo-bootstrap/**'
- '!var/spack/repos/builtin/packages/python/**'
- '!var/spack/repos/builtin/packages/re2c/**'
- 'lib/spack/docs/**'
schedule:
# nightly at 2:16 AM
- cron: '16 2 * * *'
concurrency:
group: bootstrap-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
fedora-clingo-sources:
runs-on: ubuntu-latest
container: "fedora:latest"
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
run: |
@@ -24,9 +33,7 @@ jobs:
make patch unzip which xz python3 python3-devel tree \
cmake bison bison-devel libstdc++-static
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
with:
fetch-depth: 0
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Setup non-root user
run: |
# See [1] below
@@ -37,13 +44,13 @@ jobs:
shell: runuser -u spack-test -- bash {0}
run: |
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack bootstrap untrust github-actions-v0.2
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
@@ -51,6 +58,7 @@ jobs:
ubuntu-clingo-sources:
runs-on: ubuntu-latest
container: "ubuntu:latest"
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
env:
@@ -62,9 +70,7 @@ jobs:
make patch unzip xz-utils python3 python3-dev tree \
cmake bison
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
with:
fetch-depth: 0
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Setup non-root user
run: |
# See [1] below
@@ -75,13 +81,13 @@ jobs:
shell: runuser -u spack-test -- bash {0}
run: |
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack bootstrap untrust github-actions-v0.2
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
@@ -89,6 +95,7 @@ jobs:
ubuntu-clingo-binaries-and-patchelf:
runs-on: ubuntu-latest
container: "ubuntu:latest"
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
env:
@@ -99,9 +106,7 @@ jobs:
bzip2 curl file g++ gcc gfortran git gnupg2 gzip \
make patch unzip xz-utils python3 python3-dev tree
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
with:
fetch-depth: 0
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Setup non-root user
run: |
# See [1] below
@@ -112,6 +117,7 @@ jobs:
shell: runuser -u spack-test -- bash {0}
run: |
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
@@ -123,6 +129,7 @@ jobs:
opensuse-clingo-sources:
runs-on: ubuntu-latest
container: "opensuse/leap:latest"
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
run: |
@@ -133,110 +140,90 @@ jobs:
make patch unzip which xz python3 python3-devel tree \
cmake bison
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
with:
fetch-depth: 0
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Setup repo
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack bootstrap untrust github-actions-v0.2
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
macos-clingo-sources:
runs-on: macos-latest
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
run: |
brew install cmake bison@2.7 tree
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Bootstrap clingo
run: |
source share/spack/setup-env.sh
export PATH=/usr/local/opt/bison@2.7/bin:$PATH
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack bootstrap untrust github-actions-v0.2
spack external find --not-buildable cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
macos-clingo-binaries:
runs-on: ${{ matrix.macos-version }}
runs-on: macos-latest
strategy:
matrix:
macos-version: ['macos-11', 'macos-12']
python-version: ['3.5', '3.6', '3.7', '3.8', '3.9', '3.10']
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
run: |
brew install tree
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: ${{ matrix.python-version }}
- name: Bootstrap clingo
run: |
set -ex
for ver in '3.6' '3.7' '3.8' '3.9' '3.10' ; do
not_found=1
ver_dir="$(find $RUNNER_TOOL_CACHE/Python -wholename "*/${ver}.*/*/bin" | grep . || true)"
echo "Testing $ver_dir"
if [[ -d "$ver_dir" ]] ; then
if $ver_dir/python --version ; then
export PYTHON="$ver_dir/python"
not_found=0
old_path="$PATH"
export PATH="$ver_dir:$PATH"
./bin/spack-tmpconfig -b ./.github/workflows/bootstrap-test.sh
export PATH="$old_path"
fi
fi
# NOTE: test all pythons that exist, not all do on 12
done
source share/spack/setup-env.sh
spack bootstrap untrust spack-install
spack -d solve zlib
tree ~/.spack/bootstrap/store/
ubuntu-clingo-binaries:
runs-on: ubuntu-20.04
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['2.7', '3.5', '3.6', '3.7', '3.8', '3.9', '3.10']
if: github.repository == 'spack/spack'
steps:
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
fetch-depth: 0
python-version: ${{ matrix.python-version }}
- name: Setup repo
run: |
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
run: |
set -ex
for ver in '3.6' '3.7' '3.8' '3.9' '3.10' ; do
not_found=1
ver_dir="$(find $RUNNER_TOOL_CACHE/Python -wholename "*/${ver}.*/*/bin" | grep . || true)"
echo "Testing $ver_dir"
if [[ -d "$ver_dir" ]] ; then
if $ver_dir/python --version ; then
export PYTHON="$ver_dir/python"
not_found=0
old_path="$PATH"
export PATH="$ver_dir:$PATH"
./bin/spack-tmpconfig -b ./.github/workflows/bootstrap-test.sh
export PATH="$old_path"
fi
fi
if (($not_found)) ; then
echo Required python version $ver not found in runner!
exit 1
fi
done
source share/spack/setup-env.sh
spack bootstrap untrust spack-install
spack -d solve zlib
tree ~/.spack/bootstrap/store/
ubuntu-gnupg-binaries:
runs-on: ubuntu-latest
container: "ubuntu:latest"
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
env:
@@ -247,9 +234,7 @@ jobs:
bzip2 curl file g++ gcc patchelf gfortran git gzip \
make patch unzip xz-utils python3 python3-dev tree
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
with:
fetch-depth: 0
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Setup non-root user
run: |
# See [1] below
@@ -260,18 +245,20 @@ jobs:
shell: runuser -u spack-test -- bash {0}
run: |
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
- name: Bootstrap GnuPG
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable spack-install
spack bootstrap untrust spack-install
spack -d gpg list
tree ~/.spack/bootstrap/store/
ubuntu-gnupg-sources:
runs-on: ubuntu-latest
container: "ubuntu:latest"
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
env:
@@ -283,9 +270,7 @@ jobs:
make patch unzip xz-utils python3 python3-dev tree \
gawk
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
with:
fetch-depth: 0
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Setup non-root user
run: |
# See [1] below
@@ -296,19 +281,20 @@ jobs:
shell: runuser -u spack-test -- bash {0}
run: |
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
- name: Bootstrap GnuPG
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack solve zlib
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack bootstrap untrust github-actions-v0.2
spack -d gpg list
tree ~/.spack/bootstrap/store/
macos-gnupg-binaries:
runs-on: macos-latest
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
run: |
@@ -316,16 +302,17 @@ jobs:
# Remove GnuPG since we want to bootstrap it
sudo rm -rf /usr/local/bin/gpg
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Bootstrap GnuPG
run: |
source share/spack/setup-env.sh
spack bootstrap disable spack-install
spack bootstrap untrust spack-install
spack -d gpg list
tree ~/.spack/bootstrap/store/
macos-gnupg-sources:
runs-on: macos-latest
if: github.repository == 'spack/spack'
steps:
- name: Install dependencies
run: |
@@ -333,13 +320,12 @@ jobs:
# Remove GnuPG since we want to bootstrap it
sudo rm -rf /usr/local/bin/gpg
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- name: Bootstrap GnuPG
run: |
source share/spack/setup-env.sh
spack solve zlib
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack bootstrap untrust github-actions-v0.2
spack -d gpg list
tree ~/.spack/bootstrap/store/

View File

@@ -13,16 +13,12 @@ on:
paths:
- '.github/workflows/build-containers.yml'
- 'share/spack/docker/*'
- 'share/spack/templates/container/*'
- 'share/templates/container/*'
- 'lib/spack/spack/container/*'
# Let's also build & tag Spack containers on releases.
release:
types: [published]
concurrency:
group: build_containers-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
deploy-images:
runs-on: ubuntu-latest
@@ -50,7 +46,7 @@ jobs:
if: github.repository == 'spack/spack'
steps:
- name: Checkout
uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
- name: Set Container Tag Normal (Nightly)
run: |
@@ -80,19 +76,19 @@ jobs:
fi
- name: Upload Dockerfile
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
uses: actions/upload-artifact@3cea5372237819ed00197afe530f5a7ea3e805c8
with:
name: dockerfiles
path: dockerfiles
- name: Set up QEMU
uses: docker/setup-qemu-action@e81a89b1732b9c48d79cd809d8d81d79c4647a18 # @v1
uses: docker/setup-qemu-action@8b122486cedac8393e77aa9734c3528886e4a1a8 # @v1
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@f03ac48505955848960e80bbb68046aa35c7b9e7 # @v1
uses: docker/setup-buildx-action@dc7b9719a96d48369863986a06765841d7ea23f6 # @v1
- name: Log in to GitHub Container Registry
uses: docker/login-action@f4ef78c080cd8ba55a85445d5b36e214a81df20a # @v1
uses: docker/login-action@49ed152c8eca782a232dede0303416e8f356c37b # @v1
with:
registry: ghcr.io
username: ${{ github.actor }}
@@ -100,13 +96,13 @@ jobs:
- name: Log in to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@f4ef78c080cd8ba55a85445d5b36e214a81df20a # @v1
uses: docker/login-action@49ed152c8eca782a232dede0303416e8f356c37b # @v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build & Deploy ${{ matrix.dockerfile[0] }}
uses: docker/build-push-action@3b5e8027fcad23fda98b2e3ac259d8d67585f671 # @v2
uses: docker/build-push-action@e551b19e49efd4e98792db7592c17c09b89db8d8 # @v2
with:
context: dockerfiles/${{ matrix.dockerfile[0] }}
platforms: ${{ matrix.dockerfile[1] }}

View File

@@ -1,86 +0,0 @@
name: ci
on:
push:
branches:
- develop
- releases/**
pull_request:
branches:
- develop
- releases/**
concurrency:
group: ci-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
prechecks:
needs: [ changes ]
uses: ./.github/workflows/valid-style.yml
with:
with_coverage: ${{ needs.changes.outputs.core }}
all-prechecks:
needs: [ prechecks ]
runs-on: ubuntu-latest
steps:
- name: Success
run: "true"
# Check which files have been updated by the PR
changes:
runs-on: ubuntu-latest
# Set job outputs to values from filter step
outputs:
bootstrap: ${{ steps.filter.outputs.bootstrap }}
core: ${{ steps.filter.outputs.core }}
packages: ${{ steps.filter.outputs.packages }}
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
if: ${{ github.event_name == 'push' }}
with:
fetch-depth: 0
# For pull requests it's not necessary to checkout the code
- uses: dorny/paths-filter@4512585405083f25c027a35db413c2b3b9006d50
id: filter
with:
# See https://github.com/dorny/paths-filter/issues/56 for the syntax used below
# Don't run if we only modified packages in the
# built-in repository or documentation
filters: |
bootstrap:
- 'var/spack/repos/builtin/packages/clingo-bootstrap/**'
- 'var/spack/repos/builtin/packages/clingo/**'
- 'var/spack/repos/builtin/packages/python/**'
- 'var/spack/repos/builtin/packages/re2c/**'
- 'lib/spack/**'
- 'share/spack/**'
- '.github/workflows/bootstrap.yml'
- '.github/workflows/ci.yaml'
core:
- './!(var/**)/**'
packages:
- 'var/**'
# Some links for easier reference:
#
# "github" context: https://docs.github.com/en/actions/reference/context-and-expression-syntax-for-github-actions#github-context
# job outputs: https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idoutputs
# setting environment variables from earlier steps: https://docs.github.com/en/actions/reference/workflow-commands-for-github-actions#setting-an-environment-variable
#
bootstrap:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.bootstrap == 'true' }}
needs: [ prechecks, changes ]
uses: ./.github/workflows/bootstrap.yml
unit-tests:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.core == 'true' }}
needs: [ prechecks, changes ]
uses: ./.github/workflows/unit_tests.yaml
windows:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.core == 'true' }}
needs: [ prechecks ]
uses: ./.github/workflows/windows_python.yml
all:
needs: [ windows, unit-tests, bootstrap ]
runs-on: ubuntu-latest
steps:
- name: Success
run: "true"

67
.github/workflows/macos_python.yml vendored Normal file
View File

@@ -0,0 +1,67 @@
# These are nightly package tests for macOS
# focus areas:
# - initial user experience
# - scientific python stack
name: macOS builds nightly
on:
schedule:
# nightly at 1 AM
- cron: '0 1 * * *'
pull_request:
branches:
- develop
paths:
# Run if we modify this yaml file
- '.github/workflows/macos_python.yml'
# TODO: run if we touch any of the recipes involved in this
# GitHub Action Limits
# https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions
jobs:
install_gcc:
name: gcc with clang
if: github.repository == 'spack/spack'
runs-on: macos-latest
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: 3.9
- name: spack install
run: |
. .github/workflows/install_spack.sh
# 9.2.0 is the latest version on which we apply homebrew patch
spack install -v --fail-fast gcc@11.2.0 %apple-clang
install_jupyter_clang:
name: jupyter
if: github.repository == 'spack/spack'
runs-on: macos-latest
timeout-minutes: 700
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: 3.9
- name: spack install
run: |
. .github/workflows/install_spack.sh
spack install -v --fail-fast py-jupyterlab %apple-clang
install_scipy_clang:
name: scipy, mpl, pd
if: github.repository == 'spack/spack'
runs-on: macos-latest
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: 3.9
- name: spack install
run: |
. .github/workflows/install_spack.sh
spack install -v --fail-fast py-scipy %apple-clang
spack install -v --fail-fast py-matplotlib %apple-clang
spack install -v --fail-fast py-pandas %apple-clang

View File

@@ -1,4 +1,6 @@
# (c) 2022 Lawrence Livermore National Laboratory
# (c) 2021 Lawrence Livermore National Laboratory
Set-Location spack
git config --global user.email "spack@example.com"
git config --global user.name "Test User"

View File

@@ -1,56 +1,115 @@
name: unit tests
name: linux tests
on:
workflow_dispatch:
workflow_call:
concurrency:
group: unit_tests-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
push:
branches:
- develop
- releases/**
pull_request:
branches:
- develop
- releases/**
jobs:
# Run unit tests with different configurations on linux
ubuntu:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest]
python-version: ['3.7', '3.8', '3.9', '3.10', '3.11']
concretizer: ['clingo']
on_develop:
- ${{ github.ref == 'refs/heads/develop' }}
include:
- python-version: '3.11'
os: ubuntu-latest
concretizer: original
on_develop: ${{ github.ref == 'refs/heads/develop' }}
- python-version: '3.6'
os: ubuntu-20.04
concretizer: clingo
on_develop: ${{ github.ref == 'refs/heads/develop' }}
exclude:
- python-version: '3.7'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
- python-version: '3.8'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
- python-version: '3.9'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
- python-version: '3.10'
os: ubuntu-latest
concretizer: 'clingo'
on_develop: false
# Validate that the code can be run on all the Python versions
# supported by Spack
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: '3.10'
- name: Install Python Packages
run: |
pip install --upgrade pip
pip install --upgrade vermin
- name: vermin (Spack's Core)
run: vermin --backport argparse --violations --backport typing -t=2.7- -t=3.5- -vvv lib/spack/spack/ lib/spack/llnl/ bin/
- name: vermin (Repositories)
run: vermin --backport argparse --violations --backport typing -t=2.7- -t=3.5- -vvv var/spack/repos
# Run style checks on the files that have been changed
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435 # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: '3.10'
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools types-six
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Run style tests
run: |
share/spack/qa/run-style-tests
# Check which files have been updated by the PR
changes:
runs-on: ubuntu-latest
# Set job outputs to values from filter step
outputs:
core: ${{ steps.filter.outputs.core }}
packages: ${{ steps.filter.outputs.packages }}
with_coverage: ${{ steps.coverage.outputs.with_coverage }}
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
if: ${{ github.event_name == 'push' }}
with:
fetch-depth: 0
# For pull requests it's not necessary to checkout the code
- uses: dorny/paths-filter@b2feaf19c27470162a626bd6fa8438ae5b263721
id: filter
with:
# See https://github.com/dorny/paths-filter/issues/56 for the syntax used below
filters: |
core:
- './!(var/**)/**'
packages:
- 'var/**'
# Some links for easier reference:
#
# "github" context: https://docs.github.com/en/actions/reference/context-and-expression-syntax-for-github-actions#github-context
# job outputs: https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idoutputs
# setting environment variables from earlier steps: https://docs.github.com/en/actions/reference/workflow-commands-for-github-actions#setting-an-environment-variable
#
- id: coverage
# Run the subsequent jobs with coverage if core has been modified,
# regardless of whether this is a pull request or a push to a branch
run: |
echo Core changes: ${{ steps.filter.outputs.core }}
echo Event name: ${{ github.event_name }}
if [ "${{ steps.filter.outputs.core }}" == "true" ]
then
echo "::set-output name=with_coverage::true"
else
echo "::set-output name=with_coverage::false"
fi
# Run unit tests with different configurations on linux
unittests:
needs: [ validate, style, changes ]
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['2.7', '3.5', '3.6', '3.7', '3.8', '3.9', '3.10']
concretizer: ['clingo']
include:
- python-version: 2.7
concretizer: original
- python-version: 3.6
concretizer: original
- python-version: 3.9
concretizer: original
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: ${{ matrix.python-version }}
- name: Install System packages
@@ -59,11 +118,19 @@ jobs:
# Needed for unit tests
sudo apt-get -y install \
coreutils cvs gfortran graphviz gnupg2 mercurial ninja-build \
cmake bison libbison-dev kcov
patchelf cmake bison libbison-dev kcov
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov[toml] pytest-xdist pytest-cov
pip install --upgrade flake8 "isort>=4.3.5" "mypy>=0.900" "click" "black"
pip install --upgrade pip six setuptools pytest codecov "coverage[toml]<=6.2"
# ensure style checks are not skipped in unit tests for python >= 3.6
# note that true/false (i.e., 1/0) are opposite in conditions in python and bash
if python -c 'import sys; sys.exit(not sys.version_info >= (3, 6))'; then
pip install --upgrade flake8 isort>=4.3.5 mypy>=0.900 black
fi
- name: Pin pathlib for Python 2.7
if: ${{ matrix.python-version == 2.7 }}
run: |
pip install -U pathlib2==2.3.6
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
@@ -75,31 +142,41 @@ jobs:
SPACK_PYTHON: python
run: |
. share/spack/setup-env.sh
spack bootstrap disable spack-install
spack bootstrap now
spack bootstrap untrust spack-install
spack -v solve zlib
- name: Run unit tests
- name: Run unit tests (full suite with coverage)
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
env:
SPACK_PYTHON: python
SPACK_TEST_SOLVER: ${{ matrix.concretizer }}
SPACK_TEST_PARALLEL: 2
COVERAGE: true
UNIT_TEST_COVERAGE: ${{ matrix.python-version == '3.11' }}
SPACK_TEST_SOLVER: ${{ matrix.concretizer }}
run: |
share/spack/qa/run-unit-tests
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
coverage combine
coverage xml
- name: Run unit tests (reduced suite without coverage)
if: ${{ needs.changes.outputs.with_coverage == 'false' }}
env:
SPACK_PYTHON: python
ONLY_PACKAGES: true
SPACK_TEST_SOLVER: ${{ matrix.concretizer }}
run: |
share/spack/qa/run-unit-tests
- uses: codecov/codecov-action@81cd2dc8148241f03f5839d295e000b8f761e378 # @v2.1.0
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
with:
flags: unittests,linux,${{ matrix.concretizer }}
# Test shell integration
shell:
needs: [ validate, style, changes ]
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435 # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: '3.11'
python-version: '3.10'
- name: Install System packages
run: |
sudo apt-get -y update
@@ -107,25 +184,33 @@ jobs:
sudo apt-get install -y coreutils kcov csh zsh tcsh fish dash bash
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov coverage[toml] pytest-xdist
pip install --upgrade pip six setuptools pytest codecov coverage[toml]==6.2
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Run shell tests
- name: Run shell tests (without coverage)
if: ${{ needs.changes.outputs.with_coverage == 'false' }}
run: |
share/spack/qa/run-shell-tests
- name: Run shell tests (with coverage)
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
env:
COVERAGE: true
run: |
share/spack/qa/run-shell-tests
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
- uses: codecov/codecov-action@81cd2dc8148241f03f5839d295e000b8f761e378 # @v2.1.0
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
with:
flags: shelltests,linux
# Test RHEL8 UBI with platform Python. This job is run
# only on PRs modifying core Spack
rhel8-platform-python:
needs: [ validate, style, changes ]
runs-on: ubuntu-latest
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
container: registry.access.redhat.com/ubi8/ubi
steps:
- name: Install dependencies
@@ -133,7 +218,7 @@ jobs:
dnf install -y \
bzip2 curl file gcc-c++ gcc gcc-gfortran git gnupg2 gzip \
make patch tcl unzip which xz
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
- name: Setup repo and non-root user
run: |
git --version
@@ -145,71 +230,127 @@ jobs:
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack -d bootstrap now --dev
spack -d solve zlib
spack unit-test -k 'not cvs and not svn and not hg' -x --verbose
# Test for the clingo based solver (using clingo-cffi)
clingo-cffi:
needs: [ validate, style, changes ]
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435 # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: '3.11'
python-version: '3.10'
- name: Install System packages
run: |
sudo apt-get -y update
sudo apt-get -y install coreutils cvs gfortran graphviz gnupg2 mercurial ninja-build kcov
# Needed for unit tests
sudo apt-get -y install \
coreutils cvs gfortran graphviz gnupg2 mercurial ninja-build \
patchelf kcov
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov coverage[toml] pytest-cov clingo pytest-xdist
pip install --upgrade pip six setuptools pytest codecov coverage[toml]==6.2 clingo
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Run unit tests (full suite with coverage)
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
env:
COVERAGE: true
SPACK_TEST_SOLVER: clingo
run: |
share/spack/qa/run-unit-tests
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70 # @v2.1.0
coverage combine
coverage xml
- name: Run unit tests (reduced suite without coverage)
if: ${{ needs.changes.outputs.with_coverage == 'false' }}
env:
ONLY_PACKAGES: true
SPACK_TEST_SOLVER: clingo
run: |
share/spack/qa/run-unit-tests
- uses: codecov/codecov-action@81cd2dc8148241f03f5839d295e000b8f761e378 # @v2.1.0
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
with:
flags: unittests,linux,clingo
# Run unit tests on MacOS
macos:
build:
needs: [ validate, style, changes ]
runs-on: macos-latest
strategy:
matrix:
python-version: ["3.10"]
python-version: [3.8]
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435 # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: ${{ matrix.python-version }}
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools
pip install --upgrade pytest codecov coverage[toml] pytest-xdist pytest-cov
pip install --upgrade pytest codecov coverage[toml]==6.2
- name: Setup Homebrew packages
run: |
brew install dash fish gcc gnupg2 kcov
- name: Run unit tests
env:
SPACK_TEST_SOLVER: clingo
SPACK_TEST_PARALLEL: 4
run: |
git --version
. .github/workflows/setup_git.sh
. share/spack/setup-env.sh
$(which spack) bootstrap disable spack-install
$(which spack) bootstrap untrust spack-install
$(which spack) solve zlib
common_args=(--dist loadfile --tx '4*popen//python=./bin/spack-tmpconfig python -u ./bin/spack python' -x)
$(which spack) unit-test --cov --cov-config=pyproject.toml --cov-report=xml:coverage.xml "${common_args[@]}"
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
if [ "${{ needs.changes.outputs.with_coverage }}" == "true" ]
then
coverage run $(which spack) unit-test -x
coverage combine
coverage xml
# Delete the symlink going from ./lib/spack/docs/_spack_root back to
# the initial directory, since it causes ELOOP errors with codecov/actions@2
rm lib/spack/docs/_spack_root
else
echo "ONLY PACKAGE RECIPES CHANGED [skipping coverage]"
$(which spack) unit-test -x -m "not maybeslow" -k "package_sanity"
fi
- uses: codecov/codecov-action@81cd2dc8148241f03f5839d295e000b8f761e378 # @v2.1.0
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
with:
files: ./coverage.xml
flags: unittests,macos
# Run audits on all the packages in the built-in repository
package-audits:
needs: [ validate, style, changes ]
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b # @v2
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6 # @v2
with:
python-version: '3.10'
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov coverage[toml]==6.2
- name: Package audits (with coverage)
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
run: |
. share/spack/setup-env.sh
coverage run $(which spack) audit packages
coverage combine
coverage xml
- name: Package audits (wwithout coverage)
if: ${{ needs.changes.outputs.with_coverage == 'false' }}
run: |
. share/spack/setup-env.sh
$(which spack) audit packages
- uses: codecov/codecov-action@81cd2dc8148241f03f5839d295e000b8f761e378 # @v2.1.0
if: ${{ needs.changes.outputs.with_coverage == 'true' }}
with:
flags: unittests,linux,audits

View File

@@ -1,60 +0,0 @@
name: style
on:
workflow_call:
inputs:
with_coverage:
required: true
type: string
concurrency:
group: style-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
# Validate that the code can be run on all the Python versions
# supported by Spack
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435 # @v2
with:
python-version: '3.11'
cache: 'pip'
- name: Install Python Packages
run: |
pip install --upgrade pip
pip install --upgrade vermin
- name: vermin (Spack's Core)
run: vermin --backport importlib --backport argparse --violations --backport typing -t=3.6- -vvv lib/spack/spack/ lib/spack/llnl/ bin/
- name: vermin (Repositories)
run: vermin --backport importlib --backport argparse --violations --backport typing -t=3.6- -vvv var/spack/repos
# Run style checks on the files that have been changed
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435 # @v2
with:
python-version: '3.11'
cache: 'pip'
- name: Install Python packages
run: |
python3 -m pip install --upgrade pip six setuptools types-six black==22.12.0 mypy isort clingo flake8
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Run style tests
run: |
share/spack/qa/run-style-tests
audit:
uses: ./.github/workflows/audit.yaml
with:
with_coverage: ${{ inputs.with_coverage }}
python_version: '3.11'

View File

@@ -1,72 +1,104 @@
name: windows
name: windows tests
on:
workflow_call:
concurrency:
group: windows-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
push:
branches:
- develop
- releases/**
pull_request:
branches:
- develop
- releases/**
defaults:
run:
shell:
powershell Invoke-Expression -Command "./share/spack/qa/windows_test_setup.ps1"; {0}
powershell Invoke-Expression -Command ".\share\spack\qa\windows_test_setup.ps1"; {0}
jobs:
unit-tests:
validate:
runs-on: windows-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: 3.9
- name: Install Python Packages
run: |
python -m pip install --upgrade pip
python -m pip install --upgrade vermin
- name: vermin (Spack's Core)
run: vermin --backport argparse --backport typing -t='2.7-' -t='3.5-' -v spack/lib/spack/spack/ spack/lib/spack/llnl/ spack/bin/
- name: vermin (Repositories)
run: vermin --backport argparse --backport typing -t='2.7-' -t='3.5-' -v spack/var/spack/repos
# Run style checks on the files that have been changed
style:
runs-on: windows-latest
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov pytest-cov clingo
python -m pip install --upgrade pip six setuptools flake8 isort>=4.3.5 mypy>=0.800 black pywin32 types-python-dateutil
- name: Create local develop
run: |
./.github/workflows/setup_git.ps1
.\spack\.github\workflows\setup_git.ps1
- name: Run style tests
run: |
spack style
- name: Verify license headers
run: |
python spack\bin\spack license verify
unittest:
needs: [ validate, style ]
runs-on: windows-latest
steps:
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
with:
fetch-depth: 0
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage
- name: Create local develop
run: |
.\spack\.github\workflows\setup_git.ps1
- name: Unit Test
run: |
spack unit-test -x --verbose --cov --cov-config=pyproject.toml --ignore=lib/spack/spack/test/cmd
./share/spack/qa/validate_last_exit.ps1
coverage combine -a
coverage xml
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,windows
unit-tests-cmd:
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
spack unit-test --verbose --ignore=lib/spack/spack/test/cmd
unittest-cmd:
needs: [ validate, style ]
runs-on: windows-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage pytest-cov clingo
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage
- name: Create local develop
run: |
./.github/workflows/setup_git.ps1
.\spack\.github\workflows\setup_git.ps1
- name: Command Unit Test
run: |
spack unit-test -x --verbose --cov --cov-config=pyproject.toml lib/spack/spack/test/cmd
./share/spack/qa/validate_last_exit.ps1
coverage combine -a
coverage xml
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,windows
build-abseil:
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
spack unit-test lib/spack/spack/test/cmd --verbose
buildtest:
needs: [ validate, style ]
runs-on: windows-latest
steps:
- uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
with:
fetch-depth: 0
- uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: 3.9
- name: Install Python packages
@@ -75,81 +107,82 @@ jobs:
- name: Build Test
run: |
spack compiler find
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
spack external find cmake
spack external find ninja
spack -d install abseil-cpp
# TODO: johnwparent - reduce the size of the installer operations
# make-installer:
# runs-on: windows-latest
# steps:
# - name: Disable Windows Symlinks
# run: |
# git config --global core.symlinks false
# shell:
# powershell
# - uses: actions/checkout@ac593985615ec2ede58e132d2e21d2b1cbd6127c
# with:
# fetch-depth: 0
# - uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435
# with:
# python-version: 3.9
# - name: Install Python packages
# run: |
# python -m pip install --upgrade pip six pywin32 setuptools
# - name: Add Light and Candle to Path
# run: |
# $env:WIX >> $GITHUB_PATH
# - name: Run Installer
# run: |
# ./share/spack/qa/setup_spack_installer.ps1
# spack make-installer -s . -g SILENT pkg
# echo "installer_root=$((pwd).Path)" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
# env:
# ProgressPreference: SilentlyContinue
# - uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
# with:
# name: Windows Spack Installer Bundle
# path: ${{ env.installer_root }}\pkg\Spack.exe
# - uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
# with:
# name: Windows Spack Installer
# path: ${{ env.installer_root}}\pkg\Spack.msi
# execute-installer:
# needs: make-installer
# runs-on: windows-latest
# defaults:
# run:
# shell: pwsh
# steps:
# - uses: actions/setup-python@d27e3f3d7c64b4bbf8e4abfb9b63b83e846e0435
# with:
# python-version: 3.9
# - name: Install Python packages
# run: |
# python -m pip install --upgrade pip six pywin32 setuptools
# - name: Setup installer directory
# run: |
# mkdir -p spack_installer
# echo "spack_installer=$((pwd).Path)\spack_installer" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
# - uses: actions/download-artifact@v3
# with:
# name: Windows Spack Installer Bundle
# path: ${{ env.spack_installer }}
# - name: Execute Bundled Installer
# run: |
# $proc = Start-Process ${{ env.spack_installer }}\spack.exe "/install /quiet" -Passthru
# $handle = $proc.Handle # cache proc.Handle
# $proc.WaitForExit();
# $LASTEXITCODE
# env:
# ProgressPreference: SilentlyContinue
# - uses: actions/download-artifact@v3
# with:
# name: Windows Spack Installer
# path: ${{ env.spack_installer }}
# - name: Execute MSI
# run: |
# $proc = Start-Process ${{ env.spack_installer }}\spack.msi "/quiet" -Passthru
# $handle = $proc.Handle # cache proc.Handle
# $proc.WaitForExit();
# $LASTEXITCODE
spack install abseil-cpp
generate-installer-test:
needs: [ validate, style ]
runs-on: windows-latest
steps:
- name: Disable Windows Symlinks
run: |
git config --global core.symlinks false
shell:
powershell
- uses: actions/checkout@2541b1294d2704b0964813337f33b291d3f8596b
with:
fetch-depth: 0
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage
- name: Add Light and Candle to Path
run: |
$env:WIX >> $GITHUB_PATH
- name: Run Installer
run: |
.\spack\share\spack\qa\setup_spack.ps1
spack make-installer -s spack -g SILENT pkg
echo "installer_root=$((pwd).Path)" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
env:
ProgressPreference: SilentlyContinue
- uses: actions/upload-artifact@3cea5372237819ed00197afe530f5a7ea3e805c8
with:
name: Windows Spack Installer Bundle
path: ${{ env.installer_root }}\pkg\Spack.exe
- uses: actions/upload-artifact@3cea5372237819ed00197afe530f5a7ea3e805c8
with:
name: Windows Spack Installer
path: ${{ env.installer_root}}\pkg\Spack.msi
execute-installer:
needs: generate-installer-test
runs-on: windows-latest
defaults:
run:
shell: pwsh
steps:
- uses: actions/setup-python@98f2ad02fd48d057ee3b4d4f66525b231c3e52b6
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage
- name: Setup installer directory
run: |
mkdir -p spack_installer
echo "spack_installer=$((pwd).Path)\spack_installer" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
- uses: actions/download-artifact@v3
with:
name: Windows Spack Installer Bundle
path: ${{ env.spack_installer }}
- name: Execute Bundled Installer
run: |
$proc = Start-Process ${{ env.spack_installer }}\spack.exe "/install /quiet" -Passthru
$handle = $proc.Handle # cache proc.Handle
$proc.WaitForExit();
$LASTEXITCODE
env:
ProgressPreference: SilentlyContinue
- uses: actions/download-artifact@v3
with:
name: Windows Spack Installer
path: ${{ env.spack_installer }}
- name: Execute MSI
run: |
$proc = Start-Process ${{ env.spack_installer }}\spack.msi "/quiet" -Passthru
$handle = $proc.Handle # cache proc.Handle
$proc.WaitForExit();
$LASTEXITCODE

View File

@@ -1,289 +1,3 @@
# v0.19.0 (2022-11-11)
`v0.19.0` is a major feature release.
## Major features in this release
1. **Package requirements**
Spack's traditional [package preferences](
https://spack.readthedocs.io/en/latest/build_settings.html#package-preferences)
are soft, but we've added hard requriements to `packages.yaml` and `spack.yaml`
(#32528, #32369). Package requirements use the same syntax as specs:
```yaml
packages:
libfabric:
require: "@1.13.2"
mpich:
require:
- one_of: ["+cuda", "+rocm"]
```
More details in [the docs](
https://spack.readthedocs.io/en/latest/build_settings.html#package-requirements).
2. **Environment UI Improvements**
* Fewer surprising modifications to `spack.yaml` (#33711):
* `spack install` in an environment will no longer add to the `specs:` list; you'll
need to either use `spack add <spec>` or `spack install --add <spec>`.
* Similarly, `spack uninstall` will not remove from your environment's `specs:`
list; you'll need to use `spack remove` or `spack uninstall --remove`.
This will make it easier to manage an environment, as there is clear separation
between the stack to be installed (`spack.yaml`/`spack.lock`) and which parts of
it should be installed (`spack install` / `spack uninstall`).
* `concretizer:unify:true` is now the default mode for new environments (#31787)
We see more users creating `unify:true` environments now. Users who need
`unify:false` can add it to their environment to get the old behavior. This will
concretize every spec in the environment independently.
* Include environment configuration from URLs (#29026, [docs](
https://spack.readthedocs.io/en/latest/environments.html#included-configurations))
You can now include configuration in your environment directly from a URL:
```yaml
spack:
include:
- https://github.com/path/to/raw/config/compilers.yaml
```
4. **Multiple Build Systems**
An increasing number of packages in the ecosystem need the ability to support
multiple build systems (#30738, [docs](
https://spack.readthedocs.io/en/latest/packaging_guide.html#multiple-build-systems)),
either across versions, across platforms, or within the same version of the software.
This has been hard to support through multiple inheritance, as methods from different
build system superclasses would conflict. `package.py` files can now define separate
builder classes with installation logic for different build systems, e.g.:
```python
class ArpackNg(CMakePackage, AutotoolsPackage):
build_system(
conditional("cmake", when="@0.64:"),
conditional("autotools", when="@:0.63"),
default="cmake",
)
class CMakeBuilder(spack.build_systems.cmake.CMakeBuilder):
def cmake_args(self):
pass
class Autotoolsbuilder(spack.build_systems.autotools.AutotoolsBuilder):
def configure_args(self):
pass
```
5. **Compiler and variant propagation**
Currently, compiler flags and variants are inconsistent: compiler flags set for a
package are inherited by its dependencies, while variants are not. We should have
these be consistent by allowing for inheritance to be enabled or disabled for both
variants and compiler flags.
Example syntax:
- `package ++variant`:
enabled variant that will be propagated to dependencies
- `package +variant`:
enabled variant that will NOT be propagated to dependencies
- `package ~~variant`:
disabled variant that will be propagated to dependencies
- `package ~variant`:
disabled variant that will NOT be propagated to dependencies
- `package cflags==-g`:
`cflags` will be propagated to dependencies
- `package cflags=-g`:
`cflags` will NOT be propagated to dependencies
Syntax for non-boolan variants is similar to compiler flags. More in the docs for
[variants](
https://spack.readthedocs.io/en/latest/basic_usage.html#variants) and [compiler flags](
https://spack.readthedocs.io/en/latest/basic_usage.html#compiler-flags).
6. **Enhancements to git version specifiers**
* `v0.18.0` added the ability to use git commits as versions. You can now use the
`git.` prefix to specify git tags or branches as versions. All of these are valid git
versions in `v0.19` (#31200):
```console
foo@abcdef1234abcdef1234abcdef1234abcdef1234 # raw commit
foo@git.abcdef1234abcdef1234abcdef1234abcdef1234 # commit with git prefix
foo@git.develop # the develop branch
foo@git.0.19 # use the 0.19 tag
```
* `v0.19` also gives you more control over how Spack interprets git versions, in case
Spack cannot detect the version from the git repository. You can suffix a git
version with `=<version>` to force Spack to concretize it as a particular version
(#30998, #31914, #32257):
```console
# use mybranch, but treat it as version 3.2 for version comparison
foo@git.mybranch=3.2
# use the given commit, but treat it as develop for version comparison
foo@git.abcdef1234abcdef1234abcdef1234abcdef1234=develop
```
More in [the docs](
https://spack.readthedocs.io/en/latest/basic_usage.html#version-specifier)
7. **Changes to Cray EX Support**
Cray machines have historically had their own "platform" within Spack, because we
needed to go through the module system to leverage compilers and MPI installations on
these machines. The Cray EX programming environment now provides standalone `craycc`
executables and proper `mpicc` wrappers, so Spack can treat EX machines like Linux
with extra packages (#29392).
We expect this to greatly reduce bugs, as external packages and compilers can now be
used by prefix instead of through modules. We will also no longer be subject to
reproducibility issues when modules change from Cray PE release to release and from
site to site. This also simplifies dealing with the underlying Linux OS on cray
systems, as Spack will properly model the machine's OS as either SuSE or RHEL.
8. **Improvements to tests and testing in CI**
* `spack ci generate --tests` will generate a `.gitlab-ci.yml` file that not only does
builds but also runs tests for built packages (#27877). Public GitHub pipelines now
also run tests in CI.
* `spack test run --explicit` will only run tests for packages that are explicitly
installed, instead of all packages.
9. **Experimental binding link model**
You can add a new option to `config.yaml` to make Spack embed absolute paths to
needed shared libraries in ELF executables and shared libraries on Linux (#31948, [docs](
https://spack.readthedocs.io/en/latest/config_yaml.html#shared-linking-bind)):
```yaml
config:
shared_linking:
type: rpath
bind: true
```
This can improve launch time at scale for parallel applications, and it can make
installations less susceptible to environment variables like `LD_LIBRARY_PATH`, even
especially when dealing with external libraries that use `RUNPATH`. You can think of
this as a faster, even higher-precedence version of `RPATH`.
## Other new features of note
* `spack spec` prints dependencies more legibly. Dependencies in the output now appear
at the *earliest* level of indentation possible (#33406)
* You can override `package.py` attributes like `url`, directly in `packages.yaml`
(#33275, [docs](
https://spack.readthedocs.io/en/latest/build_settings.html#assigning-package-attributes))
* There are a number of new architecture-related format strings you can use in Spack
configuration files to specify paths (#29810, [docs](
https://spack.readthedocs.io/en/latest/configuration.html#config-file-variables))
* Spack now supports bootstrapping Clingo on Windows (#33400)
* There is now support for an `RPATH`-like library model on Windows (#31930)
## Performance Improvements
* Major performance improvements for installation from binary caches (#27610, #33628,
#33636, #33608, #33590, #33496)
* Test suite can now be parallelized using `xdist` (used in GitHub Actions) (#32361)
* Reduce lock contention for parallel builds in environments (#31643)
## New binary caches and stacks
* We now build nearly all of E4S with `oneapi` in our buildcache (#31781, #31804,
#31804, #31803, #31840, #31991, #32117, #32107, #32239)
* Added 3 new machine learning-centric stacks to binary cache: `x86_64_v3`, CUDA, ROCm
(#31592, #33463)
## Removals and Deprecations
* Support for Python 3.5 is dropped (#31908). Only Python 2.7 and 3.6+ are officially
supported.
* This is the last Spack release that will support Python 2 (#32615). Spack `v0.19`
will emit a deprecation warning if you run it with Python 2, and Python 2 support will
soon be removed from the `develop` branch.
* `LD_LIBRARY_PATH` is no longer set by default by `spack load` or module loads.
Setting `LD_LIBRARY_PATH` in Spack environments/modules can cause binaries from
outside of Spack to crash, and Spack's own builds use `RPATH` and do not need
`LD_LIBRARY_PATH` set in order to run. If you still want the old behavior, you
can run these commands to configure Spack to set `LD_LIBRARY_PATH`:
```console
spack config add modules:prefix_inspections:lib64:[LD_LIBRARY_PATH]
spack config add modules:prefix_inspections:lib:[LD_LIBRARY_PATH]
```
* The `spack:concretization:[together|separately]` has been removed after being
deprecated in `v0.18`. Use `concretizer:unify:[true|false]`.
* `config:module_roots` is no longer supported after being deprecated in `v0.18`. Use
configuration in module sets instead (#28659, [docs](
https://spack.readthedocs.io/en/latest/module_file_support.html)).
* `spack activate` and `spack deactivate` are no longer supported, having been
deprecated in `v0.18`. Use an environment with a view instead of
activating/deactivating ([docs](
https://spack.readthedocs.io/en/latest/environments.html#configuration-in-spack-yaml)).
* The old YAML format for buildcaches is now deprecated (#33707). If you are using an
old buildcache with YAML metadata you will need to regenerate it with JSON metadata.
* `spack bootstrap trust` and `spack bootstrap untrust` are deprecated in favor of
`spack bootstrap enable` and `spack bootstrap disable` and will be removed in `v0.20`.
(#33600)
* The `graviton2` architecture has been renamed to `neoverse_n1`, and `graviton3`
is now `neoverse_v1`. Buildcaches using the old architecture names will need to be rebuilt.
* The terms `blacklist` and `whitelist` have been replaced with `include` and `exclude`
in all configuration files (#31569). You can use `spack config update` to
automatically fix your configuration files.
## Notable Bugfixes
* Permission setting on installation now handles effective uid properly (#19980)
* `buildable:true` for an MPI implementation now overrides `buildable:false` for `mpi` (#18269)
* Improved error messages when attempting to use an unconfigured compiler (#32084)
* Do not punish explicitly requested compiler mismatches in the solver (#30074)
* `spack stage`: add missing --fresh and --reuse (#31626)
* Fixes for adding build system executables like `cmake` to package scope (#31739)
* Bugfix for binary relocation with aliased strings produced by newer `binutils` (#32253)
## Spack community stats
* 6,751 total packages, 335 new since `v0.18.0`
* 141 new Python packages
* 89 new R packages
* 303 people contributed to this release
* 287 committers to packages
* 57 committers to core
# v0.18.1 (2022-07-19)
### Spack Bugfixes
* Fix several bugs related to bootstrapping (#30834,#31042,#31180)
* Fix a regression that was causing spec hashes to differ between
Python 2 and Python 3 (#31092)
* Fixed compiler flags for oneAPI and DPC++ (#30856)
* Fixed several issues related to concretization (#31142,#31153,#31170,#31226)
* Improved support for Cray manifest file and `spack external find` (#31144,#31201,#31173,#31186)
* Assign a version to openSUSE Tumbleweed according to the GLIBC version
in the system (#19895)
* Improved Dockerfile generation for `spack containerize` (#29741,#31321)
* Fixed a few bugs related to concurrent execution of commands (#31509,#31493,#31477)
### Package updates
* WarpX: add v22.06, fixed libs property (#30866,#31102)
* openPMD: add v0.14.5, update recipe for @develop (#29484,#31023)
# v0.18.0 (2022-05-28)
`v0.18.0` is a major feature release.
@@ -485,15 +199,6 @@
* 337 committers to packages
* 85 committers to core
# v0.17.3 (2022-07-14)
### Spack bugfixes
* Fix missing chgrp on symlinks in package installations (#30743)
* Allow having non-existing upstreams (#30744, #30746)
* Fix `spack stage` with custom paths (#30448)
* Fix failing call for `spack buildcache save-specfile` (#30637)
* Fix globbing in compiler wrapper (#30699)
# v0.17.2 (2022-04-13)

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2013-2023 LLNS, LLC and other Spack Project Developers.
Copyright (c) 2013-2022 LLNS, LLC and other Spack Project Developers.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -2,10 +2,10 @@
[![Unit Tests](https://github.com/spack/spack/workflows/linux%20tests/badge.svg)](https://github.com/spack/spack/actions)
[![Bootstrapping](https://github.com/spack/spack/actions/workflows/bootstrap.yml/badge.svg)](https://github.com/spack/spack/actions/workflows/bootstrap.yml)
[![macOS Builds (nightly)](https://github.com/spack/spack/workflows/macOS%20builds%20nightly/badge.svg?branch=develop)](https://github.com/spack/spack/actions?query=workflow%3A%22macOS+builds+nightly%22)
[![codecov](https://codecov.io/gh/spack/spack/branch/develop/graph/badge.svg)](https://codecov.io/gh/spack/spack)
[![Containers](https://github.com/spack/spack/actions/workflows/build-containers.yml/badge.svg)](https://github.com/spack/spack/actions/workflows/build-containers.yml)
[![Read the Docs](https://readthedocs.org/projects/spack/badge/?version=latest)](https://spack.readthedocs.io)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Slack](https://slack.spack.io/badge.svg)](https://slack.spack.io)
Spack is a multi-platform package manager that builds and installs
@@ -62,7 +62,6 @@ Resources:
* **Slack workspace**: [spackpm.slack.com](https://spackpm.slack.com).
To get an invitation, visit [slack.spack.io](https://slack.spack.io).
* [**Github Discussions**](https://github.com/spack/spack/discussions): not just for discussions, also Q&A.
* **Mailing list**: [groups.google.com/d/forum/spack](https://groups.google.com/d/forum/spack)
* **Twitter**: [@spackpm](https://twitter.com/spackpm). Be sure to
`@mention` us!

View File

@@ -10,8 +10,8 @@ For more on Spack's release structure, see
| Version | Supported |
| ------- | ------------------ |
| develop | :white_check_mark: |
| 0.19.x | :white_check_mark: |
| 0.18.x | :white_check_mark: |
| 0.17.x | :white_check_mark: |
| 0.16.x | :white_check_mark: |
## Reporting a Vulnerability

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -8,12 +8,13 @@
def getpywin():
try:
import win32con # noqa: F401
import win32con # noqa
except ImportError:
print("pyWin32 not installed but is required...\nInstalling via pip:")
subprocess.check_call([sys.executable, "-m", "pip", "-q", "install", "--upgrade", "pip"])
subprocess.check_call([sys.executable, "-m", "pip", "-q", "install", "pywin32"])
subprocess.check_call(
[sys.executable, "-m", "pip", "-q", "install", "--upgrade", "pip"])
subprocess.check_call(
[sys.executable, "-m", "pip", "-q", "install", "pywin32"])
if __name__ == "__main__":
if __name__ == '__main__':
getpywin()

View File

@@ -1,6 +1,6 @@
#!/bin/sh
#
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
# sbang project developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,7 +1,7 @@
#!/bin/sh
# -*- python -*-
#
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -31,11 +31,13 @@ import os
import os.path
import sys
min_python3 = (3, 6)
min_python3 = (3, 5)
if sys.version_info[:2] < min_python3:
if sys.version_info[:2] < (2, 7) or (
sys.version_info[:2] >= (3, 0) and sys.version_info[:2] < min_python3
):
v_info = sys.version_info[:3]
msg = "Spack requires Python %d.%d or higher " % min_python3
msg = "Spack requires Python 2.7 or %d.%d or higher " % min_python3
msg += "You are running spack with Python %d.%d.%d." % v_info
sys.exit(msg)
@@ -47,8 +49,50 @@ spack_prefix = os.path.dirname(os.path.dirname(spack_file))
spack_lib_path = os.path.join(spack_prefix, "lib", "spack")
sys.path.insert(0, spack_lib_path)
from spack_installable.main import main # noqa: E402
# Add external libs
spack_external_libs = os.path.join(spack_lib_path, "external")
if sys.version_info[:2] <= (2, 7):
sys.path.insert(0, os.path.join(spack_external_libs, "py2"))
sys.path.insert(0, spack_external_libs)
# Here we delete ruamel.yaml in case it has been already imported from site
# (see #9206 for a broader description of the issue).
#
# Briefly: ruamel.yaml produces a .pth file when installed with pip that
# makes the site installed package the preferred one, even though sys.path
# is modified to point to another version of ruamel.yaml.
if "ruamel.yaml" in sys.modules:
del sys.modules["ruamel.yaml"]
if "ruamel" in sys.modules:
del sys.modules["ruamel"]
# The following code is here to avoid failures when updating
# the develop version, due to spurious argparse.pyc files remaining
# in the libs/spack/external directory, see:
# https://github.com/spack/spack/pull/25376
# TODO: Remove in v0.18.0 or later
try:
import argparse
except ImportError:
argparse_pyc = os.path.join(spack_external_libs, 'argparse.pyc')
if not os.path.exists(argparse_pyc):
raise
try:
os.remove(argparse_pyc)
import argparse # noqa
except Exception:
msg = ('The file\n\n\t{0}\n\nis corrupted and cannot be deleted by Spack. '
'Either delete it manually or ask some administrator to '
'delete it for you.')
print(msg.format(argparse_pyc))
sys.exit(1)
import spack.main # noqa
# Once we've set up the system path, run the spack main method
if __name__ == "__main__":
sys.exit(main())
sys.exit(spack.main.main())

View File

@@ -1,6 +1,6 @@
#!/bin/sh
#
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,95 +0,0 @@
#!/bin/bash
set -euo pipefail
[[ -n "${TMPCONFIG_DEBUG:=}" ]] && set -x
DIR="$(cd -P "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
mkdir -p "${XDG_RUNTIME_DIR:=/tmp}/spack-tests"
export TMPDIR="${XDG_RUNTIME_DIR}"
export TMP_DIR="$(mktemp -d -t spack-test-XXXXX)"
clean_up() {
[[ -n "$TMPCONFIG_DEBUG" ]] && printf "cleaning up: $TMP_DIR\n"
rm -rf "$TMP_DIR"
}
trap clean_up EXIT
trap clean_up ERR
[[ -n "$TMPCONFIG_DEBUG" ]] && printf "Redirecting TMP_DIR and spack directories to $TMP_DIR\n"
export BOOTSTRAP="${SPACK_USER_CACHE_PATH:=$HOME/.spack}/bootstrap"
export SPACK_USER_CACHE_PATH="$TMP_DIR/user_cache"
mkdir -p "$SPACK_USER_CACHE_PATH"
private_bootstrap="$SPACK_USER_CACHE_PATH/bootstrap"
use_spack=''
use_bwrap=''
# argument handling
while (($# >= 1)) ; do
case "$1" in
-b) # privatize bootstrap too, useful for CI but not always cheap
shift
export BOOTSTRAP="$private_bootstrap"
;;
-B) # use specified bootstrap dir
export BOOTSTRAP="$2"
shift 2
;;
-s) # run spack directly with remaining args
shift
use_spack=1
;;
--contain=bwrap)
if bwrap --help 2>&1 > /dev/null ; then
use_bwrap=1
else
echo Bubblewrap containment requested, but no bwrap command found
exit 1
fi
shift
;;
--)
shift
break
;;
*)
break
;;
esac
done
typeset -a CMD
if [[ -n "$use_spack" ]] ; then
CMD=("$DIR/spack" "$@")
else
CMD=("$@")
fi
mkdir -p "$BOOTSTRAP"
export SPACK_SYSTEM_CONFIG_PATH="$TMP_DIR/sys_conf"
export SPACK_USER_CONFIG_PATH="$TMP_DIR/user_conf"
mkdir -p "$SPACK_USER_CONFIG_PATH"
cat >"$SPACK_USER_CONFIG_PATH/config.yaml" <<EOF
config:
install_tree:
root: $TMP_DIR/install
misc_cache: $$user_cache_path/cache
source_cache: $$user_cache_path/source
EOF
cat >"$SPACK_USER_CONFIG_PATH/bootstrap.yaml" <<EOF
bootstrap:
root: $BOOTSTRAP
EOF
if [[ -n "$use_bwrap" ]] ; then
CMD=(
bwrap
--dev-bind / /
--ro-bind "$DIR/.." "$DIR/.." # do not touch spack root
--ro-bind $HOME/.spack $HOME/.spack # do not touch user config/cache dir
--bind "$TMP_DIR" "$TMP_DIR"
--bind "$BOOTSTRAP" "$BOOTSTRAP"
--die-with-parent
"${CMD[@]}"
)
fi
(( ${TMPCONFIG_DEBUG:=0} > 1)) && echo "Running: ${CMD[@]}"
"${CMD[@]}"

View File

@@ -1,4 +1,4 @@
:: Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
:: Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
:: Spack Project Developers. See the top-level COPYRIGHT file for details.
::
:: SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -83,16 +83,6 @@ if defined _sp_flags (
exit /B 0
)
)
if not defined _sp_subcommand (
if not defined _sp_args (
if not defined _sp_flags (
python "%spack%" --help
exit /B 0
)
)
)
:: pass parsed variables outside of local scope. Need to do
:: this because delayedexpansion can only be set by setlocal
echo %_sp_flags%>flags
@@ -102,24 +92,24 @@ endlocal
set /p _sp_subcommand=<subcmd
set /p _sp_flags=<flags
set /p _sp_args=<args
if "%_sp_subcommand%"=="ECHO is off." (set "_sp_subcommand=")
if "%_sp_subcommand%"=="ECHO is on." (set "_sp_subcommand=")
if "%_sp_flags%"=="ECHO is off." (set "_sp_flags=")
if "%_sp_flags%"=="ECHO is on." (set "_sp_flags=")
if "%_sp_args%"=="ECHO is off." (set "_sp_args=")
if "%_sp_args%"=="ECHO is on." (set "_sp_args=")
set str_subcommand=%_sp_subcommand:"='%
set str_flags=%_sp_flags:"='%
set str_args=%_sp_args:"='%
if "%str_subcommand%"=="ECHO is off." (set "_sp_subcommand=")
if "%str_flags%"=="ECHO is off." (set "_sp_flags=")
if "%str_args%"=="ECHO is off." (set "_sp_args=")
del subcmd
del flags
del args
:: Filter out some commands. For any others, just run the command.
if %_sp_subcommand% == "cd" (
if "%_sp_subcommand%" == "cd" (
goto :case_cd
) else if %_sp_subcommand% == "env" (
) else if "%_sp_subcommand%" == "env" (
goto :case_env
) else if %_sp_subcommand% == "load" (
) else if "%_sp_subcommand%" == "load" (
goto :case_load
) else if %_sp_subcommand% == "unload" (
) else if "%_sp_subcommand%" == "unload" (
goto :case_load
) else (
goto :default_case
@@ -153,21 +143,19 @@ goto :end_switch
:: If no args or args contain --bat or -h/--help: just execute.
if NOT defined _sp_args (
goto :default_case
)
set args_no_quote=%_sp_args:"=%
if NOT "%args_no_quote%"=="%args_no_quote:--help=%" (
)else if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :default_case
) else if NOT "%args_no_quote%"=="%args_no_quote: -h=%" (
) else if NOT "%_sp_args%"=="%_sp_args: -h=%" (
goto :default_case
) else if NOT "%args_no_quote%"=="%args_no_quote:--bat=%" (
) else if NOT "%_sp_args%"=="%_sp_args:--bat=%" (
goto :default_case
) else if NOT "%args_no_quote%"=="%args_no_quote:deactivate=%" (
) else if NOT "%_sp_args%"=="%_sp_args:deactivate=%" (
for /f "tokens=* USEBACKQ" %%I in (
`call python %spack% %_sp_flags% env deactivate --bat %args_no_quote:deactivate=%`
`call python "%spack%" %_sp_flags% env deactivate --bat %_sp_args:deactivate=%`
) do %%I
) else if NOT "%args_no_quote%"=="%args_no_quote:activate=%" (
) else if NOT "%_sp_args%"=="%_sp_args:activate=%" (
for /f "tokens=* USEBACKQ" %%I in (
`python %spack% %_sp_flags% env activate --bat %args_no_quote:activate=%`
`call python "%spack%" %_sp_flags% env activate --bat %_sp_args:activate=%`
) do %%I
) else (
goto :default_case
@@ -232,4 +220,4 @@ for %%I in (%~2) do (
:pathadd "%~1" "%%I\%%Z"
)
)
exit /B %ERRORLEVEL%
exit /B %ERRORLEVEL%

View File

@@ -52,6 +52,7 @@ if defined py_path (
if defined py_exe (
"%py_exe%" "%SPACK_ROOT%\bin\haspywin.py"
"%py_exe%" "%SPACK_ROOT%\bin\spack" external find python >NUL
)
set "EDITOR=notepad"

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -9,15 +9,14 @@ bootstrap:
# may not be able to bootstrap all the software that Spack needs,
# depending on its type.
sources:
- name: 'github-actions-v0.4'
metadata: $spack/share/spack/bootstrap/github-actions-v0.4
- name: 'github-actions-v0.3'
metadata: $spack/share/spack/bootstrap/github-actions-v0.3
- name: 'github-actions-v0.2'
metadata: $spack/share/spack/bootstrap/github-actions-v0.2
- name: 'github-actions-v0.1'
metadata: $spack/share/spack/bootstrap/github-actions-v0.1
- name: 'spack-install'
metadata: $spack/share/spack/bootstrap/spack-install
trusted:
# By default we trust bootstrapping from sources and from binaries
# produced on Github via the workflow
github-actions-v0.4: true
github-actions-v0.3: true
github-actions-v0.2: true
spack-install: true

View File

@@ -33,4 +33,4 @@ concretizer:
# environments can always be activated. When "false" perform concretization separately
# on each root spec, allowing different versions and variants of the same package in
# an environment.
unify: true
unify: false

View File

@@ -19,7 +19,7 @@ config:
install_tree:
root: $spack/opt/spack
projections:
all: "{architecture}/{compiler.name}-{compiler.version}/{name}-{version}-{hash}"
all: "${ARCHITECTURE}/${COMPILERNAME}-${COMPILERVER}/${PACKAGE}-${VERSION}-${HASH}"
# install_tree can include an optional padded length (int or boolean)
# default is False (do not pad)
# if padded_length is True, Spack will pad as close to the system max path
@@ -54,11 +54,6 @@ config:
# are that it precludes its use as a system package and its ability to be
# pip installable.
#
# In Spack environment files, chaining onto existing system Spack
# installations, the $env variable can be used to download, cache and build
# into user-writable paths that are relative to the currently active
# environment.
#
# In any case, if the username is not already in the path, Spack will append
# the value of `$user` in an attempt to avoid potential conflicts between
# users in shared temporary spaces.
@@ -192,20 +187,10 @@ config:
package_lock_timeout: null
# Control how shared libraries are located at runtime on Linux. See the
# the Spack documentation for details.
shared_linking:
# Spack automatically embeds runtime search paths in ELF binaries for their
# dependencies. Their type can either be "rpath" or "runpath". For glibc, rpath is
# inherited and has precedence over LD_LIBRARY_PATH; runpath is not inherited
# and of lower precedence. DO NOT MIX these within the same install tree.
type: rpath
# (Experimental) Embed absolute paths of dependent libraries directly in ELF
# binaries to avoid runtime search. This can improve startup time of
# executables with many dependencies, in particular on slow filesystems.
bind: false
# Control whether Spack embeds RPATH or RUNPATH attributes in ELF binaries.
# Has no effect on macOS. DO NOT MIX these within the same install tree.
# See the Spack documentation for details.
shared_linking: 'rpath'
# Set to 'false' to allow installation on filesystems that doesn't allow setgid bit
@@ -216,11 +201,3 @@ config:
# building and installing packages. This gives information about Spack's
# current progress as well as the current and total number of packages.
terminal_title: false
# Number of seconds a buildcache's index.json is cached locally before probing
# for updates, within a single Spack invocation. Defaults to 10 minutes.
binary_index_ttl: 600
flags:
# Whether to keep -Werror flags active in package builds.
keep_werror: 'none'

View File

@@ -13,4 +13,9 @@
# Per-user settings (overrides default and site settings):
# ~/.spack/modules.yaml
# -------------------------------------------------------------------------
modules: {}
modules:
prefix_inspections:
lib:
- LD_LIBRARY_PATH
lib64:
- LD_LIBRARY_PATH

View File

@@ -15,7 +15,7 @@
# -------------------------------------------------------------------------
modules:
prefix_inspections:
./lib:
lib:
- DYLD_FALLBACK_LIBRARY_PATH
./lib64:
lib64:
- DYLD_FALLBACK_LIBRARY_PATH

View File

@@ -13,4 +13,9 @@
# Per-user settings (overrides default and site settings):
# ~/.spack/modules.yaml
# -------------------------------------------------------------------------
modules: {}
modules:
prefix_inspections:
lib:
- LD_LIBRARY_PATH
lib64:
- LD_LIBRARY_PATH

View File

@@ -14,24 +14,23 @@
# ~/.spack/modules.yaml
# -------------------------------------------------------------------------
modules:
# This maps paths in the package install prefix to environment variables
# they should be added to. For example, <prefix>/bin should be in PATH.
# Paths to check when creating modules for all module sets
prefix_inspections:
./bin:
bin:
- PATH
./man:
man:
- MANPATH
./share/man:
share/man:
- MANPATH
./share/aclocal:
share/aclocal:
- ACLOCAL_PATH
./lib/pkgconfig:
lib/pkgconfig:
- PKG_CONFIG_PATH
./lib64/pkgconfig:
lib64/pkgconfig:
- PKG_CONFIG_PATH
./share/pkgconfig:
share/pkgconfig:
- PKG_CONFIG_PATH
./:
'':
- CMAKE_PREFIX_PATH
# These are configurations for the module set named "default"

View File

@@ -25,18 +25,16 @@ packages:
fftw-api: [fftw, amdfftw]
flame: [libflame, amdlibflame]
fuse: [libfuse]
gl: [glx, osmesa]
gl: [mesa+opengl, mesa18, opengl]
glu: [mesa-glu, openglu]
golang: [go, gcc]
go-external-or-gccgo-bootstrap: [go-bootstrap, gcc]
glx: [mesa+glx, mesa18+glx, opengl]
golang: [gcc]
iconv: [libiconv]
ipp: [intel-ipp]
java: [openjdk, jdk, ibm-java]
jpeg: [libjpeg-turbo, libjpeg]
lapack: [openblas, amdlibflame]
libglx: [mesa+glx, mesa18+glx]
libllvm: [llvm]
libosmesa: [mesa+osmesa, mesa18+osmesa]
libllvm: [llvm, llvm-amdgpu]
lua-lang: [lua, lua-luajit-openresty, lua-luajit]
luajit: [lua-luajit-openresty, lua-luajit]
mariadb-client: [mariadb-c-client, mariadb]
@@ -46,6 +44,7 @@ packages:
mysql-client: [mysql, mariadb-c-client]
opencl: [pocl]
onedal: [intel-oneapi-dal]
osmesa: [mesa+osmesa, mesa18+osmesa]
pbs: [openpbs, torque]
pil: [py-pillow]
pkgconfig: [pkgconf, pkg-config]

View File

@@ -1,5 +1,5 @@
config:
locks: false
concretizer: clingo
concretizer: original
build_stage::
- '$spack/.staging'

View File

@@ -1,21 +0,0 @@
# -------------------------------------------------------------------------
# This file controls default concretization preferences for Spack.
#
# Settings here are versioned with Spack and are intended to provide
# sensible defaults out of the box. Spack maintainers should edit this
# file to keep it current.
#
# Users can override these settings by editing the following files.
#
# Per-spack-instance settings (overrides defaults):
# $SPACK_ROOT/etc/spack/packages.yaml
#
# Per-user settings (overrides default and site settings):
# ~/.spack/packages.yaml
# -------------------------------------------------------------------------
packages:
all:
compiler:
- msvc
providers:
mpi: [msmpi]

1
lib/spack/docs/_spack_root Symbolic link
View File

@@ -0,0 +1 @@
../../..

162
lib/spack/docs/analyze.rst Normal file
View File

@@ -0,0 +1,162 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _analyze:
=======
Analyze
=======
The analyze command is a front-end to various tools that let us analyze
package installations. Each analyzer is a module for a different kind
of analysis that can be done on a package installation, including (but not
limited to) binary, log, or text analysis. Thus, the analyze command group
allows you to take an existing package install, choose an analyzer,
and extract some output for the package using it.
-----------------
Analyzer Metadata
-----------------
For all analyzers, we write to an ``analyzers`` folder in ``~/.spack``, or the
value that you specify in your spack config at ``config:analyzers_dir``.
For example, here we see the results of running an analysis on zlib:
.. code-block:: console
$ tree ~/.spack/analyzers/
└── linux-ubuntu20.04-skylake
└── gcc-9.3.0
└── zlib-1.2.11-sl7m27mzkbejtkrajigj3a3m37ygv4u2
├── environment_variables
│   └── spack-analyzer-environment-variables.json
├── install_files
│   └── spack-analyzer-install-files.json
└── libabigail
└── spack-analyzer-libabigail-libz.so.1.2.11.xml
This means that you can always find analyzer output in this folder, and it
is organized with the same logic as the package install it was run for.
If you want to customize this top level folder, simply provide the ``--path``
argument to ``spack analyze run``. The nested organization will be maintained
within your custom root.
-----------------
Listing Analyzers
-----------------
If you aren't familiar with Spack's analyzers, you can quickly list those that
are available:
.. code-block:: console
$ spack analyze list-analyzers
install_files : install file listing read from install_manifest.json
environment_variables : environment variables parsed from spack-build-env.txt
config_args : config args loaded from spack-configure-args.txt
libabigail : Application Binary Interface (ABI) features for objects
In the above, the first three are fairly simple - parsing metadata files from
a package install directory to save
-------------------
Analyzing a Package
-------------------
The analyze command, akin to install, will accept a package spec to perform
an analysis for. The package must be installed. Let's walk through an example
with zlib. We first ask to analyze it. However, since we have more than one
install, we are asked to disambiguate:
.. code-block:: console
$ spack analyze run zlib
==> Error: zlib matches multiple packages.
Matching packages:
fz2bs56 zlib@1.2.11%gcc@7.5.0 arch=linux-ubuntu18.04-skylake
sl7m27m zlib@1.2.11%gcc@9.3.0 arch=linux-ubuntu20.04-skylake
Use a more specific spec.
We can then specify the spec version that we want to analyze:
.. code-block:: console
$ spack analyze run zlib/fz2bs56
If you don't provide any specific analyzer names, by default all analyzers
(shown in the ``list-analyzers`` subcommand list) will be run. If an analyzer does not
have any result, it will be skipped. For example, here is a result running for
zlib:
.. code-block:: console
$ ls ~/.spack/analyzers/linux-ubuntu20.04-skylake/gcc-9.3.0/zlib-1.2.11-sl7m27mzkbejtkrajigj3a3m37ygv4u2/
spack-analyzer-environment-variables.json
spack-analyzer-install-files.json
spack-analyzer-libabigail-libz.so.1.2.11.xml
If you want to run a specific analyzer, ask for it with `--analyzer`. Here we run
spack analyze on libabigail (already installed) _using_ libabigail1
.. code-block:: console
$ spack analyze run --analyzer abigail libabigail
.. _analyze_monitoring:
----------------------
Monitoring An Analysis
----------------------
For any kind of analysis, you can
use a `spack monitor <https://github.com/spack/spack-monitor>`_ "Spackmon"
as a server to upload the same run metadata to. You can
follow the instructions in the `spack monitor documentation <https://spack-monitor.readthedocs.org>`_
to first create a server along with a username and token for yourself.
You can then use this guide to interact with the server.
You should first export our spack monitor token and username to the environment:
.. code-block:: console
$ export SPACKMON_TOKEN=50445263afd8f67e59bd79bff597836ee6c05438
$ export SPACKMON_USER=spacky
By default, the host for your server is expected to be at ``http://127.0.0.1``
with a prefix of ``ms1``, and if this is the case, you can simply add the
``--monitor`` flag to the install command:
.. code-block:: console
$ spack analyze run --monitor wget
If you need to customize the host or the prefix, you can do that as well:
.. code-block:: console
$ spack analyze run --monitor --monitor-prefix monitor --monitor-host https://monitor-service.io wget
If your server doesn't have authentication, you can skip it:
.. code-block:: console
$ spack analyze run --monitor --monitor-disable-auth wget
Regardless of your choice, when you run analyze on an installed package (whether
it was installed with ``--monitor`` or not, you'll see the results generating as they did
before, and a message that the monitor server was pinged:
.. code-block:: console
$ spack analyze --monitor wget
...
==> Sending result for wget bin/wget to monitor.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -85,7 +85,7 @@ All packages whose names or descriptions contain documentation:
To get more information on a particular package from `spack list`, use
`spack info`. Just supply the name of a package:
.. command-output:: spack info --all mpich
.. command-output:: spack info mpich
Most of the information is self-explanatory. The *safe versions* are
versions that Spack knows the checksum for, and it will use the
@@ -896,8 +896,8 @@ your path:
$ which mpicc
~/spack/opt/linux-debian7-x86_64/gcc@4.4.7/mpich@3.0.4/bin/mpicc
These commands will add appropriate directories to your ``PATH``
and ``MANPATH`` according to the
These commands will add appropriate directories to your ``PATH``,
``MANPATH``, ``CPATH``, and ``LD_LIBRARY_PATH`` according to the
:ref:`prefix inspections <customize-env-modifications>` defined in your
modules configuration.
When you no longer want to use a package, you can type unload or
@@ -998,15 +998,11 @@ More formally, a spec consists of the following pieces:
* ``%`` Optional compiler specifier, with an optional compiler version
(``gcc`` or ``gcc@4.7.3``)
* ``+`` or ``-`` or ``~`` Optional variant specifiers (``+debug``,
``-qt``, or ``~qt``) for boolean variants. Use ``++`` or ``--`` or
``~~`` to propagate variants through the dependencies (``++debug``,
``--qt``, or ``~~qt``).
``-qt``, or ``~qt``) for boolean variants
* ``name=<value>`` Optional variant specifiers that are not restricted to
boolean variants. Use ``name==<value>`` to propagate variant through the
dependencies.
boolean variants
* ``name=<value>`` Optional compiler flag specifiers. Valid flag names are
``cflags``, ``cxxflags``, ``fflags``, ``cppflags``, ``ldflags``, and ``ldlibs``.
Use ``name==<value>`` to propagate compiler flags through the dependencies.
* ``target=<value> os=<value>`` Optional architecture specifier
(``target=haswell os=CNL10``)
* ``^`` Dependency specs (``^callpath@1.1``)
@@ -1097,8 +1093,6 @@ could depend on ``mpich@1.2:`` if it can only build with version
Below are more details about the specifiers that you can add to specs.
.. _version-specifier:
^^^^^^^^^^^^^^^^^
Version specifier
^^^^^^^^^^^^^^^^^
@@ -1114,37 +1108,6 @@ set of arbitrary versions, such as ``@1.0,1.5,1.7`` (``1.0``, ``1.5``,
or ``1.7``). When you supply such a specifier to ``spack install``,
it constrains the set of versions that Spack will install.
For packages with a ``git`` attribute, ``git`` references
may be specified instead of a numerical version i.e. branches, tags
and commits. Spack will stage and build based off the ``git``
reference provided. Acceptable syntaxes for this are:
.. code-block:: sh
# branches and tags
foo@git.develop # use the develop branch
foo@git.0.19 # use the 0.19 tag
# commit hashes
foo@abcdef1234abcdef1234abcdef1234abcdef1234 # 40 character hashes are automatically treated as git commits
foo@git.abcdef1234abcdef1234abcdef1234abcdef1234
Spack versions from git reference either have an associated version supplied by the user,
or infer a relationship to known versions from the structure of the git repository. If an
associated version is supplied by the user, Spack treats the git version as equivalent to that
version for all version comparisons in the package logic (e.g. ``depends_on('foo', when='@1.5')``).
The associated version can be assigned with ``[git ref]=[version]`` syntax, with the caveat that the specified version is known to Spack from either the package definition, or in the configuration preferences (i.e. ``packages.yaml``).
.. code-block:: sh
foo@git.my_ref=3.2 # use the my_ref tag or branch, but treat it as version 3.2 for version comparisons
foo@git.abcdef1234abcdef1234abcdef1234abcdef1234=develop # use the given commit, but treat it as develop for version comparisons
If an associated version is not supplied then the tags in the git repo are used to determine
the most recent previous version known to Spack. Details about how versions are compared
and how Spack determines if one version is less than another are discussed in the developer guide.
If the version spec is not provided, then Spack will choose one
according to policies set for the particular spack installation. If
the spec is ambiguous, i.e. it could match multiple versions, Spack
@@ -1230,23 +1193,6 @@ variants using the backwards compatibility syntax and uses only ``~``
for disabled boolean variants. The ``-`` and spaces on the command
line are provided for convenience and legibility.
Spack allows variants to propagate their value to the package's
dependency by using ``++``, ``--``, and ``~~`` for boolean variants.
For example, for a ``debug`` variant:
.. code-block:: sh
mpileaks ++debug # enabled debug will be propagated to dependencies
mpileaks +debug # only mpileaks will have debug enabled
To propagate the value of non-boolean variants Spack uses ``name==value``.
For example, for the ``stackstart`` variant:
.. code-block:: sh
mpileaks stackstart==4 # variant will be propagated to dependencies
mpileaks stackstart=4 # only mpileaks will have this variant value
^^^^^^^^^^^^^^
Compiler Flags
^^^^^^^^^^^^^^
@@ -1254,15 +1200,10 @@ Compiler Flags
Compiler flags are specified using the same syntax as non-boolean variants,
but fulfill a different purpose. While the function of a variant is set by
the package, compiler flags are used by the compiler wrappers to inject
flags into the compile line of the build. Additionally, compiler flags can
be inherited by dependencies by using ``==``.
``spack install libdwarf cppflags=="-g"`` will install both libdwarf and
libelf with the ``-g`` flag injected into their compile line.
.. note::
versions of spack prior to 0.19.0 will propagate compiler flags using
the ``=`` syntax.
flags into the compile line of the build. Additionally, compiler flags are
inherited by dependencies. ``spack install libdwarf cppflags="-g"`` will
install both libdwarf and libelf with the ``-g`` flag injected into their
compile line.
Notice that the value of the compiler flags must be quoted if it
contains any spaces. Any of ``cppflags=-O3``, ``cppflags="-O3"``,
@@ -1464,7 +1405,7 @@ built.
You can see what virtual packages a particular package provides by
getting info on it:
.. command-output:: spack info --virtuals mpich
.. command-output:: spack info mpich
Spack is unique in that its virtual packages can be versioned, just
like regular packages. A particular version of a package may provide
@@ -1672,13 +1613,9 @@ own install prefix. However, certain packages are typically installed
`Python <https://www.python.org>`_ packages are typically installed in the
``$prefix/lib/python-2.7/site-packages`` directory.
In Spack, installation prefixes are immutable, so this type of installation
is not directly supported. However, it is possible to create views that
allow you to merge install prefixes of multiple packages into a single new prefix.
Views are a convenient way to get a more traditional filesystem structure.
Using *extensions*, you can ensure that Python packages always share the
same prefix in the view as Python itself. Suppose you have
Python installed like so:
Spack has support for this type of installation as well. In Spack,
a package that can live inside the prefix of another package is called
an *extension*. Suppose you have Python installed like so:
.. code-block:: console
@@ -1716,6 +1653,8 @@ You can find extensions for your Python installation like this:
py-ipython@2.3.1 py-pygments@2.0.1 py-setuptools@11.3.1
py-matplotlib@1.4.2 py-pyparsing@2.0.3 py-six@1.9.0
==> None activated.
The extensions are a subset of what's returned by ``spack list``, and
they are packages like any other. They are installed into their own
prefixes, and you can see this with ``spack find --paths``:
@@ -1743,72 +1682,32 @@ directly when you run ``python``:
ImportError: No module named numpy
>>>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using Extensions in Environments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^
Using Extensions
^^^^^^^^^^^^^^^^
The recommended way of working with extensions such as ``py-numpy``
above is through :ref:`Environments <environments>`. For example,
the following creates an environment in the current working directory
with a filesystem view in the ``./view`` directory:
.. code-block:: console
$ spack env create --with-view view --dir .
$ spack -e . add py-numpy
$ spack -e . concretize
$ spack -e . install
We recommend environments for two reasons. Firstly, environments
can be activated (requires :ref:`shell-support`):
.. code-block:: console
$ spack env activate .
which sets all the right environment variables such as ``PATH`` and
``PYTHONPATH``. This ensures that
.. code-block:: console
$ python
>>> import numpy
works. Secondly, even without shell support, the view ensures
that Python can locate its extensions:
.. code-block:: console
$ ./view/bin/python
>>> import numpy
See :ref:`environments` for a more in-depth description of Spack
environments and customizations to views.
^^^^^^^^^^^^^^^^^^^^
Using ``spack load``
^^^^^^^^^^^^^^^^^^^^
A more traditional way of using Spack and extensions is ``spack load``
(requires :ref:`shell-support`). This will add the extension to ``PYTHONPATH``
in your current shell, and Python itself will be available in the ``PATH``:
There are four ways to get ``numpy`` working in Python. The first is
to use :ref:`shell-support`. You can simply ``load`` the extension,
and it will be added to the ``PYTHONPATH`` in your current shell:
.. code-block:: console
$ spack load python
$ spack load py-numpy
$ python
>>> import numpy
Now ``import numpy`` will succeed for as long as you keep your current
session open.
The loaded packages can be checked using ``spack find --loaded``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Loading Extensions via Modules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Apart from ``spack env activate`` and ``spack load``, you can load numpy
through your environment modules (using ``environment-modules`` or
``lmod``). This will also add the extension to the ``PYTHONPATH`` in
your current shell.
Instead of using Spack's environment modification capabilities through
the ``spack load`` command, you can load numpy through your
environment modules (using ``environment-modules`` or ``lmod``). This
will also add the extension to the ``PYTHONPATH`` in your current
shell.
.. code-block:: console
@@ -1818,6 +1717,130 @@ If you do not know the name of the specific numpy module you wish to
load, you can use the ``spack module tcl|lmod loads`` command to get
the name of the module from the Spack spec.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Activating Extensions in a View
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another way to use extensions is to create a view, which merges the
python installation along with the extensions into a single prefix.
See :ref:`configuring_environment_views` for a more in-depth description
of views.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Activating Extensions Globally
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
As an alternative to creating a merged prefix with Python and its extensions,
and prior to support for views, Spack has provided a means to install the
extension into the Spack installation prefix for the extendee. This has
typically been useful since extendable packages typically search their own
installation path for addons by default.
Global activations are performed with the ``spack activate`` command:
.. _cmd-spack-activate:
^^^^^^^^^^^^^^^^^^
``spack activate``
^^^^^^^^^^^^^^^^^^
.. code-block:: console
$ spack activate py-numpy
==> Activated extension py-setuptools@11.3.1%gcc@4.4.7 arch=linux-debian7-x86_64-3c74eb69 for python@2.7.8%gcc@4.4.7.
==> Activated extension py-nose@1.3.4%gcc@4.4.7 arch=linux-debian7-x86_64-5f70f816 for python@2.7.8%gcc@4.4.7.
==> Activated extension py-numpy@1.9.1%gcc@4.4.7 arch=linux-debian7-x86_64-66733244 for python@2.7.8%gcc@4.4.7.
Several things have happened here. The user requested that
``py-numpy`` be activated in the ``python`` installation it was built
with. Spack knows that ``py-numpy`` depends on ``py-nose`` and
``py-setuptools``, so it activated those packages first. Finally,
once all dependencies were activated in the ``python`` installation,
``py-numpy`` was activated as well.
If we run ``spack extensions`` again, we now see the three new
packages listed as activated:
.. code-block:: console
$ spack extensions python
==> python@2.7.8%gcc@4.4.7 arch=linux-debian7-x86_64-703c7a96
==> 36 extensions:
geos py-ipython py-pexpect py-pyside py-sip
py-basemap py-libxml2 py-pil py-pytz py-six
py-biopython py-mako py-pmw py-rpy2 py-sympy
py-cython py-matplotlib py-pychecker py-scientificpython py-virtualenv
py-dateutil py-mpi4py py-pygments py-scikit-learn
py-epydoc py-mx py-pylint py-scipy
py-gnuplot py-nose py-pyparsing py-setuptools
py-h5py py-numpy py-pyqt py-shiboken
==> 12 installed:
-- linux-debian7-x86_64 / gcc@4.4.7 --------------------------------
py-dateutil@2.4.0 py-nose@1.3.4 py-pyside@1.2.2
py-dateutil@2.4.0 py-numpy@1.9.1 py-pytz@2014.10
py-ipython@2.3.1 py-pygments@2.0.1 py-setuptools@11.3.1
py-matplotlib@1.4.2 py-pyparsing@2.0.3 py-six@1.9.0
==> 3 currently activated:
-- linux-debian7-x86_64 / gcc@4.4.7 --------------------------------
py-nose@1.3.4 py-numpy@1.9.1 py-setuptools@11.3.1
Now, when a user runs python, ``numpy`` will be available for import
*without* the user having to explicitly load it. ``python@2.7.8`` now
acts like a system Python installation with ``numpy`` installed inside
of it.
Spack accomplishes this by symbolically linking the *entire* prefix of
the ``py-numpy`` package into the prefix of the ``python`` package. To the
python interpreter, it looks like ``numpy`` is installed in the
``site-packages`` directory.
The only limitation of global activation is that you can only have a *single*
version of an extension activated at a time. This is because multiple
versions of the same extension would conflict if symbolically linked
into the same prefix. Users who want a different version of a package
can still get it by using environment modules or views, but they will have to
explicitly load their preferred version.
^^^^^^^^^^^^^^^^^^^^^^^^^^
``spack activate --force``
^^^^^^^^^^^^^^^^^^^^^^^^^^
If, for some reason, you want to activate a package *without* its
dependencies, you can use ``spack activate --force``:
.. code-block:: console
$ spack activate --force py-numpy
==> Activated extension py-numpy@1.9.1%gcc@4.4.7 arch=linux-debian7-x86_64-66733244 for python@2.7.8%gcc@4.4.7.
.. _cmd-spack-deactivate:
^^^^^^^^^^^^^^^^^^^^
``spack deactivate``
^^^^^^^^^^^^^^^^^^^^
We've seen how activating an extension can be used to set up a default
version of a Python module. Obviously, you may want to change that at
some point. ``spack deactivate`` is the command for this. There are
several variants:
* ``spack deactivate <extension>`` will deactivate a single
extension. If another activated extension depends on this one,
Spack will warn you and exit with an error.
* ``spack deactivate --force <extension>`` deactivates an extension
regardless of packages that depend on it.
* ``spack deactivate --all <extension>`` deactivates an extension and
all of its dependencies. Use ``--force`` to disregard dependents.
* ``spack deactivate --all <extendee>`` deactivates *all* activated
extensions of a package. For example, to deactivate *all* python
extensions, use:
.. code-block:: console
$ spack deactivate --all python
-----------------------
Filesystem requirements
-----------------------

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -13,51 +13,49 @@ Some sites may encourage users to set up their own test environments
before carrying out central installations, or some users may prefer to set
up these environments on their own motivation. To reduce the load of
recompiling otherwise identical package specs in different installations,
installed packages can be put into build cache tarballs, pushed to
installed packages can be put into build cache tarballs, uploaded to
your Spack mirror and then downloaded and installed by others.
Whenever a mirror provides prebuilt packages, Spack will take these packages
into account during concretization and installation, making ``spack install``
signficantly faster.
--------------------------
Creating build cache files
--------------------------
.. note::
We use the terms "build cache" and "mirror" often interchangeably. Mirrors
are used during installation both for sources and prebuilt packages. Build
caches refer to mirrors that provide prebuilt packages.
----------------------
Creating a build cache
----------------------
A compressed tarball of an installed package is created. Tarballs are created
for all of its link and run dependency packages as well. Compressed tarballs are
signed with gpg and signature and tarball and put in a ``.spack`` file. Optionally,
the rpaths (and ids and deps on macOS) can be changed to paths relative to
the Spack install tree before the tarball is created.
Build caches are created via:
.. code-block:: console
$ spack buildcache create <path/url/mirror name> <spec>
$ spack buildcache create <spec>
This command takes the locally installed spec and its dependencies, and
creates tarballs of their install prefixes. It also generates metadata files,
signed with GPG. These tarballs and metadata files are then pushed to the
provided binary cache, which can be a local directory or a remote URL.
Here is an example where a build cache is created in a local directory named
"spack-cache", to which we push the "ninja" spec:
If you wanted to create a build cache in a local directory, you would provide
the ``-d`` argument to target that directory, again also specifying the spec.
Here is an example creating a local directory, "spack-cache" and creating
build cache files for the "ninja" spec:
.. code-block:: console
$ spack buildcache create --allow-root ./spack-cache ninja
==> Pushing binary packages to file:///home/spackuser/spack/spack-cache/build_cache
$ mkdir -p ./spack-cache
$ spack buildcache create -d ./spack-cache ninja
==> Buildcache files will be output to file:///home/spackuser/spack/spack-cache/build_cache
gpgconf: socketdir is '/run/user/1000/gnupg'
gpg: using "E6DF6A8BD43208E4D6F392F23777740B7DBD643D" as default secret key for signing
Not that ``ninja`` must be installed locally for this to work.
Note that the targeted spec must already be installed. Once you have a build cache,
you can add it as a mirror, discussed next.
We're using the ``--allow-root`` flag to tell Spack that is OK when any of
the binaries we're pushing contain references to the local Spack install
directory.
.. warning::
Once you have a build cache, you can add it as a mirror, discussed next.
Spack improved the format used for binary caches in v0.18. The entire v0.18 series
will be able to verify and install binary caches both in the new and in the old format.
Support for using the old format is expected to end in v0.19, so we advise users to
recreate relevant buildcaches using Spack v0.18 or higher.
---------------------------------------
Finding or installing build cache files
@@ -68,10 +66,10 @@ with:
.. code-block:: console
$ spack mirror add <name> <url or path>
$ spack mirror add <name> <url>
Both web URLs and local paths on the filesystem can be specified. In the previous
Note that the url can be a web url _or_ a local filesystem location. In the previous
example, you might add the directory "spack-cache" and call it ``mymirror``:
@@ -96,7 +94,7 @@ this new build cache as follows:
.. code-block:: console
$ spack buildcache update-index ./spack-cache
$ spack buildcache update-index -d spack-cache/
Now you can use list:
@@ -107,38 +105,46 @@ Now you can use list:
-- linux-ubuntu20.04-skylake / gcc@9.3.0 ------------------------
ninja@1.10.2
With ``mymirror`` configured and an index available, Spack will automatically
use it during concretization and installation. That means that you can expect
``spack install ninja`` to fetch prebuilt packages from the mirror. Let's
verify by re-installing ninja:
Great! So now let's say you have a different spack installation, or perhaps just
a different environment for the same one, and you want to install a package from
that build cache. Let's first uninstall the actual library "ninja" to see if we can
re-install it from the cache.
.. code-block:: console
$ spack uninstall ninja
$ spack install ninja
==> Installing ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz
==> Fetching file:///home/spackuser/spack/spack-cache/build_cache/linux-ubuntu20.04-skylake-gcc-9.3.0-ninja-1.10.2-yxferyhmrjkosgta5ei6b4lqf6bxbscz.spec.json.sig
gpg: Signature made Do 12 Jan 2023 16:01:04 CET
gpg: using RSA key 61B82B2B2350E171BD17A1744E3A689061D57BF6
gpg: Good signature from "example (GPG created for Spack) <example@example.com>" [ultimate]
==> Fetching file:///home/spackuser/spack/spack-cache/build_cache/linux-ubuntu20.04-skylake/gcc-9.3.0/ninja-1.10.2/linux-ubuntu20.04-skylake-gcc-9.3.0-ninja-1.10.2-yxferyhmrjkosgta5ei6b4lqf6bxbscz.spack
==> Extracting ninja-1.10.2-yxferyhmrjkosgta5ei6b4lqf6bxbscz from binary cache
==> ninja: Successfully installed ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz
Search: 0.00s. Fetch: 0.17s. Install: 0.12s. Total: 0.29s
[+] /home/harmen/spack/opt/spack/linux-ubuntu20.04-skylake/gcc-9.3.0/ninja-1.11.1-yxferyhmrjkosgta5ei6b4lqf6bxbscz
It worked! You've just completed a full example of creating a build cache with
a spec of interest, adding it as a mirror, updating its index, listing the contents,
and finally, installing from it.
By default Spack falls back to building from sources when the mirror is not available
or when the package is simply not already available. To force Spack to only install
prebuilt packages, you can use
And now reinstall from the buildcache
.. code-block:: console
$ spack install --use-buildcache only <package>
$ spack buildcache install ninja
==> buildcache spec(s) matching ninja
==> Fetching file:///home/spackuser/spack/spack-cache/build_cache/linux-ubuntu20.04-skylake/gcc-9.3.0/ninja-1.10.2/linux-ubuntu20.04-skylake-gcc-9.3.0-ninja-1.10.2-i4e5luour7jxdpc3bkiykd4imke3mkym.spack
####################################################################################################################################### 100.0%
==> Installing buildcache for spec ninja@1.10.2%gcc@9.3.0 arch=linux-ubuntu20.04-skylake
gpgconf: socketdir is '/run/user/1000/gnupg'
gpg: Signature made Tue 23 Mar 2021 10:16:29 PM MDT
gpg: using RSA key E6DF6A8BD43208E4D6F392F23777740B7DBD643D
gpg: Good signature from "spackuser (GPG created for Spack) <spackuser@noreply.users.github.com>" [ultimate]
It worked! You've just completed a full example of creating a build cache with
a spec of interest, adding it as a mirror, updating it's index, listing the contents,
and finally, installing from it.
Note that the above command is intended to install a particular package to a
build cache you have created, and not to install a package from a build cache.
For the latter, once a mirror is added, by default when you do ``spack install`` the ``--use-cache``
flag is set, and you will install a package from a build cache if it is available.
If you want to always use the cache, you can do:
.. code-block:: console
$ spack install --cache-only <package>
For example, to combine all of the commands above to add the E4S build cache
and then install from it exclusively, you would do:
@@ -147,7 +153,7 @@ and then install from it exclusively, you would do:
$ spack mirror add E4S https://cache.e4s.io
$ spack buildcache keys --install --trust
$ spack install --use-buildache only <package>
$ spack install --cache-only <package>
We use ``--install`` and ``--trust`` to say that we are installing keys to our
keyring, and trusting all downloaded keys.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -15,13 +15,15 @@ is an entire command dedicated to the management of every aspect of bootstrappin
.. command-output:: spack bootstrap --help
Spack is configured to bootstrap its dependencies lazily by default; i.e. the first time they are needed and
can't be found. You can readily check if any prerequisite for using Spack is missing by running:
The first thing to know to understand bootstrapping in Spack is that each of
Spack's dependencies is bootstrapped lazily; i.e. the first time it is needed and
can't be found. You can readily check if any prerequisite for using Spack
is missing by running:
.. code-block:: console
% spack bootstrap status
Spack v0.19.0 - python@3.8
Spack v0.17.1 - python@3.8
[FAIL] Core Functionalities
[B] MISSING "clingo": required to concretize specs
@@ -46,21 +48,6 @@ they can be bootstrapped. Running a command that concretize a spec, like:
triggers the bootstrapping of clingo from pre-built binaries as expected.
Users can also bootstrap all the dependencies needed by Spack in a single command, which
might be useful to setup containers or other similar environments:
.. code-block:: console
$ spack bootstrap now
==> Bootstrapping clingo from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64-gcc-10.2.1-clingo-bootstrap-spack-shqedxgvjnhiwdcdrvjhbd73jaevv7wt.spec.json
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64/gcc-10.2.1/clingo-bootstrap-spack/linux-centos7-x86_64-gcc-10.2.1-clingo-bootstrap-spack-shqedxgvjnhiwdcdrvjhbd73jaevv7wt.spack
==> Installing "clingo-bootstrap@spack%gcc@10.2.1~docs~ipo+python+static_libstdcpp build_type=Release arch=linux-centos7-x86_64" from a buildcache
==> Bootstrapping patchelf from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64-gcc-10.2.1-patchelf-0.15.0-htk62k7efo2z22kh6kmhaselru7bfkuc.spec.json
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64/gcc-10.2.1/patchelf-0.15.0/linux-centos7-x86_64-gcc-10.2.1-patchelf-0.15.0-htk62k7efo2z22kh6kmhaselru7bfkuc.spack
==> Installing "patchelf@0.15.0%gcc@10.2.1 ldflags="-static-libstdc++ -static-libgcc" arch=linux-centos7-x86_64" from a buildcache
-----------------------
The Bootstrapping store
-----------------------
@@ -120,19 +107,19 @@ If need be, you can disable bootstrapping altogether by running:
in which case it's your responsibility to ensure Spack runs in an
environment where all its prerequisites are installed. You can
also configure Spack to skip certain bootstrapping methods by disabling
them specifically:
also configure Spack to skip certain bootstrapping methods by *untrusting*
them. For instance:
.. code-block:: console
% spack bootstrap disable github-actions
==> "github-actions" is now disabled and will not be used for bootstrapping
% spack bootstrap untrust github-actions
==> "github-actions" is now untrusted and will not be used for bootstrapping
tells Spack to skip trying to bootstrap from binaries. To add the "github-actions" method back you can:
.. code-block:: console
% spack bootstrap enable github-actions
% spack bootstrap trust github-actions
There is also an option to reset the bootstrapping configuration to Spack's defaults:

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -49,8 +49,9 @@ packages rather than building its own packages. This may be desirable
if machines ship with system packages, such as a customized MPI
that should be used instead of Spack building its own MPI.
External packages are configured through the ``packages.yaml`` file.
Here's an example of an external configuration:
External packages are configured through the ``packages.yaml`` file found
in a Spack installation's ``etc/spack/`` or a user's ``~/.spack/``
directory. Here's an example of an external configuration:
.. code-block:: yaml
@@ -96,14 +97,11 @@ Each package version and compiler listed in an external should
have entries in Spack's packages and compiler configuration, even
though the package and compiler may not ever be built.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Prevent packages from being built from sources
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding an external spec in ``packages.yaml`` allows Spack to use an external location,
but it does not prevent Spack from building packages from sources. In the above example,
Spack might choose for many valid reasons to start building and linking with the
latest version of OpenMPI rather than continue using the pre-installed OpenMPI versions.
The packages configuration can tell Spack to use an external location
for certain package versions, but it does not restrict Spack to using
external packages. In the above example, since newer versions of OpenMPI
are available, Spack will choose to start building and linking with the
latest version rather than continue using the pre-installed OpenMPI versions.
To prevent this, the ``packages.yaml`` configuration also allows packages
to be flagged as non-buildable. The previous example could be modified to
@@ -123,15 +121,9 @@ be:
buildable: False
The addition of the ``buildable`` flag tells Spack that it should never build
its own version of OpenMPI from sources, and it will instead always rely on a pre-built
OpenMPI.
.. note::
If ``concretizer:reuse`` is on (see :ref:`concretizer-options` for more information on that flag)
pre-built specs include specs already available from a local store, an upstream store, a registered
buildcache or specs marked as externals in ``packages.yaml``. If ``concretizer:reuse`` is off, only
external specs in ``packages.yaml`` are included in the list of pre-built specs.
its own version of OpenMPI, and it will instead always rely on a pre-built
OpenMPI. Similar to ``paths``, ``buildable`` is specified as a property under
a package name.
If an external module is specified as not buildable, then Spack will load the
external module into the build environment which can be used for linking.
@@ -140,10 +132,6 @@ The ``buildable`` does not need to be paired with external packages.
It could also be used alone to forbid packages that may be
buggy or otherwise undesirable.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Non-buildable virtual packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Virtual packages in Spack can also be specified as not buildable, and
external implementations can be provided. In the example above,
OpenMPI is configured as not buildable, but Spack will often prefer
@@ -165,37 +153,21 @@ but more conveniently:
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
Spack can then use any of the listed external implementations of MPI
to satisfy a dependency, and will choose depending on the compiler and
architecture.
In cases where the concretizer is configured to reuse specs, and other ``mpi`` providers
(available via stores or buildcaches) are not wanted, Spack can be configured to require
specs matching only the available externals:
Implementations can also be listed immediately under the virtual they provide:
.. code-block:: yaml
packages:
mpi:
buildable: False
require:
- one_of: [
"openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64",
"openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug",
"openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
]
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64: /opt/openmpi-1.4.3
openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug: /opt/openmpi-1.4.3-debug
openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64: /opt/openmpi-1.6.5-intel
mpich@3.3 %clang@9.0.0 arch=linux-debian7-x86_64: /opt/mpich-3.3-intel
This configuration prevents any spec using MPI and originating from stores or buildcaches to be reused,
unless it matches the requirements under ``packages:mpi:require``. For more information on requirements see
:ref:`package-requirements`.
Spack can then use any of the listed external implementations of MPI
to satisfy a dependency, and will choose depending on the compiler and
architecture.
.. _cmd-spack-external-find:
@@ -222,6 +194,11 @@ Specific limitations include:
* Packages are not discoverable by default: For a package to be
discoverable with ``spack external find``, it needs to add special
logic. See :ref:`here <make-package-findable>` for more details.
* The current implementation only collects and examines executable files,
so it is typically only useful for build/run dependencies (in some cases
if a library package also provides an executable, it may be possible to
extract a meaningful Spec by running the executable - for example the
compiler wrappers in MPI implementations).
* The logic does not search through module files, it can only detect
packages with executables defined in ``PATH``; you can help Spack locate
externals which use module files by loading any associated modules for
@@ -272,7 +249,7 @@ Selection of the target microarchitectures
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The options under the ``targets`` attribute control which targets are considered during a solve.
Currently the options in this section are only configurable from the ``concretizer.yaml`` file
Currently the options in this section are only configurable from the ``concretization.yaml`` file
and there are no corresponding command line arguments to enable them for a single solve.
The ``granularity`` option can take two possible values: ``microarchitectures`` and ``generic``.
@@ -302,143 +279,17 @@ microarchitectures considered during the solve are constrained to be compatible
host Spack is currently running on. For instance, if this option is set to ``true``, a
user cannot concretize for ``target=icelake`` while running on an Haswell node.
.. _package-requirements:
--------------------
Package Requirements
--------------------
Spack can be configured to always use certain compilers, package
versions, and variants during concretization through package
requirements.
Package requirements are useful when you find yourself repeatedly
specifying the same constraints on the command line, and wish that
Spack respects these constraints whether you mention them explicitly
or not. Another use case is specifying constraints that should apply
to all root specs in an environment, without having to repeat the
constraint everywhere.
Apart from that, requirements config is more flexible than constraints
on the command line, because it can specify constraints on packages
*when they occur* as a dependency. In contrast, on the command line it
is not possible to specify constraints on dependencies while also keeping
those dependencies optional.
The package requirements configuration is specified in ``packages.yaml``
keyed by package name:
.. code-block:: yaml
packages:
libfabric:
require: "@1.13.2"
openmpi:
require:
- any_of: ["~cuda", "%gcc"]
mpich:
require:
- one_of: ["+cuda", "+rocm"]
Requirements are expressed using Spec syntax (the same as what is provided
to ``spack install``). In the simplest case, you can specify attributes
that you always want the package to have by providing a single spec to
``require``; in the above example, ``libfabric`` will always build
with version 1.13.2.
You can provide a more-relaxed constraint and allow the concretizer to
choose between a set of options using ``any_of`` or ``one_of``:
* ``any_of`` is a list of specs. One of those specs must be satisfied
and it is also allowed for the concretized spec to match more than one.
In the above example, that means you could build ``openmpi+cuda%gcc``,
``openmpi~cuda%clang`` or ``openmpi~cuda%gcc`` (in the last case,
note that both specs in the ``any_of`` for ``openmpi`` are
satisfied).
* ``one_of`` is also a list of specs, and the final concretized spec
must match exactly one of them. In the above example, that means
you could build ``mpich+cuda`` or ``mpich+rocm`` but not
``mpich+cuda+rocm`` (note the current package definition for
``mpich`` already includes a conflict, so this is redundant but
still demonstrates the concept).
.. note::
For ``any_of`` and ``one_of``, the order of specs indicates a
preference: items that appear earlier in the list are preferred
(note that these preferences can be ignored in favor of others).
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting default requirements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can also set default requirements for all packages under ``all``
like this:
.. code-block:: yaml
packages:
all:
require: '%clang'
which means every spec will be required to use ``clang`` as a compiler.
Note that in this case ``all`` represents a *default set of requirements* -
if there are specific package requirements, then the default requirements
under ``all`` are disregarded. For example, with a configuration like this:
.. code-block:: yaml
packages:
all:
require: '%clang'
cmake:
require: '%gcc'
Spack requires ``cmake`` to use ``gcc`` and all other nodes (including ``cmake``
dependencies) to use ``clang``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting requirements on virtual specs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A requirement on a virtual spec applies whenever that virtual is present in the DAG.
This can be useful for fixing which virtual provider you want to use:
.. code-block:: yaml
packages:
mpi:
require: 'mvapich2 %gcc'
With the configuration above the only allowed ``mpi`` provider is ``mvapich2 %gcc``.
Requirements on the virtual spec and on the specific provider are both applied, if
present. For instance with a configuration like:
.. code-block:: yaml
packages:
mpi:
require: 'mvapich2 %gcc'
mvapich2:
require: '~cuda'
you will use ``mvapich2~cuda %gcc`` as an ``mpi`` provider.
.. _package-preferences:
-------------------
Package Preferences
-------------------
In some cases package requirements can be too strong, and package
preferences are the better option. Package preferences do not impose
constraints on packages for particular versions or variants values,
they rather only set defaults -- the concretizer is free to change
them if it must due to other constraints. Also note that package
preferences are of lower priority than reuse of already installed
packages.
Spack can be configured to prefer certain compilers, package
versions, dependencies, and variants during concretization.
The preferred configuration can be controlled via the
``~/.spack/packages.yaml`` file for user configurations, or the
``etc/spack/packages.yaml`` site configuration.
Here's an example ``packages.yaml`` file that sets preferred packages:
@@ -456,7 +307,7 @@ Here's an example ``packages.yaml`` file that sets preferred packages:
providers:
mpi: [mvapich2, mpich, openmpi]
At a high level, this example is specifying how packages are preferably
At a high level, this example is specifying how packages should be
concretized. The opencv package should prefer using GCC 4.9 and
be built with debug options. The gperftools package should prefer version
2.2 over 2.4. Every package on the system should prefer mvapich2 for
@@ -464,11 +315,13 @@ its MPI and GCC 4.4.7 (except for opencv, which overrides this by preferring GCC
These options are used to fill in implicit defaults. Any of them can be overwritten
on the command line if explicitly requested.
Package preferences accept the follow keys or components under
the specific package (or ``all``) section: ``compiler``, ``variants``,
``version``, ``providers``, and ``target``. Each component has an
ordered list of spec ``constraints``, with earlier entries in the
list being preferred over later entries.
Each ``packages.yaml`` file begins with the string ``packages:`` and
package names are specified on the next level. The special string ``all``
applies settings to *all* packages. Underneath each package name is one
or more components: ``compiler``, ``variants``, ``version``,
``providers``, and ``target``. Each component has an ordered list of
spec ``constraints``, with earlier entries in the list being preferred
over later entries.
Sometimes a package installation may have constraints that forbid
the first concretization rule, in which case Spack will use the first
@@ -483,9 +336,10 @@ gcc to pgi will thus be preferred over the xlc compiler.
The syntax for the ``provider`` section differs slightly from other
concretization rules. A provider lists a value that packages may
``depends_on`` (e.g, MPI) and a list of rules for fulfilling that
``depend_on`` (e.g, MPI) and a list of rules for fulfilling that
dependency.
.. _package_permissions:
-------------------
@@ -534,25 +388,3 @@ directories inside the install prefix. This will ensure that even
manually placed files within the install prefix are owned by the
assigned group. If no group is assigned, Spack will allow the OS
default behavior to go as expected.
----------------------------
Assigning Package Attributes
----------------------------
You can assign class-level attributes in the configuration:
.. code-block:: yaml
packages:
mpileaks:
# Override existing attributes
url: http://www.somewhereelse.com/mpileaks-1.0.tar.gz
# ... or add new ones
x: 1
Attributes set this way will be accessible to any method executed
in the package.py file (e.g. the ``install()`` method). Values for these
attributes may be any value parseable by yaml.
These can only be applied to specific packages, not "all" or
virtual packages.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -62,11 +62,11 @@ on these ideas for each distinct build system that Spack supports:
build_systems/bundlepackage
build_systems/cudapackage
build_systems/custompackage
build_systems/inteloneapipackage
build_systems/intelpackage
build_systems/rocmpackage
build_systems/sourceforgepackage
build_systems/custompackage
build_systems/multiplepackage
For reference, the :py:mod:`Build System API docs <spack.build_systems>`
provide a list of build systems and methods/attributes that can be

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _autotoolspackage:
---------
Autotools
---------
----------------
AutotoolsPackage
----------------
Autotools is a GNU build system that provides a build-script generator.
By running the platform-independent ``./configure`` script that comes
@@ -17,7 +17,7 @@ with the package, you can generate a platform-dependent Makefile.
Phases
^^^^^^
The ``AutotoolsBuilder`` and ``AutotoolsPackage`` base classes come with the following phases:
The ``AutotoolsPackage`` base class comes with the following phases:
#. ``autoreconf`` - generate the configure script
#. ``configure`` - generate the Makefiles

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _bundlepackage:
------
Bundle
------
-------------
BundlePackage
-------------
``BundlePackage`` represents a set of packages that are expected to work well
together, such as a collection of commonly used software libraries. The

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _cachedcmakepackage:
-----------
CachedCMake
-----------
------------------
CachedCMakePackage
------------------
The CachedCMakePackage base class is used for CMake-based workflows
that create a CMake cache file prior to running ``cmake``. This is

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _cmakepackage:
-----
CMake
-----
------------
CMakePackage
------------
Like Autotools, CMake is a widely-used build-script generator. Designed
by Kitware, CMake is the most popular build system for new C, C++, and
@@ -21,7 +21,7 @@ whereas Autotools is Unix-only.
Phases
^^^^^^
The ``CMakeBuilder`` and ``CMakePackage`` base classes come with the following phases:
The ``CMakePackage`` base class comes with the following phases:
#. ``cmake`` - generate the Makefile
#. ``build`` - build the package
@@ -130,8 +130,8 @@ Adding flags to cmake
To add additional flags to the ``cmake`` call, simply override the
``cmake_args`` function. The following example defines values for the flags
``WHATEVER``, ``ENABLE_BROKEN_FEATURE``, ``DETECT_HDF5``, and ``THREADS`` with
and without the :meth:`~spack.build_systems.cmake.CMakeBuilder.define` and
:meth:`~spack.build_systems.cmake.CMakeBuilder.define_from_variant` helper functions:
and without the :meth:`~spack.build_systems.cmake.CMakePackage.define` and
:meth:`~spack.build_systems.cmake.CMakePackage.define_from_variant` helper functions:
.. code-block:: python

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _cudapackage:
----
Cuda
----
-----------
CudaPackage
-----------
Different from other packages, ``CudaPackage`` does not represent a build system.
Instead its goal is to simplify and unify usage of ``CUDA`` in other packages by providing a `mixin-class <https://en.wikipedia.org/wiki/Mixin>`_.
@@ -80,7 +80,7 @@ standard CUDA compiler flags.
**cuda_flags**
This built-in static method returns a list of command line flags
This built-in static method returns a list of command line flags
for the chosen ``cuda_arch`` value(s). The flags are intended to
be passed to the CUDA compiler driver (i.e., ``nvcc``).

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -6,9 +6,9 @@
.. _inteloneapipackage:
===========
IntelOneapi
===========
====================
IntelOneapiPackage
====================
.. contents::
@@ -32,11 +32,11 @@ oneAPI packages or use::
For more information on a specific package, do::
spack info --all <package-name>
spack info <package-name>
Intel no longer releases new versions of Parallel Studio, which can be
used in Spack via the :ref:`intelpackage`. All of its components can
now be found in oneAPI.
now be found in oneAPI.
Examples
========
@@ -84,8 +84,8 @@ build ``hdf5`` with Intel oneAPI MPI do::
spack install hdf5 +mpi ^intel-oneapi-mpi
Using Externally Installed oneAPI Tools
=======================================
Using an Externally Installed oneAPI
====================================
Spack can also use oneAPI tools that are manually installed with
`Intel Installers`_. The procedures for configuring Spack to use
@@ -110,7 +110,7 @@ Another option is to manually add the configuration to
Libraries
---------
If you want Spack to use oneMKL that you have installed without Spack in
If you want Spack to use MKL that you have installed without Spack in
the default location, then add the following to
``~/.spack/packages.yaml``, adjusting the version as appropriate::
@@ -139,7 +139,7 @@ You can also use Spack-installed libraries. For example::
spack load intel-oneapi-mkl
Will update your environment CPATH, LIBRARY_PATH, and other
environment variables for building an application with oneMKL.
environment variables for building an application with MKL.
More information
================

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _intelpackage:
-----
Intel
-----
------------
IntelPackage
------------
.. contents::
@@ -15,9 +15,6 @@ Intel
Intel packages in Spack
^^^^^^^^^^^^^^^^^^^^^^^^
This is an earlier version of Intel software development tools and has
now been replaced by Intel oneAPI Toolkits.
Spack can install and use several software development products offered by Intel.
Some of these are available under no-cost terms, others require a paid license.
All share the same basic steps for configuration, installation, and, where

View File

@@ -1,15 +1,15 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _luapackage:
---
Lua
---
------------
LuaPackage
------------
The ``Lua`` build-system is a helper for the common case of Lua packages that provide
LuaPackage is a helper for the common case of Lua packages that provide
a rockspec file. This is not meant to take a rock archive, but to build
a source archive or repository that provides a rockspec, which should cover
most lua packages. In the case a Lua package builds by Make rather than
@@ -19,7 +19,7 @@ luarocks, prefer MakefilePackage.
Phases
^^^^^^
The ``LuaBuilder`` and `LuaPackage`` base classes come with the following phases:
The ``LuaPackage`` base class comes with the following phases:
#. ``unpack`` - if using a rock, unpacks the rock and moves into the source directory
#. ``preprocess`` - adjust sources or rockspec to fix build

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _makefilepackage:
--------
Makefile
--------
---------------
MakefilePackage
---------------
The most primitive build system a package can use is a plain Makefile.
Makefiles are simple to write for small projects, but they usually
@@ -18,7 +18,7 @@ variables.
Phases
^^^^^^
The ``MakefileBuilder`` and ``MakefilePackage`` base classes come with 3 phases:
The ``MakefilePackage`` base class comes with 3 phases:
#. ``edit`` - edit the Makefile
#. ``build`` - build the project

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _mavenpackage:
-----
Maven
-----
------------
MavenPackage
------------
Apache Maven is a general-purpose build system that does not rely
on Makefiles to build software. It is designed for building and
@@ -17,7 +17,7 @@ managing and Java-based project.
Phases
^^^^^^
The ``MavenBuilder`` and ``MavenPackage`` base classes come with the following phases:
The ``MavenPackage`` base class comes with the following phases:
#. ``build`` - compile code and package into a JAR file
#. ``install`` - copy to installation prefix

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _mesonpackage:
-----
Meson
-----
------------
MesonPackage
------------
Much like Autotools and CMake, Meson is a build system. But it is
meant to be both fast and as user friendly as possible. GNOME's goal
@@ -17,7 +17,7 @@ is to port modules to use the Meson build system.
Phases
^^^^^^
The ``MesonBuilder`` and ``MesonPackage`` base classes come with the following phases:
The ``MesonPackage`` base class comes with the following phases:
#. ``meson`` - generate ninja files
#. ``build`` - build the project

View File

@@ -0,0 +1,350 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _multiplepackage:
----------------------
Multiple Build Systems
----------------------
Quite frequently, a package will change build systems from one version to the
next. For example, a small project that once used a single Makefile to build
may now require Autotools to handle the increased number of files that need to
be compiled. Or, a package that once used Autotools may switch to CMake for
Windows support. In this case, it becomes a bit more challenging to write a
single build recipe for this package in Spack.
There are several ways that this can be handled in Spack:
#. Subclass the new build system, and override phases as needed (preferred)
#. Subclass ``Package`` and implement ``install`` as needed
#. Create separate ``*-cmake``, ``*-autotools``, etc. packages for each build system
#. Rename the old package to ``*-legacy`` and create a new package
#. Move the old package to a ``legacy`` repository and create a new package
#. Drop older versions that only support the older build system
Of these options, 1 is preferred, and will be demonstrated in this
documentation. Options 3-5 have issues with concretization, so shouldn't be
used. Options 4-5 also don't support more than two build systems. Option 6 only
works if the old versions are no longer needed. Option 1 is preferred over 2
because it makes it easier to drop the old build system entirely.
The exact syntax of the package depends on which build systems you need to
support. Below are a couple of common examples.
^^^^^^^^^^^^^^^^^^^^^
Makefile -> Autotools
^^^^^^^^^^^^^^^^^^^^^
Let's say we have the following package:
.. code-block:: python
class Foo(MakefilePackage):
version("1.2.0", sha256="...")
def edit(self, spec, prefix):
filter_file("CC=", "CC=" + spack_cc, "Makefile")
def install(self, spec, prefix):
install_tree(".", prefix)
The package subclasses from :ref:`makefilepackage`, which has three phases:
#. ``edit`` (does nothing by default)
#. ``build`` (runs ``make`` by default)
#. ``install`` (runs ``make install`` by default)
In this case, the ``install`` phase needed to be overridden because the
Makefile did not have an install target. We also modify the Makefile to use
Spack's compiler wrappers. The default ``build`` phase is not changed.
Starting with version 1.3.0, we want to use Autotools to build instead.
:ref:`autotoolspackage` has four phases:
#. ``autoreconf`` (does not if a configure script already exists)
#. ``configure`` (runs ``./configure --prefix=...`` by default)
#. ``build`` (runs ``make`` by default)
#. ``install`` (runs ``make install`` by default)
If the only version we need to support is 1.3.0, the package would look as
simple as:
.. code-block:: python
class Foo(AutotoolsPackage):
version("1.3.0", sha256="...")
def configure_args(self):
return ["--enable-shared"]
In this case, we use the default methods for each phase and only override
``configure_args`` to specify additional flags to pass to ``./configure``.
If we wanted to write a single package that supports both versions 1.2.0 and
1.3.0, it would look something like:
.. code-block:: python
class Foo(AutotoolsPackage):
version("1.3.0", sha256="...")
version("1.2.0", sha256="...", deprecated=True)
def configure_args(self):
return ["--enable-shared"]
# Remove the following once version 1.2.0 is dropped
@when("@:1.2")
def patch(self):
filter_file("CC=", "CC=" + spack_cc, "Makefile")
@when("@:1.2")
def autoreconf(self, spec, prefix):
pass
@when("@:1.2")
def configure(self, spec, prefix):
pass
@when("@:1.2")
def install(self, spec, prefix):
install_tree(".", prefix)
There are a few interesting things to note here:
* We added ``deprecated=True`` to version 1.2.0. This signifies that version
1.2.0 is deprecated and shouldn't be used. However, if a user still relies
on version 1.2.0, it's still there and builds just fine.
* We moved the contents of the ``edit`` phase to the ``patch`` function. Since
``AutotoolsPackage`` doesn't have an ``edit`` phase, the only way for this
step to be executed is to move it to the ``patch`` function, which always
gets run.
* The ``autoreconf`` and ``configure`` phases become no-ops. Since the old
Makefile-based build system doesn't use these, we ignore these phases when
building ``foo@1.2.0``.
* The ``@when`` decorator is used to override these phases only for older
versions. The default methods are used for ``foo@1.3:``.
Once a new Spack release comes out, version 1.2.0 and everything below the
comment can be safely deleted. The result is the same as if we had written a
package for version 1.3.0 from scratch.
^^^^^^^^^^^^^^^^^^
Autotools -> CMake
^^^^^^^^^^^^^^^^^^
Let's say we have the following package:
.. code-block:: python
class Bar(AutotoolsPackage):
version("1.2.0", sha256="...")
def configure_args(self):
return ["--enable-shared"]
The package subclasses from :ref:`autotoolspackage`, which has four phases:
#. ``autoreconf`` (does not if a configure script already exists)
#. ``configure`` (runs ``./configure --prefix=...`` by default)
#. ``build`` (runs ``make`` by default)
#. ``install`` (runs ``make install`` by default)
In this case, we use the default methods for each phase and only override
``configure_args`` to specify additional flags to pass to ``./configure``.
Starting with version 1.3.0, we want to use CMake to build instead.
:ref:`cmakepackage` has three phases:
#. ``cmake`` (runs ``cmake ...`` by default)
#. ``build`` (runs ``make`` by default)
#. ``install`` (runs ``make install`` by default)
If the only version we need to support is 1.3.0, the package would look as
simple as:
.. code-block:: python
class Bar(CMakePackage):
version("1.3.0", sha256="...")
def cmake_args(self):
return [self.define("BUILD_SHARED_LIBS", True)]
In this case, we use the default methods for each phase and only override
``cmake_args`` to specify additional flags to pass to ``cmake``.
If we wanted to write a single package that supports both versions 1.2.0 and
1.3.0, it would look something like:
.. code-block:: python
class Bar(CMakePackage):
version("1.3.0", sha256="...")
version("1.2.0", sha256="...", deprecated=True)
def cmake_args(self):
return [self.define("BUILD_SHARED_LIBS", True)]
# Remove the following once version 1.2.0 is dropped
def configure_args(self):
return ["--enable-shared"]
@when("@:1.2")
def cmake(self, spec, prefix):
configure("--prefix=" + prefix, *self.configure_args())
There are a few interesting things to note here:
* We added ``deprecated=True`` to version 1.2.0. This signifies that version
1.2.0 is deprecated and shouldn't be used. However, if a user still relies
on version 1.2.0, it's still there and builds just fine.
* Since CMake and Autotools are so similar, we only need to override the
``cmake`` phase, we can use the default ``build`` and ``install`` phases.
* We override ``cmake`` to run ``./configure`` for older versions.
``configure_args`` remains the same.
* The ``@when`` decorator is used to override these phases only for older
versions. The default methods are used for ``bar@1.3:``.
Once a new Spack release comes out, version 1.2.0 and everything below the
comment can be safely deleted. The result is the same as if we had written a
package for version 1.3.0 from scratch.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Multiple build systems for the same version
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
During the transition from one build system to another, developers often
support multiple build systems at the same time. Spack can only use a single
build system for a single version. To decide which build system to use for a
particular version, take the following things into account:
1. If the developers explicitly state that one build system is preferred over
another, use that one.
2. If one build system is considered "experimental" while another is considered
"stable", use the stable build system.
3. Otherwise, use the newer build system.
The developer preference for which build system to use can change over time as
a newer build system becomes stable/recommended.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Dropping support for old build systems
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When older versions of a package don't support a newer build system, it can be
tempting to simply delete them from a package. This significantly reduces
package complexity and makes the build recipe much easier to maintain. However,
other packages or Spack users may rely on these older versions. The recommended
approach is to first support both build systems (as demonstrated above),
:ref:`deprecate <deprecate>` versions that rely on the old build system, and
remove those versions and any phases that needed to be overridden in the next
Spack release.
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Three or more build systems
^^^^^^^^^^^^^^^^^^^^^^^^^^^
In rare cases, a package may change build systems multiple times. For example,
a package may start with Makefiles, then switch to Autotools, then switch to
CMake. The same logic used above can be extended to any number of build systems.
For example:
.. code-block:: python
class Baz(CMakePackage):
version("1.4.0", sha256="...") # CMake
version("1.3.0", sha256="...") # Autotools
version("1.2.0", sha256="...") # Makefile
def cmake_args(self):
return [self.define("BUILD_SHARED_LIBS", True)]
# Remove the following once version 1.3.0 is dropped
def configure_args(self):
return ["--enable-shared"]
@when("@1.3")
def cmake(self, spec, prefix):
configure("--prefix=" + prefix, *self.configure_args())
# Remove the following once version 1.2.0 is dropped
@when("@:1.2")
def patch(self):
filter_file("CC=", "CC=" + spack_cc, "Makefile")
@when("@:1.2")
def cmake(self, spec, prefix):
pass
@when("@:1.2")
def install(self, spec, prefix):
install_tree(".", prefix)
^^^^^^^^^^^^^^^^^^^
Additional examples
^^^^^^^^^^^^^^^^^^^
When writing new packages, it often helps to see examples of existing packages.
Here is an incomplete list of existing Spack packages that have changed build
systems before:
================ ===================== ================
Package Previous Build System New Build System
================ ===================== ================
amber custom CMake
arpack-ng Autotools CMake
atk Autotools Meson
blast None Autotools
dyninst Autotools CMake
evtgen Autotools CMake
fish Autotools CMake
gdk-pixbuf Autotools Meson
glib Autotools Meson
glog Autotools CMake
gmt Autotools CMake
gtkplus Autotools Meson
hpl Makefile Autotools
interproscan Perl Maven
jasper Autotools CMake
kahip SCons CMake
kokkos Makefile CMake
kokkos-kernels Makefile CMake
leveldb Makefile CMake
libdrm Autotools Meson
libjpeg-turbo Autotools CMake
mesa Autotools Meson
metis None CMake
mpifileutils Autotools CMake
muparser Autotools CMake
mxnet Makefile CMake
nest Autotools CMake
neuron Autotools CMake
nsimd CMake nsconfig
opennurbs Makefile CMake
optional-lite None CMake
plasma Makefile CMake
preseq Makefile Autotools
protobuf Autotools CMake
py-pygobject Autotools Python
singularity Autotools Makefile
span-lite None CMake
ssht Makefile CMake
string-view-lite None CMake
superlu Makefile CMake
superlu-dist Makefile CMake
uncrustify Autotools CMake
================ ===================== ================
Packages that support multiple build systems can be a bit confusing to write.
Don't hesitate to open an issue or draft pull request and ask for advice from
other Spack developers!

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _octavepackage:
------
Octave
------
-------------
OctavePackage
-------------
Octave has its own build system for installing packages.
@@ -15,7 +15,7 @@ Octave has its own build system for installing packages.
Phases
^^^^^^
The ``OctaveBuilder`` and ``OctavePackage`` base classes have a single phase:
The ``OctavePackage`` base class has a single phase:
#. ``install`` - install the package

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _perlpackage:
----
Perl
----
-----------
PerlPackage
-----------
Much like Octave, Perl has its own language-specific
build system.
@@ -16,7 +16,7 @@ build system.
Phases
^^^^^^
The ``PerlBuilder`` and ``PerlPackage`` base classes come with 3 phases that can be overridden:
The ``PerlPackage`` base class comes with 3 phases that can be overridden:
#. ``configure`` - configure the package
#. ``build`` - build the package

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _pythonpackage:
------
Python
------
-------------
PythonPackage
-------------
Python packages and modules have their own special build system. This
documentation covers everything you'll need to know in order to write
@@ -48,11 +48,8 @@ important to understand.
**build backend**
Libraries used to define how to build a wheel. Examples
include `setuptools <https://setuptools.pypa.io/>`__,
`flit <https://flit.pypa.io/>`_,
`poetry <https://python-poetry.org/>`_,
`hatchling <https://hatch.pypa.io/latest/>`_,
`meson <https://meson-python.readthedocs.io/>`_, and
`pdm <https://pdm.fming.dev/latest/>`_.
`flit <https://flit.readthedocs.io/>`_, and
`poetry <https://python-poetry.org/>`_.
^^^^^^^^^^^
Downloading
@@ -176,9 +173,9 @@ package. The "Project description" tab may also contain a longer
description of the package. Either of these can be used to populate
the package docstring.
^^^^^^^^^^^^
Dependencies
^^^^^^^^^^^^
^^^^^^^^^^^^^
Build backend
^^^^^^^^^^^^^
Once you've determined the basic metadata for a package, the next
step is to determine the build backend. ``PythonPackage`` uses
@@ -216,33 +213,12 @@ Note that ``py-wheel`` is already listed as a build dependency in the
need to specify a specific version requirement or change the
dependency type.
See `PEP 517 <https://www.python.org/dev/peps/pep-0517/>`__ and
See `PEP 517 <https://www.python.org/dev/peps/pep-0517/>`_ and
`PEP 518 <https://www.python.org/dev/peps/pep-0518/>`_ for more
information on the design of ``pyproject.toml``.
Depending on which build backend a project uses, there are various
places that run-time dependencies can be listed. Most modern build
backends support listing dependencies directly in ``pyproject.toml``.
Look for dependencies under the following keys:
* ``requires-python`` under ``[project]``
This specifies the version of Python that is required
* ``dependencies`` under ``[project]``
These packages are required for building and installation. You can
add them with ``type=('build', 'run')``.
* ``[project.optional-dependencies]``
This section includes keys with lists of optional dependencies
needed to enable those features. You should add a variant that
optionally adds these dependencies. This variant should be ``False``
by default.
Some build backends may have additional locations where dependencies
can be found.
places that run-time dependencies can be listed.
"""""""""
distutils
@@ -268,9 +244,9 @@ If the ``pyproject.toml`` lists ``setuptools.build_meta`` as a
``build-backend``, or if the package has a ``setup.py`` that imports
``setuptools``, or if the package has a ``setup.cfg`` file, then it
uses setuptools to build. Setuptools is a replacement for the
distutils library, and has almost the exact same API. In addition to
``pyproject.toml``, dependencies can be listed in the ``setup.py`` or
``setup.cfg`` file. Look for the following arguments:
distutils library, and has almost the exact same API. Dependencies
can be listed in the ``setup.py`` or ``setup.cfg`` file. Look for the
following arguments:
* ``python_requires``
@@ -315,22 +291,25 @@ listed directly in the ``pyproject.toml`` file. Older versions of
flit used to store this info in a ``flit.ini`` file, so check for
this too.
In addition to the default ``pyproject.toml`` keys listed above,
older versions of flit may use the following keys:
Either of these files may contain keys like:
* ``requires`` under ``[tool.flit.metadata]``
* ``requires-python``
This specifies the version of Python that is required
* ``dependencies`` or ``requires``
These packages are required for building and installation. You can
add them with ``type=('build', 'run')``.
* ``[tool.flit.metadata.requires-extra]``
* ``project.optional-dependencies`` or ``requires-extra``
This section includes keys with lists of optional dependencies
needed to enable those features. You should add a variant that
optionally adds these dependencies. This variant should be False
by default.
See https://flit.pypa.io/en/latest/pyproject_toml.html for
See https://flit.readthedocs.io/en/latest/pyproject_toml.html for
more information.
""""""
@@ -347,38 +326,6 @@ for specifying the version requirements. Note that ``~=`` works
differently in poetry than in setuptools and flit for versions that
start with a zero.
"""""""""
hatchling
"""""""""
If the ``pyproject.toml`` lists ``hatchling.build`` as the
``build-backend``, it uses the hatchling build system. Hatchling
uses the default ``pyproject.toml`` keys to list dependencies.
See https://hatch.pypa.io/latest/config/dependency/ for more
information.
"""""
meson
"""""
If the ``pyproject.toml`` lists ``mesonpy`` as the ``build-backend``,
it uses the meson build system. Meson uses the default
``pyproject.toml`` keys to list dependencies.
See https://meson-python.readthedocs.io/en/latest/usage/start.html
for more information.
"""
pdm
"""
If the ``pyproject.toml`` lists ``pdm.pep517.api`` as the ``build-backend``,
it uses the PDM build system. PDM uses the default ``pyproject.toml``
keys to list dependencies.
See https://pdm.fming.dev/latest/ for more information.
""""""
wheels
""""""
@@ -423,34 +370,6 @@ packages. However, the installation instructions for a package may
suggest passing certain flags to the ``setup.py`` call. The
``PythonPackage`` class has two techniques for doing this.
"""""""""""""""
Config settings
"""""""""""""""
These settings are passed to
`PEP 517 <https://peps.python.org/pep-0517/>`__ build backends.
For example, ``py-scipy`` package allows you to specify the name of
the BLAS/LAPACK library you want pkg-config to search for:
.. code-block:: python
depends_on('py-pip@22.1:', type='build')
def config_settings(self, spec, prefix):
return {
'blas': spec['blas'].libs.names[0],
'lapack': spec['lapack'].libs.names[0],
}
.. note::
This flag only works for packages that define a ``build-backend``
in ``pyproject.toml``. Also, it is only supported by pip 22.1+,
which requires Python 3.7+. For packages that still support Python
3.6 and older, ``install_options`` should be used instead.
""""""""""""""
Global options
""""""""""""""
@@ -470,16 +389,6 @@ has an optional dependency on ``libyaml`` that can be enabled like so:
return options
.. note::
Direct invocation of ``setup.py`` is
`deprecated <https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html>`_.
This flag forces pip to use a deprecated installation procedure.
It should only be used in packages that don't define a
``build-backend`` in ``pyproject.toml`` or packages that still
support Python 3.6 and older.
"""""""""""""""
Install options
"""""""""""""""
@@ -500,16 +409,6 @@ allows you to specify the directories to search for ``libyaml``:
return options
.. note::
Direct invocation of ``setup.py`` is
`deprecated <https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html>`_.
This flag forces pip to use a deprecated installation procedure.
It should only be used in packages that don't define a
``build-backend`` in ``pyproject.toml`` or packages that still
support Python 3.6 and older.
^^^^^^^
Testing
^^^^^^^
@@ -582,19 +481,6 @@ libraries. Make sure not to add modules/packages containing the word
"test", as these likely won't end up in the installation directory,
or may require test dependencies like pytest to be installed.
Instead of defining the ``import_modules`` explicity, only the subset
of module names to be skipped can be defined by using ``skip_modules``.
If a defined module has submodules, they are skipped as well, e.g.,
in case the ``plotting`` modules should be excluded from the
automatically detected ``import_modules`` ``['nilearn', 'nilearn.surface',
'nilearn.plotting', 'nilearn.plotting.data']`` set:
.. code-block:: python
skip_modules = ['nilearn.plotting']
This will set ``import_modules`` to ``['nilearn', 'nilearn.surface']``
Import tests can be run during the installation using ``spack install
--test=root`` or at any time after the installation using
``spack test run``.
@@ -724,9 +610,10 @@ extends vs. depends_on
This is very similar to the naming dilemma above, with a slight twist.
As mentioned in the :ref:`Packaging Guide <packaging_extensions>`,
``extends`` and ``depends_on`` are very similar, but ``extends`` ensures
that the extension and extendee share the same prefix in views.
This allows the user to import a Python module without
``extends`` and ``depends_on`` are very similar, but ``extends`` adds
the ability to *activate* the package. Activation involves symlinking
everything in the installation prefix of the package to the installation
prefix of Python. This allows the user to import a Python module without
having to add that module to ``PYTHONPATH``.
When deciding between ``extends`` and ``depends_on``, the best rule of
@@ -734,7 +621,7 @@ thumb is to check the installation prefix. If Python libraries are
installed to ``<prefix>/lib/pythonX.Y/site-packages``, then you
should use ``extends``. If Python libraries are installed elsewhere
or the only files that get installed reside in ``<prefix>/bin``, then
don't use ``extends``.
don't use ``extends``, as symlinking the package wouldn't be useful.
^^^^^^^^^^^^^^^^^^^^^
Alternatives to Spack
@@ -777,8 +664,5 @@ For more information on build and installation frontend tools, see:
For more information on build backend tools, see:
* setuptools: https://setuptools.pypa.io/
* flit: https://flit.pypa.io/
* flit: https://flit.readthedocs.io/
* poetry: https://python-poetry.org/
* hatchling: https://hatch.pypa.io/latest/
* meson: https://meson-python.readthedocs.io/
* pdm: https://pdm.fming.dev/latest/

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _qmakepackage:
-----
QMake
-----
------------
QMakePackage
------------
Much like Autotools and CMake, QMake is a build-script generator
designed by the developers of Qt. In its simplest form, Spack's
@@ -29,7 +29,7 @@ variables or edit ``*.pro`` files to get things working properly.
Phases
^^^^^^
The ``QMakeBuilder`` and ``QMakePackage`` base classes come with the following phases:
The ``QMakePackage`` base class comes with the following phases:
#. ``qmake`` - generate Makefiles
#. ``build`` - build the project

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _racketpackage:
------
Racket
------
-------------
RacketPackage
-------------
Much like Python, Racket packages and modules have their own special build system.
To learn more about the specifics of Racket package system, please refer to the
@@ -17,7 +17,7 @@ To learn more about the specifics of Racket package system, please refer to the
Phases
^^^^^^
The ``RacketBuilder`` and ``RacketPackage`` base classes provides an ``install`` phase that
The ``RacketPackage`` base class provides an ``install`` phase that
can be overridden, corresponding to the use of:
.. code-block:: console

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _rocmpackage:
----
ROCm
----
-----------
ROCmPackage
-----------
The ``ROCmPackage`` is not a build system but a helper package. Like ``CudaPackage``,
it provides standard variants, dependencies, and conflicts to facilitate building
@@ -25,7 +25,7 @@ This package provides the following variants:
* **rocm**
This variant is used to enable/disable building with ``rocm``.
This variant is used to enable/disable building with ``rocm``.
The default is disabled (or ``False``).
* **amdgpu_target**

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _rpackage:
--
R
--
--------
RPackage
--------
Like Python, R has its own built-in build system.
@@ -19,7 +19,7 @@ new Spack packages for.
Phases
^^^^^^
The ``RBuilder`` and ``RPackage`` base classes have a single phase:
The ``RPackage`` base class has a single phase:
#. ``install`` - install the package
@@ -193,10 +193,10 @@ Build system dependencies
As an extension of the R ecosystem, your package will obviously depend
on R to build and run. Normally, we would use ``depends_on`` to express
this, but for R packages, we use ``extends``. This implies a special
dependency on R, which is used to set environment variables such as
``R_LIBS`` uniformly. Since every R package needs this, the ``RPackage``
base class contains:
this, but for R packages, we use ``extends``. ``extends`` is similar to
``depends_on``, but adds an additional feature: the ability to "activate"
the package by symlinking it to the R installation directory. Since
every R package needs this, the ``RPackage`` base class contains:
.. code-block:: python

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _rubypackage:
----
Ruby
----
-----------
RubyPackage
-----------
Like Perl, Python, and R, Ruby has its own build system for
installing Ruby gems.
@@ -16,7 +16,7 @@ installing Ruby gems.
Phases
^^^^^^
The ``RubyBuilder`` and ``RubyPackage`` base classes provide the following phases that
The ``RubyPackage`` base class provides the following phases that
can be overridden:
#. ``build`` - build everything needed to install

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _sconspackage:
-----
SCons
-----
------------
SConsPackage
------------
SCons is a general-purpose build system that does not rely on
Makefiles to build software. SCons is written in Python, and handles
@@ -42,7 +42,7 @@ As previously mentioned, SCons allows developers to add subcommands like
$ scons install
To facilitate this, the ``SConsBuilder`` and ``SconsPackage`` base classes provide the
To facilitate this, the ``SConsPackage`` base class provides the
following phases:
#. ``build`` - build the package

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _sippackage:
---
SIP
---
----------
SIPPackage
----------
SIP is a tool that makes it very easy to create Python bindings for C and C++
libraries. It was originally developed to create PyQt, the Python bindings for
@@ -22,7 +22,7 @@ provides support functions to the automatically generated code.
Phases
^^^^^^
The ``SIPBuilder`` and ``SIPPackage`` base classes come with the following phases:
The ``SIPPackage`` base class comes with the following phases:
#. ``configure`` - configure the package
#. ``build`` - build the package

View File

@@ -1,55 +0,0 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _sourceforgepackage:
-----------
Sourceforge
-----------
``SourceforgePackage`` is a
`mixin-class <https://en.wikipedia.org/wiki/Mixin>`_. It automatically
sets the URL based on a list of Sourceforge mirrors listed in
`sourceforge_mirror_path`, which defaults to a half dozen known mirrors.
Refer to the package source
(`<https://github.com/spack/spack/blob/develop/lib/spack/spack/build_systems/sourceforge.py>`__) for the current list of mirrors used by Spack.
^^^^^^^
Methods
^^^^^^^
This package provides a method for populating mirror URLs.
**urls**
This method returns a list of possible URLs for package source.
It is decorated with `property` so its results are treated as
a package attribute.
Refer to
`<https://spack.readthedocs.io/en/latest/packaging_guide.html#mirrors-of-the-main-url>`__
for information on how Spack uses the `urls` attribute during
fetching.
^^^^^
Usage
^^^^^
This helper package can be added to your package by adding it as a base
class of your package and defining the relative location of an archive
file for one version of your software.
.. code-block:: python
:emphasize-lines: 1,3
class MyPackage(AutotoolsPackage, SourceforgePackage):
...
sourceforge_mirror_path = "my-package/mypackage.1.0.0.tar.gz"
...
Over 40 packages are using ``SourceforcePackage`` this mix-in as of
July 2022 so there are multiple packages to choose from if you want
to see a real example.

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _wafpackage:
---
Waf
---
----------
WafPackage
----------
Like SCons, Waf is a general-purpose build system that does not rely
on Makefiles to build software.
@@ -16,7 +16,7 @@ on Makefiles to build software.
Phases
^^^^^^
The ``WafBuilder`` and ``WafPackage`` base classes come with the following phases:
The ``WafPackage`` base class comes with the following phases:
#. ``configure`` - configure the project
#. ``build`` - build the project

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -32,36 +32,37 @@
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
link_name = os.path.abspath("_spack_root")
if not os.path.exists(link_name):
os.symlink(os.path.abspath("../../.."), link_name, target_is_directory=True)
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external"))
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external/_vendoring"))
sys.path.append(os.path.abspath("_spack_root/lib/spack/"))
sys.path.insert(0, os.path.abspath('_spack_root/lib/spack/external'))
sys.path.insert(0, os.path.abspath('_spack_root/lib/spack/external/pytest-fallback'))
if sys.version_info[0] < 3:
sys.path.insert(
0, os.path.abspath('_spack_root/lib/spack/external/yaml/lib'))
else:
sys.path.insert(
0, os.path.abspath('_spack_root/lib/spack/external/yaml/lib3'))
sys.path.append(os.path.abspath('_spack_root/lib/spack/'))
# Add the Spack bin directory to the path so that we can use its output in docs.
os.environ["SPACK_ROOT"] = os.path.abspath("_spack_root")
os.environ["PATH"] += "%s%s" % (os.pathsep, os.path.abspath("_spack_root/bin"))
os.environ['SPACK_ROOT'] = os.path.abspath('_spack_root')
os.environ['PATH'] += "%s%s" % (os.pathsep, os.path.abspath('_spack_root/bin'))
# Set an environment variable so that colify will print output like it would to
# a terminal.
os.environ["COLIFY_SIZE"] = "25x120"
os.environ["COLUMNS"] = "120"
os.environ['COLIFY_SIZE'] = '25x120'
os.environ['COLUMNS'] = '120'
# Generate full package list if needed
subprocess.call(["spack", "list", "--format=html", "--update=package_list.html"])
subprocess.call([
'spack', 'list', '--format=html', '--update=package_list.html'])
# Generate a command index if an update is needed
subprocess.call(
[
"spack",
"commands",
"--format=rst",
"--header=command_index.in",
"--update=command_index.rst",
]
+ glob("*rst")
)
subprocess.call([
'spack', 'commands',
'--format=rst',
'--header=command_index.in',
'--update=command_index.rst'] + glob('*rst'))
#
# Run sphinx-apidoc
@@ -71,20 +72,12 @@
# Without this, the API Docs will never actually update
#
apidoc_args = [
"--force", # Overwrite existing files
"--no-toc", # Don't create a table of contents file
"--output-dir=.", # Directory to place all output
"--module-first", # emit module docs before submodule docs
'--force', # Overwrite existing files
'--no-toc', # Don't create a table of contents file
'--output-dir=.', # Directory to place all output
]
sphinx_apidoc(
apidoc_args
+ [
"_spack_root/lib/spack/spack",
"_spack_root/lib/spack/spack/test/*.py",
"_spack_root/lib/spack/spack/test/cmd/*.py",
]
)
sphinx_apidoc(apidoc_args + ["_spack_root/lib/spack/llnl"])
sphinx_apidoc(apidoc_args + ['_spack_root/lib/spack/spack'])
sphinx_apidoc(apidoc_args + ['_spack_root/lib/spack/llnl'])
# Enable todo items
todo_include_todos = True
@@ -94,12 +87,10 @@
#
class PatchedPythonDomain(PythonDomain):
def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode):
if "refspecific" in node:
del node["refspecific"]
if 'refspecific' in node:
del node['refspecific']
return super(PatchedPythonDomain, self).resolve_xref(
env, fromdocname, builder, typ, target, node, contnode
)
env, fromdocname, builder, typ, target, node, contnode)
#
# Disable tabs to space expansion in code blocks
@@ -112,58 +103,51 @@ def parse(self, inputstring, document):
inputstring = StringList(lines, document.current_source)
super().parse(inputstring, document)
def setup(sphinx):
sphinx.add_domain(PatchedPythonDomain, override=True)
sphinx.add_source_parser(NoTabExpansionRSTParser, override=True)
# -- General configuration -----------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
needs_sphinx = "3.4"
needs_sphinx = '3.4'
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.graphviz",
"sphinx.ext.intersphinx",
"sphinx.ext.napoleon",
"sphinx.ext.todo",
"sphinx.ext.viewcode",
"sphinx_design",
"sphinxcontrib.programoutput",
'sphinx.ext.autodoc',
'sphinx.ext.graphviz',
'sphinx.ext.intersphinx',
'sphinx.ext.napoleon',
'sphinx.ext.todo',
'sphinx.ext.viewcode',
'sphinxcontrib.programoutput',
]
# Set default graphviz options
graphviz_dot_args = [
"-Grankdir=LR",
"-Gbgcolor=transparent",
"-Nshape=box",
"-Nfontname=monaco",
"-Nfontsize=10",
]
'-Grankdir=LR', '-Gbgcolor=transparent',
'-Nshape=box', '-Nfontname=monaco', '-Nfontsize=10']
# Get nice vector graphics
graphviz_output_format = "svg"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = ".rst"
source_suffix = '.rst'
# The encoding of source files.
source_encoding = "utf-8-sig"
source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = "index"
master_doc = 'index'
# General information about the project.
project = "Spack"
copyright = "2013-2023, Lawrence Livermore National Laboratory."
project = u'Spack'
copyright = u'2013-2021, Lawrence Livermore National Laboratory.'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
@@ -172,16 +156,16 @@ def setup(sphinx):
# The short X.Y version.
import spack
version = ".".join(str(s) for s in spack.spack_version_info[:2])
version = '.'.join(str(s) for s in spack.spack_version_info[:2])
# The full version, including alpha/beta/rc tags.
release = spack.spack_version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
# language = None
#language = None
# Places to look for .po/.mo files for doc translations
# locale_dirs = []
#locale_dirs = []
# Sphinx gettext settings
gettext_compact = True
@@ -189,48 +173,41 @@ def setup(sphinx):
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
# today = ''
#today = ''
# Else, today_fmt is used as the format for a strftime call.
# today_fmt = '%B %d, %Y'
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ["_build", "_spack_root", ".spack-env"]
exclude_patterns = ['_build', '_spack_root', '.spack-env']
nitpicky = True
nitpick_ignore = [
# Python classes that intersphinx is unable to resolve
("py:class", "argparse.HelpFormatter"),
("py:class", "contextlib.contextmanager"),
("py:class", "module"),
("py:class", "_io.BufferedReader"),
("py:class", "unittest.case.TestCase"),
("py:class", "_frozen_importlib_external.SourceFileLoader"),
("py:class", "clingo.Control"),
("py:class", "six.moves.urllib.parse.ParseResult"),
("py:class", "TextIO"),
('py:class', 'argparse.HelpFormatter'),
('py:class', 'contextlib.contextmanager'),
('py:class', 'module'),
('py:class', '_io.BufferedReader'),
('py:class', 'unittest.case.TestCase'),
('py:class', '_frozen_importlib_external.SourceFileLoader'),
# Spack classes that are private and we don't want to expose
("py:class", "spack.provider_index._IndexBase"),
("py:class", "spack.repo._PrependFileLoader"),
("py:class", "spack.build_systems._checks.BaseBuilder"),
# Spack classes that intersphinx is unable to resolve
("py:class", "spack.version.VersionBase"),
("py:class", "spack.spec.DependencySpec"),
('py:class', 'spack.provider_index._IndexBase'),
('py:class', 'spack.repo._PrependFileLoader'),
]
# The reST default role (used for this markup: `text`) to use for all documents.
# default_role = None
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
# add_function_parentheses = True
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
# add_module_names = True
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
# show_authors = False
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
# We use our own extension of the default style with a few modifications
@@ -241,151 +218,156 @@ def setup(sphinx):
class SpackStyle(DefaultStyle):
styles = DefaultStyle.styles.copy()
background_color = "#f4f4f8"
background_color = "#f4f4f8"
styles[Generic.Output] = "#355"
styles[Generic.Prompt] = "bold #346ec9"
import pkg_resources
dist = pkg_resources.Distribution(__file__)
sys.path.append(".") # make 'conf' module findable
ep = pkg_resources.EntryPoint.parse("spack = conf:SpackStyle", dist=dist)
dist._ep_map = {"pygments.styles": {"plugin1": ep}}
sys.path.append('.') # make 'conf' module findable
ep = pkg_resources.EntryPoint.parse('spack = conf:SpackStyle', dist=dist)
dist._ep_map = {'pygments.styles': {'plugin1': ep}}
pkg_resources.working_set.add(dist)
pygments_style = "spack"
pygments_style = 'spack'
# A list of ignored prefixes for module index sorting.
# modindex_common_prefix = []
#modindex_common_prefix = []
# -- Options for HTML output ---------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = "sphinx_rtd_theme"
html_theme = 'sphinx_rtd_theme'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
html_theme_options = {"logo_only": True}
html_theme_options = { 'logo_only' : True }
# Add any paths that contain custom themes here, relative to this directory.
# html_theme_path = ["_themes"]
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
# html_title = None
#html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
# html_short_title = None
#html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
html_logo = "_spack_root/share/spack/logo/spack-logo-white-text.svg"
html_logo = '_spack_root/share/spack/logo/spack-logo-white-text.svg'
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
html_favicon = "_spack_root/share/spack/logo/favicon.ico"
html_favicon = '_spack_root/share/spack/logo/favicon.ico'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
html_static_path = ['_static']
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
html_last_updated_fmt = "%b %d, %Y"
html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
# html_use_smartypants = True
#html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
# html_sidebars = {}
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
# html_additional_pages = {}
#html_additional_pages = {}
# If false, no module index is generated.
# html_domain_indices = True
#html_domain_indices = True
# If false, no index is generated.
# html_use_index = True
#html_use_index = True
# If true, the index is split into individual pages for each letter.
# html_split_index = False
#html_split_index = False
# If true, links to the reST sources are added to the pages.
# html_show_sourcelink = True
#html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
# html_show_sphinx = False
#html_show_sphinx = False
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
# html_show_copyright = True
#html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
# html_use_opensearch = ''
#html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
# html_file_suffix = None
#html_file_suffix = None
# Output file base name for HTML help builder.
htmlhelp_basename = "Spackdoc"
htmlhelp_basename = 'Spackdoc'
# -- Options for LaTeX output --------------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#'preamble': '',
# The paper size ('letterpaper' or 'a4paper').
#'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#'preamble': '',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass [howto/manual]).
latex_documents = [
("index", "Spack.tex", "Spack Documentation", "Todd Gamblin", "manual"),
('index', 'Spack.tex', u'Spack Documentation',
u'Todd Gamblin', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
# latex_logo = None
#latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
# latex_use_parts = False
#latex_use_parts = False
# If true, show page references after internal links.
# latex_show_pagerefs = False
#latex_show_pagerefs = False
# If true, show URL addresses after external links.
# latex_show_urls = False
#latex_show_urls = False
# Documents to append as an appendix to all manuals.
# latex_appendices = []
#latex_appendices = []
# If false, no module index is generated.
# latex_domain_indices = True
#latex_domain_indices = True
# -- Options for manual page output --------------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [("index", "spack", "Spack Documentation", ["Todd Gamblin"], 1)]
man_pages = [
('index', 'spack', u'Spack Documentation',
[u'Todd Gamblin'], 1)
]
# If true, show URL addresses after external links.
# man_show_urls = False
#man_show_urls = False
# -- Options for Texinfo output ------------------------------------------------
@@ -394,25 +376,19 @@ class SpackStyle(DefaultStyle):
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(
"index",
"Spack",
"Spack Documentation",
"Todd Gamblin",
"Spack",
"One line description of project.",
"Miscellaneous",
),
('index', 'Spack', u'Spack Documentation',
u'Todd Gamblin', 'Spack', 'One line description of project.',
'Miscellaneous'),
]
# Documents to append as an appendix to all manuals.
# texinfo_appendices = []
#texinfo_appendices = []
# If false, no module index is generated.
# texinfo_domain_indices = True
#texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
# texinfo_show_urls = 'footnote'
#texinfo_show_urls = 'footnote'
# -- Extension configuration -------------------------------------------------

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -19,9 +19,9 @@ see the default settings by looking at
These settings can be overridden in ``etc/spack/config.yaml`` or
``~/.spack/config.yaml``. See :ref:`configuration-scopes` for details.
---------------------
``install_tree:root``
---------------------
--------------------
``install_tree``
--------------------
The location where Spack will install packages and their dependencies.
Default is ``$spack/opt/spack``.
@@ -224,9 +224,9 @@ them). Please note that we currently disable ccache's ``hash_dir``
feature to avoid an issue with the stage directory (see
https://github.com/LLNL/spack/pull/3761#issuecomment-294352232).
-----------------------
``shared_linking:type``
-----------------------
------------------
``shared_linking``
------------------
Control whether Spack embeds ``RPATH`` or ``RUNPATH`` attributes in ELF binaries
so that they can find their dependencies. Has no effect on macOS.
@@ -245,52 +245,6 @@ the loading object.
DO NOT MIX the two options within the same install tree.
-----------------------
``shared_linking:bind``
-----------------------
This is an *experimental option* that controls whether Spack embeds absolute paths
to needed shared libraries in ELF executables and shared libraries on Linux. Setting
this option to ``true`` has two advantages:
1. **Improved startup time**: when running an executable, the dynamic loader does not
have to perform a search for needed libraries, they are loaded directly.
2. **Reliability**: libraries loaded at runtime are those that were linked to. This
minimizes the risk of accidentally picking up system libraries.
In the current implementation, Spack sets the soname (shared object name) of
libraries to their install path upon installation. This has two implications:
1. binding does not apply to libraries installed *before* the option was enabled;
2. toggling the option off does *not* prevent binding of libraries installed when
the option was still enabled.
It is also worth noting that:
1. Applications relying on ``dlopen(3)`` will continue to work, even when they open
a library by name. This is because ``RPATH``\s are retained in binaries also
when ``bind`` is enabled.
2. ``LD_PRELOAD`` continues to work for the typical use case of overriding
symbols, such as preloading a library with a more efficient ``malloc``.
However, the preloaded library will be loaded *additionally to*, instead of
*in place of* another library with the same name --- this can be problematic
in very rare cases where libraries rely on a particular ``init`` or ``fini``
order.
.. note::
In some cases packages provide *stub libraries* that only contain an interface
for linking, but lack an implementation for runtime. An example of this is
``libcuda.so``, provided by the CUDA toolkit; it can be used to link against,
but the library needed at runtime is the one installed with the CUDA driver.
To avoid binding those libraries, they can be marked as non-bindable using
a property in the package:
.. code-block:: python
class Example(Package):
non_bindable_shared_objects = ["libinterface.so"]
----------------------
``terminal_title``
----------------------

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -394,7 +394,7 @@ are indicated at the start of the path with ``~`` or ``~user``.
Spack-specific variables
^^^^^^^^^^^^^^^^^^^^^^^^
Spack understands over a dozen special variables. These are:
Spack understands several special variables. These are:
* ``$env``: name of the currently active :ref:`environment <environments>`
* ``$spack``: path to the prefix of this Spack installation
@@ -405,19 +405,6 @@ Spack understands over a dozen special variables. These are:
* ``$user``: name of the current user
* ``$user_cache_path``: user cache directory (``~/.spack`` unless
:ref:`overridden <local-config-overrides>`)
* ``$architecture``: the architecture triple of the current host, as
detected by Spack.
* ``$arch``: alias for ``$architecture``.
* ``$platform``: the platform of the current host, as detected by Spack.
* ``$operating_system``: the operating system of the current host, as
detected by the ``distro`` python module.
* ``$os``: alias for ``$operating_system``.
* ``$target``: the ISA target for the current host, as detected by
ArchSpec. E.g. ``skylake`` or ``neoverse-n1``.
* ``$target_family``. The target family for the current host, as
detected by ArchSpec. E.g. ``x86_64`` or ``aarch64``.
* ``$date``: the current date in the format YYYY-MM-DD
Note that, as with shell variables, you can write these as ``$varname``
or with braces to distinguish the variable from surrounding characters:
@@ -562,7 +549,7 @@ down the problem:
You can see above that the ``build_jobs`` and ``debug`` settings are
built in and are not overridden by a configuration file. The
``verify_ssl`` setting comes from the ``--insecure`` option on the
``verify_ssl`` setting comes from the ``--insceure`` option on the
command line. ``dirty`` and ``install_tree`` come from the custom
scopes ``./my-scope`` and ``./my-scope-2``, and all other configuration
options come from the default configuration files that ship with Spack.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -59,7 +59,7 @@ other techniques to minimize the size of the final image:
&& echo " specs:" \
&& echo " - gromacs+mpi" \
&& echo " - mpich" \
&& echo " concretizer:" \
&& echo " concretizer: together" \
&& echo " unify: true" \
&& echo " config:" \
&& echo " install_tree: /opt/software" \
@@ -109,10 +109,9 @@ Spack Images on Docker Hub
--------------------------
Docker images with Spack preinstalled and ready to be used are
built when a release is tagged, or nightly on ``develop``. The images
are then pushed both to `Docker Hub <https://hub.docker.com/u/spack>`_
and to `GitHub Container Registry <https://github.com/orgs/spack/packages?repo_name=spack>`_.
The OS that are currently supported are summarized in the table below:
built on `Docker Hub <https://hub.docker.com/u/spack>`_
at every push to ``develop`` or to a release branch. The OS that
are currently supported are summarized in the table below:
.. _containers-supported-os:
@@ -122,31 +121,22 @@ The OS that are currently supported are summarized in the table below:
* - Operating System
- Base Image
- Spack Image
* - Ubuntu 16.04
- ``ubuntu:16.04``
- ``spack/ubuntu-xenial``
* - Ubuntu 18.04
- ``ubuntu:18.04``
- ``spack/ubuntu-bionic``
* - Ubuntu 20.04
- ``ubuntu:20.04``
- ``spack/ubuntu-focal``
* - Ubuntu 22.04
- ``ubuntu:22.04``
- ``spack/ubuntu-jammy``
* - CentOS 7
- ``centos:7``
- ``spack/centos7``
* - CentOS Stream
- ``quay.io/centos/centos:stream``
- ``spack/centos-stream``
* - openSUSE Leap
- ``opensuse/leap``
- ``spack/leap15``
* - Amazon Linux 2
- ``amazonlinux:2``
- ``spack/amazon-linux``
All the images are tagged with the corresponding release of Spack:
.. image:: images/ghcr_spack.png
.. image:: dockerhub_spack.png
with the exception of the ``latest`` tag that points to the HEAD
of the ``develop`` branch. These images are available for anyone

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -71,7 +71,7 @@ locally to speed up the review process.
new release that is causing problems. If this is the case, please file an issue.
We currently test against Python 2.7 and 3.6-3.10 on both macOS and Linux and
We currently test against Python 2.7 and 3.5-3.9 on both macOS and Linux and
perform 3 types of tests:
.. _cmd-spack-unit-test:
@@ -253,6 +253,27 @@ to update them.
multiple runs of ``spack style`` just to re-compute line numbers and
makes it much easier to fix errors directly off of the CI output.
.. warning::
Flake8 and ``pep8-naming`` require a number of dependencies in order
to run. If you installed ``py-flake8`` and ``py-pep8-naming``, the
easiest way to ensure the right packages are on your ``PYTHONPATH`` is
to run::
spack activate py-flake8
spack activate pep8-naming
so that all of the dependencies are symlinked to a central
location. If you see an error message like:
.. code-block:: console
Traceback (most recent call last):
File: "/usr/bin/flake8", line 5, in <module>
from pkg_resources import load_entry_point
ImportError: No module named pkg_resources
that means Flake8 couldn't find setuptools in your ``PYTHONPATH``.
^^^^^^^^^^^^^^^^^^^
Documentation Tests
@@ -288,9 +309,13 @@ All of these can be installed with Spack, e.g.
.. code-block:: console
$ spack load py-sphinx py-sphinx-rtd-theme py-sphinxcontrib-programoutput
$ spack activate py-sphinx
$ spack activate py-sphinx-rtd-theme
$ spack activate py-sphinxcontrib-programoutput
so that all of the dependencies are added to PYTHONPATH. If you see an error message
so that all of the dependencies are symlinked into that Python's
tree. Alternatively, you could arrange for their library
directories to be added to PYTHONPATH. If you see an error message
like:
.. code-block:: console

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -107,6 +107,7 @@ with a high level view of Spack's directory structure:
llnl/ <- some general-use libraries
spack/ <- spack module; contains Python code
analyzers/ <- modules to run analysis on installed packages
build_systems/ <- modules for different build systems
cmd/ <- each file in here is a spack subcommand
compilers/ <- compiler description files
@@ -149,9 +150,11 @@ grouped by functionality.
Package-related modules
^^^^^^^^^^^^^^^^^^^^^^^
:mod:`spack.package_base`
Contains the :class:`~spack.package_base.PackageBase` class, which
is the superclass for all packages in Spack.
:mod:`spack.package`
Contains the :class:`~spack.package.Package` class, which
is the superclass for all packages in Spack. Methods on ``Package``
implement all phases of the :ref:`package lifecycle
<package-lifecycle>` and manage the build process.
:mod:`spack.util.naming`
Contains functions for mapping between Spack package names,
@@ -175,11 +178,14 @@ Spec-related modules
^^^^^^^^^^^^^^^^^^^^
:mod:`spack.spec`
Contains :class:`~spack.spec.Spec`. Also implements most of the logic for concretization
Contains :class:`~spack.spec.Spec` and :class:`~spack.spec.SpecParser`.
Also implements most of the logic for normalization and concretization
of specs.
:mod:`spack.parser`
Contains :class:`~spack.parser.SpecParser` and functions related to parsing specs.
:mod:`spack.parse`
Contains some base classes for implementing simple recursive descent
parsers: :class:`~spack.parse.Parser` and :class:`~spack.parse.Lexer`.
Used by :class:`~spack.spec.SpecParser`.
:mod:`spack.concretize`
Contains :class:`~spack.concretize.Concretizer` implementation,
@@ -232,10 +238,26 @@ Spack Subcommands
Unit tests
^^^^^^^^^^
``spack.test``
:mod:`spack.test`
Implements Spack's test suite. Add a module and put its name in
the test suite in ``__init__.py`` to add more unit tests.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Research and Monitoring Modules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:mod:`spack.monitor`
Contains :class:`~spack.monitor.SpackMonitorClient`. This is accessed from
the ``spack install`` and ``spack analyze`` commands to send build and
package metadata up to a `Spack Monitor
<https://github.com/spack/spack-monitor>`_ server.
:mod:`spack.analyzers`
A module folder with a :class:`~spack.analyzers.analyzer_base.AnalyzerBase`
that provides base functions to run, save, and (optionally) upload analysis
results to a `Spack Monitor <https://github.com/spack/spack-monitor>`_ server.
^^^^^^^^^^^^^
Other Modules
@@ -279,6 +301,240 @@ Most spack commands look something like this:
The information in Package files is used at all stages in this
process.
Conceptually, packages are overloaded. They contain:
-------------
Stage objects
-------------
.. _writing-analyzers:
-----------------
Writing analyzers
-----------------
To write an analyzer, you should add a new python file to the
analyzers module directory at ``lib/spack/spack/analyzers`` .
Your analyzer should be a subclass of the :class:`AnalyzerBase <spack.analyzers.analyzer_base.AnalyzerBase>`. For example, if you want
to add an analyzer class ``Myanalyzer`` you would write to
``spack/analyzers/myanalyzer.py`` and import and
use the base as follows:
.. code-block:: python
from .analyzer_base import AnalyzerBase
class Myanalyzer(AnalyzerBase):
Note that the class name is your module file name, all lowercase
except for the first capital letter. You can look at other analyzers in
that analyzer directory for examples. The guide here will tell you about the basic functions needed.
^^^^^^^^^^^^^^^^^^^^^^^^^
Analyzer Output Directory
^^^^^^^^^^^^^^^^^^^^^^^^^
By default, when you run ``spack analyze run`` an analyzer output directory will
be created in your spack user directory in your ``$HOME``. The reason we output here
is because the install directory might not always be writable.
.. code-block:: console
~/.spack/
analyzers
Result files will be written here, organized in subfolders in the same structure
as the package, with each analyzer owning it's own subfolder. for example:
.. code-block:: console
$ tree ~/.spack/analyzers/
/home/spackuser/.spack/analyzers/
└── linux-ubuntu20.04-skylake
└── gcc-9.3.0
└── zlib-1.2.11-sl7m27mzkbejtkrajigj3a3m37ygv4u2
├── environment_variables
│   └── spack-analyzer-environment-variables.json
├── install_files
│   └── spack-analyzer-install-files.json
└── libabigail
└── lib
└── spack-analyzer-libabigail-libz.so.1.2.11.xml
Notice that for the libabigail analyzer, since results are generated per object,
we honor the object's folder in case there are equivalently named files in
different folders. The result files are typically written as json so they can be easily read and uploaded in a future interaction with a monitor.
^^^^^^^^^^^^^^^^^
Analyzer Metadata
^^^^^^^^^^^^^^^^^
Your analyzer is required to have the class attributes ``name``, ``outfile``,
and ``description``. These are printed to the user with they use the subcommand
``spack analyze list-analyzers``. Here is an example.
As we mentioned above, note that this analyzer would live in a module named
``libabigail.py`` in the analyzers folder so that the class can be discovered.
.. code-block:: python
class Libabigail(AnalyzerBase):
name = "libabigail"
outfile = "spack-analyzer-libabigail.json"
description = "Application Binary Interface (ABI) features for objects"
This means that the name and output file should be unique for your analyzer.
Note that "all" cannot be the name of an analyzer, as this key is used to indicate
that the user wants to run all analyzers.
.. _analyzer_run_function:
^^^^^^^^^^^^^^^^^^^^^^^^
An analyzer run Function
^^^^^^^^^^^^^^^^^^^^^^^^
The core of an analyzer is its ``run()`` function, which should accept no
arguments. You can assume your analyzer has the package spec of interest at ``self.spec``
and it's up to the run function to generate whatever analysis data you need,
and then return the object with a key as the analyzer name. The result data
should be a list of objects, each with a name, ``analyzer_name``, ``install_file``,
and one of ``value`` or ``binary_value``. The install file should be for a relative
path, and not the absolute path. For example, let's say we extract a metric called
``metric`` for ``bin/wget`` using our analyzer ``thebest-analyzer``.
We might have data that looks like this:
.. code-block:: python
result = {"name": "metric", "analyzer_name": "thebest-analyzer", "value": "1", "install_file": "bin/wget"}
We'd then return it as follows - note that they key is the analyzer name at ``self.name``.
.. code-block:: python
return {self.name: result}
This will save the complete result to the analyzer metadata folder, as described
previously. If you want support for adding a different kind of metadata (e.g.,
not associated with an install file) then the monitor server would need to be updated
to support this first.
^^^^^^^^^^^^^^^^^^^^^^^^^
An analyzer init Function
^^^^^^^^^^^^^^^^^^^^^^^^^
If you don't need any extra dependencies or checks, you can skip defining an analyzer
init function, as the base class will handle it. Typically, it will accept
a spec, and an optional output directory (if the user does not want the default
metadata folder for analyzer results). The analyzer init function should call
it's parent init, and then do any extra checks or validation that are required to
work. For example:
.. code-block:: python
def __init__(self, spec, dirname=None):
super(Myanalyzer, self).__init__(spec, dirname)
# install extra dependencies, do extra preparation and checks here
At the end of the init, you will have available to you:
- **self.spec**: the spec object
- **self.dirname**: an optional directory name the user as provided at init to save
- **self.output_dir**: the analyzer metadata directory, where we save by default
- **self.meta_dir**: the path to the package metadata directory (.spack) if you need it
And can proceed to write your analyzer.
^^^^^^^^^^^^^^^^^^^^^^^
Saving Analyzer Results
^^^^^^^^^^^^^^^^^^^^^^^
The analyzer will have ``save_result`` called, with the result object generated
to save it to the filesystem, and if the user has added the ``--monitor`` flag
to upload it to a monitor server. If your result follows an accepted result
format and you don't need to parse it further, you don't need to add this
function to your class. However, if your result data is large or otherwise
needs additional parsing, you can define it. If you define the function, it
is useful to know about the ``output_dir`` property, which you can join
with your output file relative path of choice:
.. code-block:: python
outfile = os.path.join(self.output_dir, "my-output-file.txt")
The directory will be provided by the ``output_dir`` property but it won't exist,
so you should create it:
.. code::block:: python
# Create the output directory
if not os.path.exists(self._output_dir):
os.makedirs(self._output_dir)
If you are generating results that match to specific files in the package
install directory, you should try to maintain those paths in the case that
there are equivalently named files in different directories that would
overwrite one another. As an example of an analyzer with a custom save,
the Libabigail analyzer saves ``*.xml`` files to the analyzer metadata
folder in ``run()``, as they are either binaries, or as xml (text) would
usually be too big to pass in one request. For this reason, the files
are saved during ``run()`` and the filenames added to the result object,
and then when the result object is passed back into ``save_result()``,
we skip saving to the filesystem, and instead read the file and send
each one (separately) to the monitor:
.. code-block:: python
def save_result(self, result, monitor=None, overwrite=False):
"""ABI results are saved to individual files, so each one needs to be
read and uploaded. Result here should be the lookup generated in run(),
the key is the analyzer name, and each value is the result file.
We currently upload the entire xml as text because libabigail can't
easily read gzipped xml, but this will be updated when it can.
"""
if not monitor:
return
name = self.spec.package.name
for obj, filename in result.get(self.name, {}).items():
# Don't include the prefix
rel_path = obj.replace(self.spec.prefix + os.path.sep, "")
# We've already saved the results to file during run
content = spack.monitor.read_file(filename)
# A result needs an analyzer, value or binary_value, and name
data = {"value": content, "install_file": rel_path, "name": "abidw-xml"}
tty.info("Sending result for %s %s to monitor." % (name, rel_path))
monitor.send_analyze_metadata(self.spec.package, {"libabigail": [data]})
Notice that this function, if you define it, requires a result object (generated by
``run()``, a monitor (if you want to send), and a boolean ``overwrite`` to be used
to check if a result exists first, and not write to it if the result exists and
overwrite is False. Also notice that since we already saved these files to the analyzer metadata folder, we return early if a monitor isn't defined, because this function serves to send results to the monitor. If you haven't saved anything to the analyzer metadata folder
yet, you might want to do that here. You should also use ``tty.info`` to give
the user a message of "Writing result to $DIRNAME."
.. _writing-commands:
@@ -443,6 +699,23 @@ with a hook, and this is the purpose of this particular hook. Akin to
``on_phase_success`` we require the same variables - the package that failed,
the name of the phase, and the log file where we might find errors.
"""""""""""""""""""""""""""""""""
``on_analyzer_save(pkg, result)``
"""""""""""""""""""""""""""""""""
After an analyzer has saved some result for a package, this hook is called,
and it provides the package that we just ran the analysis for, along with
the loaded result. Typically, a result is structured to have the name
of the analyzer as key, and the result object that is defined in detail in
:ref:`analyzer_run_function`.
.. code-block:: python
def on_analyzer_save(pkg, result):
"""given a package and a result...
"""
print('Do something extra with a package analysis result here')
^^^^^^^^^^^^^^^^^^^^^^
Adding a New Hook Type
@@ -960,13 +1233,8 @@ completed, the steps to make the point release are:
$ git checkout releases/v0.15
#. If a pull request to the release branch named ``Backports vX.Y.Z`` is not already
in the project, create it. This pull request ought to be created as early as
possible when working on a release project, so that we can build the release
commits incrementally, and identify potential conflicts at an early stage.
#. Cherry-pick each pull request in the ``Done`` column of the release
project board onto the ``Backports vX.Y.Z`` pull request.
project board onto the release branch.
This is **usually** fairly simple since we squash the commits from the
vast majority of pull requests. That means there is only one commit
@@ -991,7 +1259,7 @@ completed, the steps to make the point release are:
It is important to cherry-pick commits in the order they happened,
otherwise you can get conflicts while cherry-picking. When
cherry-picking look at the merge date,
cherry-picking onto a point release, look at the merge date,
**not** the number of the pull request or the date it was opened.
Sometimes you may **still** get merge conflicts even if you have
@@ -1012,19 +1280,15 @@ completed, the steps to make the point release are:
branch if neither of the above options makes sense, but this can
require a lot of work. It's seldom the right choice.
#. When all the commits from the project board are cherry-picked into
the ``Backports vX.Y.Z`` pull request, you can push a commit to:
#. Bump the version in ``lib/spack/spack/__init__.py``.
1. Bump the version in ``lib/spack/spack/__init__.py``.
2. Update ``CHANGELOG.md`` with a list of the changes.
#. Update ``CHANGELOG.md`` with a list of the changes.
This is typically a summary of the commits you cherry-picked onto the
release branch. See `the changelog from 0.14.1
<https://github.com/spack/spack/commit/ff0abb9838121522321df2a054d18e54b566b44a>`_.
#. Merge the ``Backports vX.Y.Z`` PR with the **Rebase and merge** strategy. This
is needed to keep track in the release branch of all the commits that were
cherry-picked.
#. Push the release branch to GitHub.
#. Make sure CI passes on the release branch, including:
@@ -1043,8 +1307,6 @@ completed, the steps to make the point release are:
#. Follow the steps in :ref:`announcing-releases`.
#. Submit a PR to update the CHANGELOG in the `develop` branch
with the addition of this point release.
.. _publishing-releases:

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -233,8 +233,8 @@ packages will be listed as roots of the Environment.
All of the Spack commands that act on the list of installed specs are
Environment-sensitive in this way, including ``install``,
``uninstall``, ``find``, ``extensions``, and more. In the
:ref:`environment-configuration` section we will discuss
``uninstall``, ``activate``, ``deactivate``, ``find``, ``extensions``,
and more. In the :ref:`environment-configuration` section we will discuss
Environment-sensitive commands further.
^^^^^^^^^^^^^^^^^^^^^
@@ -346,7 +346,7 @@ the Environment and then install the concretized specs.
(see :ref:`build-jobs`). To speed up environment builds further, independent
packages can be installed in parallel by launching more Spack instances. For
example, the following will build at most four packages in parallel using
three background jobs:
three background jobs:
.. code-block:: console
@@ -376,30 +376,6 @@ from being added again. At the same time, a spec that already exists in the
environment, but only as a dependency, will be added to the environment as a
root spec without the ``--no-add`` option.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Developing Packages in a Spack Environment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``spack develop`` command allows one to develop Spack packages in
an environment. It requires a spec containing a concrete version, and
will configure Spack to install the package from local source. By
default, it will also clone the package to a subdirectory in the
environment. This package will have a special variant ``dev_path``
set, and Spack will ensure the package and its dependents are rebuilt
any time the environment is installed if the package's local source
code has been modified. Spack ensures that all instances of a
developed package in the environment are concretized to match the
version (and other constraints) passed as the spec argument to the
``spack develop`` command.
For packages with ``git`` attributes, git branches, tags, and commits can
also be used as valid concrete versions (see :ref:`version-specifier`).
This means that for a package ``foo``, ``spack develop foo@git.main`` will clone
the ``main`` branch of the package, and ``spack install`` will install from
that git clone if ``foo`` is in the environment.
Further development on ``foo`` can be tested by reinstalling the environment,
and eventually committed and pushed to the upstream git repo.
^^^^^^^
Loading
^^^^^^^
@@ -478,21 +454,14 @@ them to the Environment.
spack:
include:
- relative/path/to/config.yaml
- https://github.com/path/to/raw/config/compilers.yaml
- /absolute/path/to/packages.yaml
Environments can include files or URLs. File paths can be relative or
absolute. URLs include the path to the text for individual files or
can be the path to a directory containing configuration files.
^^^^^^^^^^^^^^^^^^^^^^^^
Configuration precedence
^^^^^^^^^^^^^^^^^^^^^^^^
Inline configurations take precedence over included configurations, so
you don't have to change shared configuration files to make small changes
to an individual environment. Included configurations listed earlier will
have higher precedence, as the included configs are applied in reverse order.
Environments can include files with either relative or absolute
paths. Inline configurations take precedence over included
configurations, so you don't have to change shared configuration files
to make small changes to an individual Environment. Included configs
listed earlier will have higher precedence, as the included configs are
applied in reverse order.
-------------------------------
Manually Editing the Specs List
@@ -519,49 +488,8 @@ available from the yaml file.
^^^^^^^^^^^^^^^^^^^
Spec concretization
^^^^^^^^^^^^^^^^^^^
An environment can be concretized in three different modes and the behavior active under
any environment is determined by the ``concretizer:unify`` configuration option.
The *default* mode is to unify all specs:
.. code-block:: yaml
spack:
specs:
- hdf5+mpi
- zlib@1.2.8
concretizer:
unify: true
This means that any package in the environment corresponds to a single concrete spec. In
the above example, when ``hdf5`` depends down the line of ``zlib``, it is required to
take ``zlib@1.2.8`` instead of a newer version. This mode of concretization is
particularly useful when environment views are used: if every package occurs in
only one flavor, it is usually possible to merge all install directories into a view.
A downside of unified concretization is that it can be overly strict. For example, a
concretization error would happen when both ``hdf5+mpi`` and ``hdf5~mpi`` are specified
in an environment.
The second mode is to *unify when possible*: this makes concretization of root specs
more independendent. Instead of requiring reuse of dependencies across different root
specs, it is only maximized:
.. code-block:: yaml
spack:
specs:
- hdf5~mpi
- hdf5+mpi
- zlib@1.2.8
concretizer:
unify: when_possible
This means that both ``hdf5`` installations will use ``zlib@1.2.8`` as a dependency even
if newer versions of that library are available.
The third mode of operation is to concretize root specs entirely independently by
disabling unified concretization:
An environment can be concretized in three different modes and the behavior active under any environment
is determined by the ``concretizer:unify`` property. By default specs are concretized *separately*, one after the other:
.. code-block:: yaml
@@ -573,25 +501,59 @@ disabling unified concretization:
concretizer:
unify: false
In this example ``hdf5`` is concretized separately, and does not consider ``zlib@1.2.8``
as a constraint or preference. Instead, it will take the latest possible version.
This mode of operation permits to deploy a full software stack where multiple configurations of the same package
need to be installed alongside each other using the best possible selection of transitive dependencies. The downside
is that redundancy of installations is disregarded completely, and thus environments might be more bloated than
strictly needed. In the example above, for instance, if a version of ``zlib`` newer than ``1.2.8`` is known to Spack,
then it will be used for both ``hdf5`` installations.
The last two concretization options are typically useful for system administrators and
user support groups providing a large software stack for their HPC center.
If redundancy of the environment is a concern, Spack provides a way to install it *together where possible*,
i.e. trying to maximize reuse of dependencies across different specs:
.. code-block:: yaml
spack:
specs:
- hdf5~mpi
- hdf5+mpi
- zlib@1.2.8
concretizer:
unify: when_possible
Also in this case Spack allows having multiple configurations of the same package, but privileges the reuse of
specs over other factors. Going back to our example, this means that both ``hdf5`` installations will use
``zlib@1.2.8`` as a dependency even if newer versions of that library are available.
Central installations done at HPC centers by system administrators or user support groups are a common case
that fits either of these two modes.
Environments can also be configured to concretize all the root specs *together*, in a self-consistent way, to
ensure that each package in the environment comes with a single configuration:
.. code-block:: yaml
spack:
specs:
- hdf5+mpi
- zlib@1.2.8
concretizer:
unify: true
This mode of operation is usually what is required by software developers that want to deploy their development
environment and have a single view of it in the filesystem.
.. note::
The ``concretizer:unify`` config option was introduced in Spack 0.18 to
replace the ``concretization`` property. For reference,
``concretization: together`` is replaced by ``concretizer:unify:true``,
and ``concretization: separately`` is replaced by ``concretizer:unify:false``.
``concretization: separately`` is replaced by ``concretizer:unify:true``,
and ``concretization: together`` is replaced by ``concretizer:unify:false``.
.. admonition:: Re-concretization of user specs
When using *unified* concretization (when possible), the entire set of specs will be
When concretizing specs *together* or *together where possible* the entire set of specs will be
re-concretized after any addition of new user specs, to ensure that
the environment remains consistent / minimal. When instead unified concretization is
disabled, only the new specs will be concretized after any addition.
the environment remains consistent / minimal. When instead the specs are concretized
separately only the new specs will be re-concretized after any addition.
^^^^^^^^^^^^^
Spec Matrices
@@ -630,34 +592,30 @@ The following two Environment manifests are identical:
Spec matrices can be used to install swaths of software across various
toolchains.
Note that ordering of matrices is important. For example, the
following environments are identical:
The concretization logic for spec matrices differs slightly from the
rest of Spack. If a variant or dependency constraint from a matrix is
invalid, Spack will reject the constraint and try again without
it. For example, the following two Environment manifests will produce
the same specs:
.. code-block:: yaml
spack:
specs:
- matrix:
- [hdf5@1.10.2+mpi]
- [^mpich, ^openmpi]
- ['%gcc']
- matrix:
- [hdf5@1.12.1+mpi]
- ['%gcc']
- [^mpich, ^openmpi]
- [zlib, libelf, hdf5+mpi]
- [^mvapich2@2.2, ^openmpi@3.1.0]
spack:
specs:
- hdf5@1.10.2+mpi ^mpich%gcc
- hdf5@1.10.2+mpi ^openmpi%gcc
- hdf5@1.12.1+mpi %gcc ^mpich
- hdf5@1.12.1+mpi %gcc ^openmpi
- zlib
- libelf
- hdf5+mpi ^mvapich2@2.2
- hdf5+mpi ^openmpi@3.1.0
Notice how the first matrix applies the compiler constraints to the
mpi dependencies, whereas the second matrix applies the compiler
constraints directly to the root hdf5 node. This gives users the full
breadth of expressiveness of the spec syntax through the matrix
interface.
This allows one to create toolchains out of combinations of
constraints and apply them somewhat indiscriminately to packages,
without regard for the applicability of the constraint.
^^^^^^^^^^^^^^^^^^^^
Spec List References
@@ -841,7 +799,7 @@ directories.
select: [^mpi]
exclude: ['%pgi@18.5']
projections:
all: '{name}/{version}-{compiler.name}'
all: {name}/{version}-{compiler.name}
link: all
link_type: symlink
@@ -990,6 +948,9 @@ Variable Paths
PATH bin
MANPATH man, share/man
ACLOCAL_PATH share/aclocal
LD_LIBRARY_PATH lib, lib64
LIBRARY_PATH lib, lib64
CPATH include
PKG_CONFIG_PATH lib/pkgconfig, lib64/pkgconfig, share/pkgconfig
CMAKE_PREFIX_PATH .
=================== =========
@@ -1022,7 +983,7 @@ A typical workflow is as follows:
spack env create -d .
spack -e . add perl
spack -e . concretize
spack -e . env depfile -o Makefile
spack -e . env depfile > Makefile
make -j64
This generates a ``Makefile`` from a concretized environment in the
@@ -1035,6 +996,7 @@ load, even when packages are built in parallel.
By default the following phony convenience targets are available:
- ``make all``: installs the environment (default target);
- ``make fetch-all``: only fetch sources of all packages;
- ``make clean``: cleans files used by make, but does not uninstall packages.
.. tip::
@@ -1044,23 +1006,14 @@ By default the following phony convenience targets are available:
printed orderly per package install. To get synchronized output with colors,
use ``make -j<N> SPACK_COLOR=always --output-sync=recurse``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Specifying dependencies on generated ``make`` targets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
An interesting question is how to include generated ``Makefile``\s in your own
``Makefile``\s. This comes up when you want to install an environment that provides
executables required in a command for a make target of your own.
The example below shows how to accomplish this: the ``env`` target specifies
the generated ``spack/env`` target as a prerequisite, meaning that the environment
gets installed and is available for use in the ``env`` target.
The following advanced example shows how generated targets can be used in a
``Makefile``:
.. code:: Makefile
SPACK ?= spack
.PHONY: all clean env
.PHONY: all clean fetch env
all: env
@@ -1068,7 +1021,10 @@ gets installed and is available for use in the ``env`` target.
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-prefix spack
$(SPACK) -e . env depfile -o $@ --make-target-prefix spack
fetch: spack/fetch
$(info Environment fetched!)
env: spack/env
$(info Environment installed!)
@@ -1080,10 +1036,11 @@ gets installed and is available for use in the ``env`` target.
include env.mk
endif
This works as follows: when ``make`` is invoked, it first "remakes" the missing
include ``env.mk`` as there is a target for it. This triggers concretization of
the environment and makes spack output ``env.mk``. At that point the
generated target ``spack/env`` becomes available through ``include env.mk``.
When ``make`` is invoked, it first "remakes" the missing include ``env.mk``
from its rule, which triggers concretization. When done, the generated targets
``spack/fetch`` and ``spack/env`` are available. In the above
example, the ``env`` target uses the latter as a prerequisite, meaning
that it can make use of the installed packages in its commands.
As it is typically undesirable to remake ``env.mk`` as part of ``make clean``,
the include is conditional.
@@ -1091,79 +1048,7 @@ the include is conditional.
.. note::
When including generated ``Makefile``\s, it is important to use
the ``--make-prefix`` flag and use the non-phony target
``<prefix>/env`` as prerequisite, instead of the phony target
``<prefix>/all``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Building a subset of the environment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The generated ``Makefile``\s contain install targets for each spec, identified
by ``<name>-<version>-<hash>``. This allows you to install only a subset of the
packages in the environment. When packages are unique in the environment, it's
enough to know the name and let tab-completion fill out the version and hash.
The following phony targets are available: ``install/<spec>`` to install the
spec with its dependencies, and ``install-deps/<spec>`` to *only* install
its dependencies. This can be useful when certain flags should only apply to
dependencies. Below we show a use case where a spec is installed with verbose
output (``spack install --verbose``) while its dependencies are installed silently:
.. code:: console
$ spack env depfile -o Makefile
# Install dependencies in parallel, only show a log on error.
$ make -j16 install-deps/python-3.11.0-<hash> SPACK_INSTALL_FLAGS=--show-log-on-error
# Install the root spec with verbose output.
$ make -j16 install/python-3.11.0-<hash> SPACK_INSTALL_FLAGS=--verbose
^^^^^^^^^^^^^^^^^^^^^^^^^
Adding post-install hooks
^^^^^^^^^^^^^^^^^^^^^^^^^
Another advanced use-case of generated ``Makefile``\s is running a post-install
command for each package. These "hooks" could be anything from printing a
post-install message, running tests, or pushing just-built binaries to a buildcache.
This can be accomplished through the generated ``[<prefix>/]SPACK_PACKAGE_IDS``
variable. Assuming we have an active and concrete environment, we generate the
associated ``Makefile`` with a prefix ``example``:
.. code:: console
$ spack env depfile -o env.mk --make-prefix example
And we now include it in a different ``Makefile``, in which we create a target
``example/push/%`` with ``%`` referring to a package identifier. This target
depends on the particular package installation. In this target we automatically
have the target-specific ``HASH`` and ``SPEC`` variables at our disposal. They
are respectively the spec hash (excluding leading ``/``), and a human-readable spec.
Finally, we have an entrypoint target ``push`` that will update the buildcache
index once every package is pushed. Note how this target uses the generated
``example/SPACK_PACKAGE_IDS`` variable to define its prerequisites.
.. code:: Makefile
SPACK ?= spack
BUILDCACHE_DIR = $(CURDIR)/tarballs
.PHONY: all
all: push
include env.mk
example/push/%: example/install/%
@mkdir -p $(dir $@)
$(info About to push $(SPEC) to a buildcache)
$(SPACK) -e . buildcache create --allow-root --only=package --directory $(BUILDCACHE_DIR) /$(HASH)
@touch $@
push: $(addprefix example/push/,$(example/SPACK_PACKAGE_IDS))
$(info Updating the buildcache index)
$(SPACK) -e . buildcache update-index --directory $(BUILDCACHE_DIR)
$(info Done!)
@touch $@
the ``--make-target-prefix`` flag and use the non-phony targets
``<target-prefix>/env`` and ``<target-prefix>/fetch`` as
prerequisites, instead of the phony targets ``<target-prefix>/all``
and ``<target-prefix>/fetch-all`` respectively.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -98,42 +98,40 @@ For example, this command:
.. code-block:: console
$ spack create https://ftp.osuosl.org/pub/blfs/conglomeration/libelf/libelf-0.8.13.tar.gz
$ spack create http://www.mr511.de/software/libelf-0.8.13.tar.gz
creates a simple python file:
.. code-block:: python
from spack.package import *
from spack import *
class Libelf(AutotoolsPackage):
class Libelf(Package):
"""FIXME: Put a proper description of your package here."""
# FIXME: Add a proper url for your package's homepage here.
homepage = "https://www.example.com"
url = "https://ftp.osuosl.org/pub/blfs/conglomeration/libelf/libelf-0.8.13.tar.gz"
homepage = "http://www.example.com"
url = "http://www.mr511.de/software/libelf-0.8.13.tar.gz"
# FIXME: Add a list of GitHub accounts to
# notify when the package is updated.
# maintainers("github_user1", "github_user2")
version("0.8.13", sha256="591a9b4ec81c1f2042a97aa60564e0cb79d041c52faa7416acb38bc95bd2c76d")
version('0.8.13', '4136d7b4c04df68b686570afa26988ac')
# FIXME: Add dependencies if required.
# depends_on("foo")
# depends_on('foo')
def configure_args(self):
# FIXME: Add arguments other than --prefix
# FIXME: If not needed delete this function
args = []
return args
def install(self, spec, prefix):
# FIXME: Modify the configure line to suit your build system here.
configure('--prefix={0}'.format(prefix))
# FIXME: Add logic to build and install here.
make()
make('install')
It doesn't take much python coding to get from there to a working
package:
.. literalinclude:: _spack_root/var/spack/repos/builtin/packages/libelf/package.py
:lines: 5-
:lines: 6-
Spack also provides wrapper functions around common commands like
``configure``, ``make``, and ``cmake`` to make writing packages

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -21,39 +21,10 @@ be present on the machine where Spack is run:
:header-rows: 1
These requirements can be easily installed on most modern Linux systems;
on macOS, the Command Line Tools package is required, and a full XCode suite
may be necessary for some packages such as Qt and apple-gl. Spack is designed
to run on HPC platforms like Cray. Not all packages should be expected
to work on all platforms.
A build matrix showing which packages are working on which systems is shown below.
.. tab-set::
.. tab-item:: Debian/Ubuntu
.. code-block:: console
apt update
apt install build-essential ca-certificates coreutils curl environment-modules gfortran git gpg lsb-release python3 python3-distutils python3-venv unzip zip
.. tab-item:: RHEL
.. code-block:: console
yum update -y
yum install -y epel-release
yum update -y
yum --enablerepo epel groupinstall -y "Development Tools"
yum --enablerepo epel install -y curl findutils gcc-c++ gcc gcc-gfortran git gnupg2 hostname iproute redhat-lsb-core make patch python3 python3-pip python3-setuptools unzip
python3 -m pip install boto3
.. tab-item:: macOS Brew
.. code-block:: console
brew update
brew install curl gcc git gnupg zip
on macOS, XCode is required. Spack is designed to run on HPC
platforms like Cray. Not all packages should be expected
to work on all platforms. A build matrix showing which packages are
working on which systems is planned but not yet available.
------------
Installation
@@ -125,41 +96,88 @@ Spack provides two ways of bootstrapping ``clingo``: from pre-built binaries
(default), or from sources. The fastest way to get started is to bootstrap from
pre-built binaries.
The first time you concretize a spec, Spack will bootstrap automatically:
.. note::
When bootstrapping from pre-built binaries, Spack currently requires
``patchelf`` on Linux and ``otool`` on macOS. If ``patchelf`` is not in the
``PATH``, Spack will build it from sources, and a C++ compiler is required.
The first time you concretize a spec, Spack will bootstrap in the background:
.. code-block:: console
$ spack spec zlib
==> Bootstrapping clingo from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.4/build_cache/linux-centos7-x86_64-gcc-10.2.1-clingo-bootstrap-spack-ba5ijauisd3uuixtmactc36vps7yfsrl.spec.json
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.4/build_cache/linux-centos7-x86_64/gcc-10.2.1/clingo-bootstrap-spack/linux-centos7-x86_64-gcc-10.2.1-clingo-bootstrap-spack-ba5ijauisd3uuixtmactc36vps7yfsrl.spack
==> Installing "clingo-bootstrap@spack%gcc@10.2.1~docs~ipo+python+static_libstdcpp build_type=Release arch=linux-centos7-x86_64" from a buildcache
==> Bootstrapping patchelf from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.4/build_cache/linux-centos7-x86_64-gcc-10.2.1-patchelf-0.16.1-p72zyan5wrzuabtmzq7isa5mzyh6ahdp.spec.json
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.4/build_cache/linux-centos7-x86_64/gcc-10.2.1/patchelf-0.16.1/linux-centos7-x86_64-gcc-10.2.1-patchelf-0.16.1-p72zyan5wrzuabtmzq7isa5mzyh6ahdp.spack
==> Installing "patchelf@0.16.1%gcc@10.2.1 ldflags="-static-libstdc++ -static-libgcc" build_system=autotools arch=linux-centos7-x86_64" from a buildcache
$ time spack spec zlib
Input spec
--------------------------------
zlib
Concretized
--------------------------------
zlib@1.2.13%gcc@9.4.0+optimize+pic+shared build_system=makefile arch=linux-ubuntu20.04-icelake
zlib@1.2.11%gcc@7.5.0+optimize+pic+shared arch=linux-ubuntu18.04-zen
If for security concerns you cannot bootstrap ``clingo`` from pre-built
binaries, you have to disable fetching the binaries we generated with Github Actions.
real 0m20.023s
user 0m18.351s
sys 0m0.784s
After this command you'll see that ``clingo`` has been installed for Spack's own use:
.. code-block:: console
$ spack bootstrap disable github-actions-v0.4
==> "github-actions-v0.4" is now disabled and will not be used for bootstrapping
$ spack bootstrap disable github-actions-v0.3
==> "github-actions-v0.3" is now disabled and will not be used for bootstrapping
$ spack find -b
==> Showing internal bootstrap store at "/root/.spack/bootstrap/store"
==> 3 installed packages
-- linux-rhel5-x86_64 / gcc@9.3.0 -------------------------------
clingo-bootstrap@spack python@3.6
-- linux-ubuntu18.04-zen / gcc@7.5.0 ----------------------------
patchelf@0.13
Subsequent calls to the concretizer will then be much faster:
.. code-block:: console
$ time spack spec zlib
[ ... ]
real 0m0.490s
user 0m0.431s
sys 0m0.041s
If for security concerns you cannot bootstrap ``clingo`` from pre-built
binaries, you have to mark this bootstrapping method as untrusted. This makes
Spack fall back to bootstrapping from sources:
.. code-block:: console
$ spack bootstrap untrust github-actions-v0.2
==> "github-actions-v0.2" is now untrusted and will not be used for bootstrapping
You can verify that the new settings are effective with:
.. command-output:: spack bootstrap list
.. code-block:: console
$ spack bootstrap list
Name: github-actions-v0.2 UNTRUSTED
Type: buildcache
Info:
url: https://mirror.spack.io/bootstrap/github-actions/v0.2
homepage: https://github.com/spack/spack-bootstrap-mirrors
releases: https://github.com/spack/spack-bootstrap-mirrors/releases
Description:
Buildcache generated from a public workflow using Github Actions.
The sha256 checksum of binaries is checked before installation.
[ ... ]
Name: spack-install TRUSTED
Type: install
Description:
Specs built from sources by Spack. May take a long time.
.. note::
@@ -189,7 +207,9 @@ under the ``${HOME}/.spack`` directory. The software installed there can be quer
.. code-block:: console
$ spack -b find
$ spack find --bootstrap
==> Showing internal bootstrap store at "/home/spack/.spack/bootstrap/store"
==> 3 installed packages
-- linux-ubuntu18.04-x86_64 / gcc@10.1.0 ------------------------
clingo-bootstrap@spack python@3.6.9 re2c@1.2.1
@@ -198,7 +218,7 @@ In case it's needed the bootstrap store can also be cleaned with:
.. code-block:: console
$ spack clean -b
==> Removing bootstrapped software and configuration in "/home/spack/.spack/bootstrap"
==> Removing software in "/home/spack/.spack/bootstrap/store"
^^^^^^^^^^^^^^^^^^
Check Installation
@@ -1700,15 +1720,27 @@ If in the previous step, you did not have CMake or Ninja installed, running the
Windows Compatible Packages
"""""""""""""""""""""""""""
Not all spack packages currently have Windows support. Some are inherently incompatible with the
platform, and others simply have yet to be ported. To view the current set of packages with Windows
support, the list command should be used via `spack list -t windows`. If there's a package you'd like
to install on Windows but is not in that list, feel free to reach out to request the port or contribute
the port yourself.
Many Spack packages are not currently compatible with Windows, due to Unix
dependencies or incompatible build tools like autoconf. Here are several
packages known to work on Windows:
* abseil-cpp
* clingo
* cpuinfo
* cmake
* glm
* nasm
* netlib-lapack (requires Intel Fortran)
* ninja
* openssl
* perl
* python
* ruby
* wrf
* zlib
.. note::
This is by no means a comprehensive list, some packages may have ports that were not tagged
while others may just work out of the box on Windows and have not been tagged as such.
This is by no means a comprehensive list
^^^^^^^^^^^^^^
For developers
@@ -1720,4 +1752,3 @@ Instructions for creating the installer are at
https://github.com/spack/spack/blob/develop/lib/spack/spack/cmd/installer/README.md
Alternatively a pre-built copy of the Windows installer is available as an artifact of Spack's Windows CI
available at each run of the CI on develop or any PR.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 658 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 449 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -67,6 +67,7 @@ or refer to the full manual below.
build_settings
environments
containers
monitoring
mirrors
module_file_support
repositories
@@ -77,6 +78,12 @@ or refer to the full manual below.
extensions
pipelines
.. toctree::
:maxdepth: 2
:caption: Research
analyze
.. toctree::
:maxdepth: 2
:caption: Contributing

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -77,7 +77,7 @@ installation of a package.
Spack only generates modulefiles when a package is installed. If
you attempt to install a package and it is already installed, Spack
will not regenerate modulefiles for the package. This may lead to
will not regenerate modulefiles for the package. This may to
inconsistent modulefiles if the Spack module configuration has
changed since the package was installed, either by editing a file
or changing scopes or environments.
@@ -113,8 +113,6 @@ from language interpreters into their extensions. The latter two instead permit
fine tune the filesystem layout, content and creation of module files to meet
site specific conventions.
.. _overide-api-calls-in-package-py:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Override API calls in ``package.py``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -136,7 +134,7 @@ The second method:
pass
can instead inject run-time environment modifications in the module files of packages
that depend on it. In both cases you need to fill ``env`` with the desired
that depend on it. In both cases you need to fill ``run_env`` with the desired
list of environment modifications.
.. admonition:: The ``r`` package and callback APIs
@@ -310,7 +308,7 @@ the variable ``FOOBAR`` will be unset.
spec constraints are instead evaluated top to bottom.
""""""""""""""""""""""""""""""""""""""""""""
Exclude or include specific module files
Blacklist or whitelist specific module files
""""""""""""""""""""""""""""""""""""""""""""
You can use anonymous specs also to prevent module files from being written or
@@ -324,8 +322,8 @@ your system. If you write a configuration file like:
modules:
default:
tcl:
include: ['gcc', 'llvm'] # include will have precedence over exclude
exclude: ['%gcc@4.4.7'] # Assuming gcc@4.4.7 is the system compiler
whitelist: ['gcc', 'llvm'] # Whitelist will have precedence over blacklist
blacklist: ['%gcc@4.4.7'] # Assuming gcc@4.4.7 is the system compiler
you will prevent the generation of module files for any package that
is compiled with ``gcc@4.4.7``, with the only exception of any ``gcc``
@@ -492,7 +490,7 @@ satisfies a default, Spack will generate the module file in the
appropriate path, and will generate a default symlink to the module
file as well.
.. warning::
.. warning::
If Spack is configured to generate multiple default packages in the
same directory, the last modulefile to be generated will be the
default module.
@@ -520,33 +518,18 @@ inspections and customize them per-module-set.
prefix_inspections:
bin:
- PATH
man:
- MANPATH
lib:
- LIBRARY_PATH
'':
- CMAKE_PREFIX_PATH
Prefix inspections are only applied if the relative path inside the
installation prefix exists. In this case, for a Spack package ``foo``
installed to ``/spack/prefix/foo``, if ``foo`` installs executables to
``bin`` but no manpages in ``man``, the generated module file for
``bin`` but no libraries in ``lib``, the generated module file for
``foo`` would update ``PATH`` to contain ``/spack/prefix/foo/bin`` and
``CMAKE_PREFIX_PATH`` to contain ``/spack/prefix/foo``, but would not
update ``MANPATH``.
The default list of environment variables in this config section
inludes ``PATH``, ``MANPATH``, ``ACLOCAL_PATH``, ``PKG_CONFIG_PATH``
and ``CMAKE_PREFIX_PATH``, as well as ``DYLD_FALLBACK_LIBRARY_PATH``
on macOS. On Linux however, the corresponding ``LD_LIBRARY_PATH``
variable is *not* set, because it affects the behavior of
system executables too.
.. note::
In general, the ``LD_LIBRARY_PATH`` variable is not required
when using packages built with Spack, thanks to the use of RPATH.
Some packages may still need the variable, which is best handled
on a per-package basis instead of globally, as explained in
:ref:`overide-api-calls-in-package-py`.
update ``LIBRARY_PATH``.
There is a special case for prefix inspections relative to environment
views. If all of the following conditions hold for a module set
@@ -606,7 +589,7 @@ Filter out environment modifications
Modifications to certain environment variables in module files are there by
default, for instance because they are generated by prefix inspections.
If you want to prevent modifications to some environment variables, you can
do so by using the ``exclude_env_vars``:
do so by using the environment blacklist:
.. code-block:: yaml
@@ -616,7 +599,7 @@ do so by using the ``exclude_env_vars``:
all:
filter:
# Exclude changes to any of these variables
exclude_env_vars: ['CPATH', 'LIBRARY_PATH']
environment_blacklist: ['CPATH', 'LIBRARY_PATH']
The configuration above will generate module files that will not contain
modifications to either ``CPATH`` or ``LIBRARY_PATH``.

View File

@@ -0,0 +1,265 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _monitoring:
==========
Monitoring
==========
You can use a `spack monitor <https://github.com/spack/spack-monitor>`_ "Spackmon"
server to store a database of your packages, builds, and associated metadata
for provenance, research, or some other kind of development. You should
follow the instructions in the `spack monitor documentation <https://spack-monitor.readthedocs.org>`_
to first create a server along with a username and token for yourself.
You can then use this guide to interact with the server.
-------------------
Analysis Monitoring
-------------------
To read about how to monitor an analysis (meaning you want to send analysis results
to a server) see :ref:`analyze_monitoring`.
---------------------
Monitoring An Install
---------------------
Since an install is typically when you build packages, we logically want
to tell spack to monitor during this step. Let's start with an example
where we want to monitor the install of hdf5. Unless you have disabled authentication
for the server, we first want to export our spack monitor token and username to the environment:
.. code-block:: console
$ export SPACKMON_TOKEN=50445263afd8f67e59bd79bff597836ee6c05438
$ export SPACKMON_USER=spacky
By default, the host for your server is expected to be at ``http://127.0.0.1``
with a prefix of ``ms1``, and if this is the case, you can simply add the
``--monitor`` flag to the install command:
.. code-block:: console
$ spack install --monitor hdf5
If you need to customize the host or the prefix, you can do that as well:
.. code-block:: console
$ spack install --monitor --monitor-prefix monitor --monitor-host https://monitor-service.io hdf5
As a precaution, we cut out early in the spack client if you have not provided
authentication credentials. For example, if you run the command above without
exporting your username or token, you'll see:
.. code-block:: console
==> Error: You are required to export SPACKMON_TOKEN and SPACKMON_USER
This extra check is to ensure that we don't start any builds,
and then discover that you forgot to export your token. However, if
your monitoring server has authentication disabled, you can tell this to
the client to skip this step:
.. code-block:: console
$ spack install --monitor --monitor-disable-auth hdf5
If the service is not running, you'll cleanly exit early - the install will
not continue if you've asked it to monitor and there is no service.
For example, here is what you'll see if the monitoring service is not running:
.. code-block:: console
[Errno 111] Connection refused
If you want to continue builds (and stop monitoring) you can set the ``--monitor-keep-going``
flag.
.. code-block:: console
$ spack install --monitor --monitor-keep-going hdf5
This could mean that if a request fails, you only have partial or no data
added to your monitoring database. This setting will not be applied to the
first request to check if the server is running, but to subsequent requests.
If you don't have a monitor server running and you want to build, simply
don't provide the ``--monitor`` flag! Finally, if you want to provide one or
more tags to your build, you can do:
.. code-block:: console
# Add one tag, "pizza"
$ spack install --monitor --monitor-tags pizza hdf5
# Add two tags, "pizza" and "pasta"
$ spack install --monitor --monitor-tags pizza,pasta hdf5
----------------------------
Monitoring with Containerize
----------------------------
The same argument group is available to add to a containerize command.
^^^^^^
Docker
^^^^^^
To add monitoring to a Docker container recipe generation using the defaults,
and assuming a monitor server running on localhost, you would
start with a spack.yaml in your present working directory:
.. code-block:: yaml
spack:
specs:
- samtools
And then do:
.. code-block:: console
# preview first
spack containerize --monitor
# and then write to a Dockerfile
spack containerize --monitor > Dockerfile
The install command will be edited to include commands for enabling monitoring.
However, getting secrets into the container for your monitor server is something
that should be done carefully. Specifically you should:
- Never try to define secrets as ENV, ARG, or using ``--build-arg``
- Do not try to get the secret into the container via a "temporary" file that you remove (it in fact will still exist in a layer)
Instead, it's recommended to use buildkit `as explained here <https://pythonspeed.com/articles/docker-build-secrets/>`_.
You'll need to again export environment variables for your spack monitor server:
.. code-block:: console
$ export SPACKMON_TOKEN=50445263afd8f67e59bd79bff597836ee6c05438
$ export SPACKMON_USER=spacky
And then use buildkit along with your build and identifying the name of the secret:
.. code-block:: console
$ DOCKER_BUILDKIT=1 docker build --secret id=st,env=SPACKMON_TOKEN --secret id=su,env=SPACKMON_USER -t spack/container .
The secrets are expected to come from your environment, and then will be temporarily mounted and available
at ``/run/secrets/<name>``. If you forget to supply them (and authentication is required) the build
will fail. If you need to build on your host (and interact with a spack monitor at localhost) you'll
need to tell Docker to use the host network:
.. code-block:: console
$ DOCKER_BUILDKIT=1 docker build --network="host" --secret id=st,env=SPACKMON_TOKEN --secret id=su,env=SPACKMON_USER -t spack/container .
^^^^^^^^^^^
Singularity
^^^^^^^^^^^
To add monitoring to a Singularity container build, the spack.yaml needs to
be modified slightly to specify wanting a different format:
.. code-block:: yaml
spack:
specs:
- samtools
container:
format: singularity
Again, generate the recipe:
.. code-block:: console
# preview first
$ spack containerize --monitor
# then write to a Singularity recipe
$ spack containerize --monitor > Singularity
Singularity doesn't have a direct way to define secrets at build time, so we have
to do a bit of a manual command to add a file, source secrets in it, and remove it.
Since Singularity doesn't have layers like Docker, deleting a file will truly
remove it from the container and history. So let's say we have this file,
``secrets.sh``:
.. code-block:: console
# secrets.sh
export SPACKMON_USER=spack
export SPACKMON_TOKEN=50445263afd8f67e59bd79bff597836ee6c05438
We would then generate the Singularity recipe, and add a files section,
a source of that file at the start of ``%post``, and **importantly**
a removal of the final at the end of that same section.
.. code-block::
Bootstrap: docker
From: spack/ubuntu-bionic:latest
Stage: build
%files
secrets.sh /opt/secrets.sh
%post
. /opt/secrets.sh
# spack install commands are here
...
# Don't forget to remove here!
rm /opt/secrets.sh
You can then build the container as your normally would.
.. code-block:: console
$ sudo singularity build container.sif Singularity
------------------
Monitoring Offline
------------------
In the case that you want to save monitor results to your filesystem
and then upload them later (perhaps you are in an environment where you don't
have credentials or it isn't safe to use them) you can use the ``--monitor-save-local``
flag.
.. code-block:: console
$ spack install --monitor --monitor-save-local hdf5
This will save results in a subfolder, "monitor" in your designated spack
reports folder, which defaults to ``$HOME/.spack/reports/monitor``. When
you are ready to upload them to a spack monitor server:
.. code-block:: console
$ spack monitor upload ~/.spack/reports/monitor
You can choose the root directory of results as shown above, or a specific
subdirectory. The command accepts other arguments to specify configuration
for the monitor.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

File diff suppressed because it is too large Load Diff

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _pipelines:
============
CI Pipelines
============
=========
Pipelines
=========
Spack provides commands that support generating and running automated build
pipelines designed for Gitlab CI. At the highest level it works like this:
@@ -168,7 +168,7 @@ which specs are up to date and which need to be rebuilt (it's a good idea for ot
reasons as well, but those are out of scope for this discussion). In this case we
have disabled it (using ``rebuild-index: False``) because the index would only be
generated in the artifacts mirror anyway, and consequently would not be available
during subsequent pipeline runs.
during subesequent pipeline runs.
.. note::
With the addition of reproducible builds (#22887) a previously working
@@ -267,64 +267,24 @@ generated by jobs in the pipeline.
``spack ci rebuild``
^^^^^^^^^^^^^^^^^^^^^
The purpose of ``spack ci rebuild`` is straightforward: take its assigned
spec and ensure a binary of a successful build exists on the target mirror.
If the binary does not already exist, it is built from source and pushed
to the mirror. The associated stand-alone tests are optionally run against
the new build. Additionally, files for reproducing the build outside of the
CI environment are created to facilitate debugging.
The purpose of the ``spack ci rebuild`` is straightforward: take its assigned
spec job, check whether the target mirror already has a binary for that spec,
and if not, build the spec from source and push the binary to the mirror. To
accomplish this in a reproducible way, the sub-command prepares a ``spack install``
command line to build a single spec in the DAG, saves that command in a
shell script, ``install.sh``, in the current working directory, and then runs
it to install the spec. The shell script is also exported as an artifact to
aid in reproducing the build outside of the CI environment.
If a binary for the spec does not exist on the target mirror, an install
shell script, ``install.sh``, is created and saved in the current working
directory. The script is run in a job to install the spec from source. The
resulting binary package is pushed to the mirror. If ``cdash`` is configured
for the environment, then the build results will be uploaded to the site.
If it was necessary to install the spec from source, ``spack ci rebuild`` will
also subsequently create a binary package for the spec and try to push it to the
mirror.
Environment variables and values in the ``gitlab-ci`` section of the
``spack.yaml`` environment file provide inputs to this process. The
two main sources of environment variables are variables written into
``.gitlab-ci.yml`` by ``spack ci generate`` and the GitLab CI runtime.
Several key CI pipeline variables are described in
:ref:`ci_environment_variables`.
If the ``--tests`` option is provided, stand-alone tests are performed but
only if the build was successful *and* the package does not appear in the
list of ``broken-tests-packages``. A shell script, ``test.sh``, is created
and run to perform the tests. On completion, test logs are exported as job
artifacts for review and to facilitate debugging. If `cdash` is configured,
test results are also uploaded to the site.
A snippet from an example ``spack.yaml`` file illustrating use of this
option *and* specification of a package with broken tests is given below.
The inclusion of a spec for building ``gptune`` is not shown here. Note
that ``--tests`` is passed to ``spack ci rebuild`` as part of the
``gitlab-ci`` script.
.. code-block:: yaml
gitlab-ci:
script:
- . "./share/spack/setup-env.sh"
- spack --version
- cd ${SPACK_CONCRETE_ENV_DIR}
- spack env activate --without-view .
- spack config add "config:install_tree:projections:${SPACK_JOB_SPEC_PKG_NAME}:'morepadding/{architecture}/{compiler.name}-{compiler.version}/{name}-{version}-{hash}'"
- mkdir -p ${SPACK_ARTIFACTS_ROOT}/user_data
- if [[ -r /mnt/key/intermediate_ci_signing_key.gpg ]]; then spack gpg trust /mnt/key/intermediate_ci_signing_key.gpg; fi
- if [[ -r /mnt/key/spack_public_key.gpg ]]; then spack gpg trust /mnt/key/spack_public_key.gpg; fi
- spack -d ci rebuild --tests > >(tee ${SPACK_ARTIFACTS_ROOT}/user_data/pipeline_out.txt) 2> >(tee ${SPACK_ARTIFACTS_ROOT}/user_data/pipeline_err.txt >&2)
broken-tests-packages:
- gptune
In this case, even if ``gptune`` is successfully built from source, the
pipeline will *not* run its stand-alone tests since the package is listed
under ``broken-tests-packages``.
Spack's cloud pipelines provide actual, up-to-date examples of the CI/CD
configuration and environment files used by Spack. You can find them
under Spack's `stacks
<https://github.com/spack/spack/tree/develop/share/spack/gitlab/cloud_pipelines/stacks>`_ repository directory.
The ``spack ci rebuild`` sub-command mainly expects its "input" to come either
from environment variables or from the ``gitlab-ci`` section of the ``spack.yaml``
environment file. There are two main sources of the environment variables, some
are written into ``.gitlab-ci.yml`` by ``spack ci generate``, and some are
provided by the GitLab CI runtime.
.. _cmd-spack-ci-rebuild-index:
@@ -487,7 +447,7 @@ Note about "no-op" jobs
^^^^^^^^^^^^^^^^^^^^^^^
If no specs in an environment need to be rebuilt during a given pipeline run
(meaning all are already up to date on the mirror), a single successful job
(meaning all are already up to date on the mirror), a single succesful job
(a NO-OP) is still generated to avoid an empty pipeline (which GitLab
considers to be an error). An optional ``service-job-attributes`` section
can be added to your ``spack.yaml`` where you can provide ``tags`` and
@@ -765,7 +725,7 @@ above with ``git checkout ${SPACK_CHECKOUT_VERSION}``.
On the other hand, if you're pointing to a spack repository and branch under your
control, there may be no benefit in using the captured ``SPACK_CHECKOUT_VERSION``,
and you can instead just clone using the variables you define (``SPACK_REPO``
and ``SPACK_REF`` in the example above).
and ``SPACK_REF`` in the example aboves).
.. _custom_workflow:

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -184,48 +184,13 @@ simply run the following commands:
.. code-block:: console
$ spack env activate myenv
$ spack concretize --fresh --force
$ spack concretize --force
$ spack install
The ``--fresh`` flag tells Spack to use the latest version of every package
where possible instead of trying to optimize for reuse of existing installed
packages.
The ``--force`` flag in addition tells Spack to overwrite its previous
concretization decisions, allowing you to choose a new version of Python.
If any of the new packages like Bash are already installed, ``spack install``
won't re-install them, it will keep the symlinks in place.
-----------------------------------
Updating & Cleaning Up Old Packages
-----------------------------------
If you're looking to mimic the behavior of Homebrew, you may also want to
clean up out-of-date packages from your environment after an upgrade. To
upgrade your entire software stack within an environment and clean up old
package versions, simply run the following commands:
.. code-block:: console
$ spack env activate myenv
$ spack mark -i --all
$ spack concretize --fresh --force
$ spack install
$ spack gc
Running ``spack mark -i --all`` tells Spack to mark all of the existing
packages within an environment as "implicitly" installed. This tells
spack's garbage collection system that these packages should be cleaned up.
Don't worry however, this will not remove your entire environment.
Running ``spack install`` will reexamine your spack environment after
a fresh concretization and will re-mark any packages that should remain
installed as "explicitly" installed.
**Note:** if you use multiple spack environments you should re-run ``spack install``
in each of your environments prior to running ``spack gc`` to prevent spack
from uninstalling any shared packages that are no longer required by the
environment you just upgraded.
The ``--force`` flag tells Spack to overwrite its previous concretization
decisions, allowing you to choose a new version of Python. If any of the new
packages like Bash are already installed, ``spack install`` won't re-install
them, it will keep the symlinks in place.
--------------
Uninstallation

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)

View File

@@ -1,12 +1,10 @@
# These dependencies should be installed using pip in order
# to build the documentation.
sphinx>=3.4,!=4.1.2,!=5.1.0
sphinx>=3.4,!=4.1.2
sphinxcontrib-programoutput
sphinx-design
sphinx-rtd-theme
python-levenshtein
# Restrict to docutils <0.17 to workaround a list rendering issue in sphinx.
# https://stackoverflow.com/questions/67542699
docutils <0.17
pygments <2.13

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -18,10 +18,7 @@ spack:
- "py-sphinx@3.4:4.1.1,4.1.3:"
- py-sphinxcontrib-programoutput
- py-docutils@:0.16
- py-sphinx-design
- py-sphinx-rtd-theme
- py-pygments@:2.12
# VCS
- git
- mercurial

View File

@@ -1,5 +1,5 @@
Name, Supported Versions, Notes, Requirement Reason
Python, 3.6--3.11, , Interpreter for Spack
Python, 2.7/3.5-3.10, , Interpreter for Spack
C/C++ Compilers, , , Building software
make, , , Build software
patch, , , Build software
@@ -7,13 +7,12 @@ bash, , , Compiler wrappers
tar, , , Extract/create archives
gzip, , , Compress/Decompress archives
unzip, , , Compress/Decompress archives
bzip2, , , Compress/Decompress archives
bzip, , , Compress/Decompress archives
xz, , , Compress/Decompress archives
zstd, , Optional, Compress/Decompress archives
file, , , Create/Use Buildcaches
lsb-release, , , Linux: identify operating system version
gnupg2, , , Sign/Verify Buildcaches
git, , , Manage Software Repositories
svn, , Optional, Manage Software Repositories
hg, , Optional, Manage Software Repositories
Python header files, , Optional (e.g. ``python3-dev`` on Debian), Bootstrapping from sources
Python header files, , Optional (e.g. ``python3-dev`` on Debian), Bootstrapping from sources
1 Name Supported Versions Notes Requirement Reason
2 Python 3.6--3.11 2.7/3.5-3.10 Interpreter for Spack
3 C/C++ Compilers Building software
4 make Build software
5 patch Build software
7 tar Extract/create archives
8 gzip Compress/Decompress archives
9 unzip Compress/Decompress archives
10 bzip2 bzip Compress/Decompress archives
11 xz Compress/Decompress archives
12 zstd Optional Compress/Decompress archives
13 file Create/Use Buildcaches
lsb-release Linux: identify operating system version
14 gnupg2 Sign/Verify Buildcaches
15 git Manage Software Repositories
16 svn Optional Manage Software Repositories
17 hg Optional Manage Software Repositories
18 Python header files Optional (e.g. ``python3-dev`` on Debian) Bootstrapping from sources

51
lib/spack/env/cc vendored
View File

@@ -1,7 +1,7 @@
#!/bin/sh -f
# shellcheck disable=SC2034 # evals in this script fool shellcheck
#
# Copyright 2013-2023 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -241,28 +241,28 @@ case "$command" in
mode=cpp
debug_flags="-g"
;;
cc|c89|c99|gcc|clang|armclang|icc|icx|pgcc|nvc|xlc|xlc_r|fcc|amdclang|cl.exe|craycc)
cc|c89|c99|gcc|clang|armclang|icc|icx|pgcc|nvc|xlc|xlc_r|fcc|amdclang|cl.exe)
command="$SPACK_CC"
language="C"
comp="CC"
lang_flags=C
debug_flags="-g"
;;
c++|CC|g++|clang++|armclang++|icpc|icpx|dpcpp|pgc++|nvc++|xlc++|xlc++_r|FCC|amdclang++|crayCC)
c++|CC|g++|clang++|armclang++|icpc|icpx|dpcpp|pgc++|nvc++|xlc++|xlc++_r|FCC|amdclang++)
command="$SPACK_CXX"
language="C++"
comp="CXX"
lang_flags=CXX
debug_flags="-g"
;;
ftn|f90|fc|f95|gfortran|flang|armflang|ifort|ifx|pgfortran|nvfortran|xlf90|xlf90_r|nagfor|frt|amdflang|crayftn)
ftn|f90|fc|f95|gfortran|flang|armflang|ifort|ifx|pgfortran|nvfortran|xlf90|xlf90_r|nagfor|frt|amdflang)
command="$SPACK_FC"
language="Fortran 90"
comp="FC"
lang_flags=F
debug_flags="-g"
;;
f77|xlf|xlf_r|pgf77)
f77|xlf|xlf_r|pgf77|amdflang)
command="$SPACK_F77"
language="Fortran 77"
comp="F77"
@@ -440,47 +440,6 @@ while [ $# -ne 0 ]; do
continue
fi
if [ -n "${SPACK_COMPILER_FLAGS_KEEP}" ] ; then
# NOTE: the eval is required to allow `|` alternatives inside the variable
eval "\
case \"\$1\" in
$SPACK_COMPILER_FLAGS_KEEP)
append other_args_list \"\$1\"
shift
continue
;;
esac
"
fi
# the replace list is a space-separated list of pipe-separated pairs,
# the first in each pair is the original prefix to be matched, the
# second is the replacement prefix
if [ -n "${SPACK_COMPILER_FLAGS_REPLACE}" ] ; then
for rep in ${SPACK_COMPILER_FLAGS_REPLACE} ; do
before=${rep%|*}
after=${rep#*|}
eval "\
stripped=\"\${1##$before}\"
"
if [ "$stripped" = "$1" ] ; then
continue
fi
replaced="$after$stripped"
# it matched, remove it
shift
if [ -z "$replaced" ] ; then
# completely removed, continue OUTER loop
continue 2
fi
# re-build argument list with replacement
set -- "$replaced" "$@"
done
fi
case "$1" in
-isystem*)
arg="${1#-isystem}"

View File

@@ -1 +0,0 @@
../../cc

Some files were not shown because too many files have changed in this diff Show More