Compare commits

..

1 Commits

Author SHA1 Message Date
Gregory Becker
675a182f14 Ignore provider weights for runtimes
Runtimes are inherently tied to the associated compilers,
and choices among runtimes should be delegated to the compiler
prioritization criteria not the provider weights. This fixes
a bug causing concretization to mix compilers more than necessary
to avoid using the runtime associated with the compiler specified
for the root. E.g. `foo%oneapi` building dependencies with `%gcc`
to minimize edges on which `intel-oneapi-runtime` provides
`fortran-rt`.

Signed-off-by: Gregory Becker <becker33@llnl.gov>
2025-03-24 18:07:59 -07:00
1935 changed files with 19496 additions and 21022 deletions

View File

@@ -59,6 +59,7 @@ jobs:
- name: Package audits (without coverage)
if: ${{ runner.os == 'Windows' }}
run: |
. share/spack/setup-env.sh
spack -d audit packages
./share/spack/qa/validate_last_exit.ps1
spack -d audit configs

View File

@@ -9,7 +9,6 @@ on:
branches:
- develop
- releases/**
merge_group:
concurrency:
group: ci-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
@@ -26,17 +25,13 @@ jobs:
packages: ${{ steps.filter.outputs.packages }}
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
if: ${{ github.event_name == 'push' || github.event_name == 'merge_group' }}
if: ${{ github.event_name == 'push' }}
with:
fetch-depth: 0
# For pull requests it's not necessary to checkout the code
- uses: dorny/paths-filter@de90cc6fb38fc0963ad72b210f1f284cd68cea36
id: filter
with:
# For merge group events, compare against the target branch (main)
base: ${{ github.event_name == 'merge_group' && github.event.merge_group.base_ref || '' }}
# For merge group events, use the merge group head ref
ref: ${{ github.event_name == 'merge_group' && github.event.merge_group.head_sha || github.ref }}
# See https://github.com/dorny/paths-filter/issues/56 for the syntax used below
# Don't run if we only modified packages in the
# built-in repository or documentation
@@ -81,11 +76,10 @@ jobs:
prechecks:
needs: [ changes ]
uses: ./.github/workflows/prechecks.yml
uses: ./.github/workflows/valid-style.yml
secrets: inherit
with:
with_coverage: ${{ needs.changes.outputs.core }}
with_packages: ${{ needs.changes.outputs.packages }}
import-check:
needs: [ changes ]
@@ -99,7 +93,7 @@ jobs:
- name: Success
run: |
if [ "${{ needs.prechecks.result }}" == "failure" ] || [ "${{ needs.prechecks.result }}" == "canceled" ]; then
echo "Unit tests failed."
echo "Unit tests failed."
exit 1
else
exit 0
@@ -107,7 +101,6 @@ jobs:
coverage:
needs: [ unit-tests, prechecks ]
if: ${{ needs.changes.outputs.core }}
uses: ./.github/workflows/coverage.yml
secrets: inherit
@@ -120,10 +113,10 @@ jobs:
- name: Status summary
run: |
if [ "${{ needs.unit-tests.result }}" == "failure" ] || [ "${{ needs.unit-tests.result }}" == "canceled" ]; then
echo "Unit tests failed."
echo "Unit tests failed."
exit 1
elif [ "${{ needs.bootstrap.result }}" == "failure" ] || [ "${{ needs.bootstrap.result }}" == "canceled" ]; then
echo "Bootstrap tests failed."
echo "Bootstrap tests failed."
exit 1
else
exit 0

View File

@@ -1,8 +1,7 @@
black==25.1.0
clingo==5.8.0
flake8==7.2.0
clingo==5.7.1
flake8==7.1.2
isort==6.0.1
mypy==1.15.0
types-six==1.17.0.20250403
types-six==1.17.0.20250304
vermin==1.6.0
pylint==3.3.6

View File

@@ -19,6 +19,9 @@ jobs:
on_develop:
- ${{ github.ref == 'refs/heads/develop' }}
include:
- python-version: '3.6'
os: ubuntu-20.04
on_develop: ${{ github.ref == 'refs/heads/develop' }}
- python-version: '3.7'
os: ubuntu-22.04
on_develop: ${{ github.ref == 'refs/heads/develop' }}

View File

@@ -1,4 +1,4 @@
name: prechecks
name: style
on:
workflow_call:
@@ -6,9 +6,6 @@ on:
with_coverage:
required: true
type: string
with_packages:
required: true
type: string
concurrency:
group: style-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
@@ -25,56 +22,43 @@ jobs:
with:
python-version: '3.13'
cache: 'pip'
cache-dependency-path: '.github/workflows/requirements/style/requirements.txt'
- name: Install Python Packages
run: |
pip install --upgrade pip setuptools
pip install -r .github/workflows/requirements/style/requirements.txt
- name: vermin (Spack's Core)
run: |
vermin --backport importlib --backport argparse --violations --backport typing -t=3.6- -vvv lib/spack/spack/ lib/spack/llnl/ bin/
run: vermin --backport importlib --backport argparse --violations --backport typing -t=3.6- -vvv lib/spack/spack/ lib/spack/llnl/ bin/
- name: vermin (Repositories)
run: |
vermin --backport importlib --backport argparse --violations --backport typing -t=3.6- -vvv var/spack/repos
run: vermin --backport importlib --backport argparse --violations --backport typing -t=3.6- -vvv var/spack/repos
# Run style checks on the files that have been changed
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
with:
fetch-depth: 2
fetch-depth: 0
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b
with:
python-version: '3.13'
cache: 'pip'
cache-dependency-path: '.github/workflows/requirements/style/requirements.txt'
- name: Install Python packages
run: |
pip install --upgrade pip setuptools
pip install -r .github/workflows/requirements/style/requirements.txt
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/bin/setup_git.sh
- name: Run style tests
run: |
bin/spack style --base HEAD^1
bin/spack license verify
pylint -j $(nproc) --disable=all --enable=unspecified-encoding --ignore-paths=lib/spack/external lib
share/spack/qa/run-style-tests
audit:
uses: ./.github/workflows/audit.yaml
secrets: inherit
with:
with_coverage: ${{ inputs.with_coverage }}
python_version: '3.13'
verify-checksums:
if: ${{ inputs.with_packages == 'true' }}
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@a5ac7e51b41094c92402da3b24376905380afc29
with:
fetch-depth: 2
- name: Verify Added Checksums
run: |
bin/spack ci verify-versions HEAD^1 HEAD
# Check that spack can bootstrap the development environment on Python 3.6 - RHEL8
bootstrap-dev-rhel8:
runs-on: ubuntu-latest
@@ -102,3 +86,21 @@ jobs:
spack -d bootstrap now --dev
spack -d style -t black
spack unit-test -V
# Further style checks from pylint
pylint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
with:
fetch-depth: 0
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b
with:
python-version: '3.13'
cache: 'pip'
- name: Install Python packages
run: |
pip install --upgrade pip setuptools pylint
- name: Pylint (Spack Core)
run: |
pylint -j 4 --disable=all --enable=unspecified-encoding --ignore-paths=lib/spack/external lib

View File

@@ -19,7 +19,7 @@ config:
install_tree:
root: $spack/opt/spack
projections:
all: "{architecture.platform}-{architecture.target}/{name}-{version}-{hash}"
all: "{architecture}/{compiler.name}-{compiler.version}/{name}-{version}-{hash}"
# install_tree can include an optional padded length (int or boolean)
# default is False (do not pad)
# if padded_length is True, Spack will pad as close to the system max path

View File

@@ -15,11 +15,12 @@
# -------------------------------------------------------------------------
packages:
all:
compiler:
- apple-clang
- clang
- gcc
providers:
c: [apple-clang, llvm, gcc]
cxx: [apple-clang, llvm, gcc]
elf: [libelf]
fortran: [gcc]
fuse: [macfuse]
gl: [apple-gl]
glu: [apple-glu]
@@ -49,12 +50,3 @@ packages:
# although the version number used here isn't critical
- spec: apple-libuuid@1353.100.2
prefix: /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk
c:
prefer:
- apple-clang
cxx:
prefer:
- apple-clang
fortran:
prefer:
- gcc

View File

@@ -15,25 +15,25 @@
# -------------------------------------------------------------------------
packages:
all:
compiler: [gcc, clang, oneapi, xl, nag, fj, aocc]
providers:
awk: [gawk]
armci: [armcimpi]
blas: [openblas, amdblis]
c: [gcc, llvm, intel-oneapi-compilers]
cxx: [gcc, llvm, intel-oneapi-compilers]
c: [gcc]
cxx: [gcc]
D: [ldc]
daal: [intel-oneapi-daal]
elf: [elfutils]
fftw-api: [fftw, amdfftw]
flame: [libflame, amdlibflame]
fortran: [gcc, llvm, intel-oneapi-compilers]
fortran: [gcc]
fortran-rt: [gcc-runtime, intel-oneapi-runtime]
fuse: [libfuse]
gl: [glx, osmesa]
glu: [mesa-glu, openglu]
golang: [go, gcc]
go-or-gccgo-bootstrap: [go-bootstrap, gcc]
hip-lang: [llvm-amdgpu]
iconv: [libiconv]
ipp: [intel-oneapi-ipp]
java: [openjdk, jdk]

View File

@@ -15,11 +15,8 @@
# -------------------------------------------------------------------------
packages:
all:
compiler:
- msvc
providers:
c : [msvc]
cxx: [msvc]
mpi: [msmpi]
gl: [wgl]
mpi:
require:
- one_of: [msmpi]

View File

@@ -1291,61 +1291,55 @@ based on site policies.
Variants
^^^^^^^^
Variants are named options associated with a particular package and are
typically used to enable or disable certain features at build time. They
are optional, as each package must provide default values for each variant
it makes available.
The names of variants available for a particular package depend on
Variants are named options associated with a particular package. They are
optional, as each package must provide default values for each variant it
makes available. Variants can be specified using
a flexible parameter syntax ``name=<value>``. For example,
``spack install mercury debug=True`` will install mercury built with debug
flags. The names of particular variants available for a package depend on
what was provided by the package author. ``spack info <package>`` will
provide information on what build variants are available.
There are different types of variants:
For compatibility with earlier versions, variants which happen to be
boolean in nature can be specified by a syntax that represents turning
options on and off. For example, in the previous spec we could have
supplied ``mercury +debug`` with the same effect of enabling the debug
compile time option for the libelf package.
1. Boolean variants. Typically used to enable or disable a feature at
compile time. For example, a package might have a ``debug`` variant that
can be explicitly enabled with ``+debug`` and disabled with ``~debug``.
2. Single-valued variants. Often used to set defaults. For example, a package
might have a ``compression`` variant that determines the default
compression algorithm, which users could set to ``compression=gzip`` or
``compression=zstd``.
3. Multi-valued variants. A package might have a ``fabrics`` variant that
determines which network fabrics to support. Users could set this to
``fabrics=verbs,ofi`` to enable both InfiniBand verbs and OpenFabrics
interfaces. The values are separated by commas.
Depending on the package a variant may have any default value. For
``mercury`` here, ``debug`` is ``False`` by default, and we turned it on
with ``debug=True`` or ``+debug``. If a variant is ``True`` by default
you can turn it off by either adding ``-name`` or ``~name`` to the spec.
The meaning of ``fabrics=verbs,ofi`` is to enable *at least* the specified
fabrics, but other fabrics may be enabled as well. If the intent is to
enable *only* the specified fabrics, then the ``fabrics:=verbs,ofi``
syntax should be used with the ``:=`` operator.
There are two syntaxes here because, depending on context, ``~`` and
``-`` may mean different things. In most shells, the following will
result in the shell performing home directory substitution:
.. note::
.. code-block:: sh
In certain shells, the the ``~`` character is expanded to the home
directory. To avoid these issues, avoid whitespace between the package
name and the variant:
mpileaks ~debug # shell may try to substitute this!
mpileaks~debug # use this instead
.. code-block:: sh
If there is a user called ``debug``, the ``~`` will be incorrectly
expanded. In this situation, you would want to write ``libelf
-debug``. However, ``-`` can be ambiguous when included after a
package name without spaces:
mpileaks ~debug # shell may try to substitute this!
mpileaks~debug # use this instead
.. code-block:: sh
Alternatively, you can use the ``-`` character to disable a variant,
but be aware that this requires a space between the package name and
the variant:
mpileaks-debug # wrong!
mpileaks -debug # right
.. code-block:: sh
Spack allows the ``-`` character to be part of package names, so the
above will be interpreted as a request for the ``mpileaks-debug``
package, not a request for ``mpileaks`` built without ``debug``
options. In this scenario, you should write ``mpileaks~debug`` to
avoid ambiguity.
mpileaks-debug # wrong: refers to a package named "mpileaks-debug"
mpileaks -debug # right: refers to a package named mpileaks with debug disabled
As a last resort, ``debug=False`` can also be used to disable a boolean variant.
"""""""""""""""""""""""""""""""""""
Variant propagation to dependencies
"""""""""""""""""""""""""""""""""""
When spack normalizes specs, it prints them out with no spaces boolean
variants using the backwards compatibility syntax and uses only ``~``
for disabled boolean variants. The ``-`` and spaces on the command
line are provided for convenience and legibility.
Spack allows variants to propagate their value to the package's
dependency by using ``++``, ``--``, and ``~~`` for boolean variants.
@@ -1415,29 +1409,27 @@ that executables will run without the need to set ``LD_LIBRARY_PATH``.
.. code-block:: yaml
packages:
gcc:
externals:
- spec: gcc@4.9.3
prefix: /opt/gcc
extra_attributes:
compilers:
c: /opt/gcc/bin/gcc
cxx: /opt/gcc/bin/g++
fortran: /opt/gcc/bin/gfortran
environment:
unset:
- BAD_VARIABLE
set:
GOOD_VARIABLE_NUM: 1
GOOD_VARIABLE_STR: good
prepend_path:
PATH: /path/to/binutils
append_path:
LD_LIBRARY_PATH: /opt/gcc/lib
extra_rpaths:
- /path/to/some/compiler/runtime/directory
- /path/to/some/other/compiler/runtime/directory
compilers:
- compiler:
spec: gcc@4.9.3
paths:
cc: /opt/gcc/bin/gcc
c++: /opt/gcc/bin/g++
f77: /opt/gcc/bin/gfortran
fc: /opt/gcc/bin/gfortran
environment:
unset:
- BAD_VARIABLE
set:
GOOD_VARIABLE_NUM: 1
GOOD_VARIABLE_STR: good
prepend_path:
PATH: /path/to/binutils
append_path:
LD_LIBRARY_PATH: /opt/gcc/lib
extra_rpaths:
- /path/to/some/compiler/runtime/directory
- /path/to/some/other/compiler/runtime/directory
^^^^^^^^^^^^^^^^^^^^^^^

View File

@@ -63,6 +63,7 @@ on these ideas for each distinct build system that Spack supports:
build_systems/cudapackage
build_systems/custompackage
build_systems/inteloneapipackage
build_systems/intelpackage
build_systems/rocmpackage
build_systems/sourceforgepackage

View File

@@ -33,6 +33,9 @@ For more information on a specific package, do::
spack info --all <package-name>
Intel no longer releases new versions of Parallel Studio, which can be
used in Spack via the :ref:`intelpackage`. All of its components can
now be found in oneAPI.
Examples
========
@@ -47,8 +50,34 @@ Install the oneAPI compilers::
spack install intel-oneapi-compilers
Add the compilers to your ``compilers.yaml`` so spack can use them::
To build the ``patchelf`` Spack package with ``icx``, do::
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/bin
Verify that the compilers are available::
spack compiler list
Note that 2024 and later releases do not include ``icc``. Before 2024,
the package layout was different::
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin/intel64
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin
The ``intel-oneapi-compilers`` package includes 2 families of
compilers:
* ``intel``: ``icc``, ``icpc``, ``ifort``. Intel's *classic*
compilers. 2024 and later releases contain ``ifort``, but not
``icc`` and ``icpc``.
* ``oneapi``: ``icx``, ``icpx``, ``ifx``. Intel's new generation of
compilers based on LLVM.
To build the ``patchelf`` Spack package with ``icc``, do::
spack install patchelf%intel
To build with with ``icx``, do ::
spack install patchelf%oneapi
@@ -63,6 +92,15 @@ Install the oneAPI compilers::
spack install intel-oneapi-compilers
Add the compilers to your ``compilers.yaml`` so Spack can use them::
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/bin
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/bin
Verify that the compilers are available::
spack compiler list
Clone `spack-configs <https://github.com/spack/spack-configs>`_ repo and activate Intel oneAPI CPU environment::
git clone https://github.com/spack/spack-configs
@@ -111,7 +149,7 @@ Compilers
---------
To use the compilers, add some information about the installation to
``packages.yaml``. For most users, it is sufficient to do::
``compilers.yaml``. For most users, it is sufficient to do::
spack compiler add /opt/intel/oneapi/compiler/latest/bin
@@ -119,7 +157,7 @@ Adapt the paths above if you did not install the tools in the default
location. After adding the compilers, using them is the same
as if you had installed the ``intel-oneapi-compilers`` package.
Another option is to manually add the configuration to
``packages.yaml`` as described in :ref:`Compiler configuration
``compilers.yaml`` as described in :ref:`Compiler configuration
<compiler-config>`.
Before 2024, the directory structure was different::
@@ -162,5 +200,15 @@ You can also use Spack-installed libraries. For example::
Will update your environment CPATH, LIBRARY_PATH, and other
environment variables for building an application with oneMKL.
More information
================
This section describes basic use of oneAPI, especially if it has
changed compared to Parallel Studio. See :ref:`intelpackage` for more
information on :ref:`intel-virtual-packages`,
:ref:`intel-unrelated-packages`,
:ref:`intel-integrating-external-libraries`, and
:ref:`using-mkl-tips`.
.. _`Intel installers`: https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top.html

File diff suppressed because it is too large Load Diff

View File

@@ -12,7 +12,8 @@ The ``ROCmPackage`` is not a build system but a helper package. Like ``CudaPacka
it provides standard variants, dependencies, and conflicts to facilitate building
packages using GPUs though for AMD in this case.
You can find the source for this package (and suggestions for setting up your ``packages.yaml`` file) at
You can find the source for this package (and suggestions for setting up your
``compilers.yaml`` and ``packages.yaml`` files) at
`<https://github.com/spack/spack/blob/develop/lib/spack/spack/build_systems/rocm.py>`__.
^^^^^^^^

View File

@@ -148,16 +148,15 @@ this can expose you to attacks. Use at your own risk.
``ssl_certs``
--------------------
Path to custom certificats for SSL verification. The value can be a
Path to custom certificats for SSL verification. The value can be a
filesytem path, or an environment variable that expands to an absolute file path.
The default value is set to the environment variable ``SSL_CERT_FILE``
to use the same syntax used by many other applications that automatically
detect custom certificates.
When ``url_fetch_method:curl`` the ``config:ssl_certs`` should resolve to
a single file. Spack will then set the environment variable ``CURL_CA_BUNDLE``
in the subprocess calling ``curl``. If additional ``curl`` arguments are required,
they can be set in the config, e.g. ``url_fetch_method:'curl -k -q'``.
If ``url_fetch_method:urllib`` then files and directories are supported i.e.
in the subprocess calling ``curl``.
If ``url_fetch_method:urllib`` then files and directories are supported i.e.
``config:ssl_certs:$SSL_CERT_FILE`` or ``config:ssl_certs:$SSL_CERT_DIR``
will work.
In all cases the expanded path must be absolute for Spack to use the certificates.

View File

@@ -11,10 +11,9 @@ Configuration Files
Spack has many configuration files. Here is a quick list of them, in
case you want to skip directly to specific docs:
* :ref:`packages.yaml <compiler-config>`
* :ref:`compilers.yaml <compiler-config>`
* :ref:`concretizer.yaml <concretizer-options>`
* :ref:`config.yaml <config-yaml>`
* :ref:`include.yaml <include-yaml>`
* :ref:`mirrors.yaml <mirrors>`
* :ref:`modules.yaml <modules>`
* :ref:`packages.yaml <packages-config>`
@@ -46,12 +45,6 @@ Each Spack configuration file is nested under a top-level section
corresponding to its name. So, ``config.yaml`` starts with ``config:``,
``mirrors.yaml`` starts with ``mirrors:``, etc.
.. tip::
Validation and autocompletion of Spack config files can be enabled in
your editor with the YAML language server. See `spack/schemas
<https://github.com/spack/schemas>`_ for more information.
.. _configuration-scopes:
--------------------
@@ -101,7 +94,7 @@ are six configuration scopes. From lowest to highest:
precedence over all other scopes.
Each configuration directory may contain several configuration files,
such as ``config.yaml``, ``packages.yaml``, or ``mirrors.yaml``. When
such as ``config.yaml``, ``compilers.yaml``, or ``mirrors.yaml``. When
configurations conflict, settings from higher-precedence scopes override
lower-precedence settings.

View File

@@ -457,13 +457,6 @@ developed package in the environment are concretized to match the
version (and other constraints) passed as the spec argument to the
``spack develop`` command.
When working deep in the graph it is often desirable to have multiple specs marked
as ``develop`` so you don't have to restage and/or do full rebuilds each time you
call ``spack install``. The ``--recursive`` flag can be used in these scenarios
to ensure that all the dependents of the initial spec you provide are also marked
as develop specs. The ``--recursive`` flag requires a pre-concretized environment
so the graph can be traversed from the supplied spec all the way to the root specs.
For packages with ``git`` attributes, git branches, tags, and commits can
also be used as valid concrete versions (see :ref:`version-specifier`).
This means that for a package ``foo``, ``spack develop foo@git.main`` will clone
@@ -667,56 +660,34 @@ a ``packages.yaml`` file) could contain:
# ...
packages:
all:
providers:
mpi: [openmpi]
compiler: [intel]
# ...
This configuration sets the default mpi provider to be openmpi.
This configuration sets the default compiler for all packages to
``intel``.
^^^^^^^^^^^^^^^^^^^^^^^
Included configurations
^^^^^^^^^^^^^^^^^^^^^^^
Spack environments allow an ``include`` heading in their yaml schema.
This heading pulls in external configuration files and applies them to
the environment.
Spack environments allow an ``include`` heading in their yaml
schema. This heading pulls in external configuration files and applies
them to the environment.
.. code-block:: yaml
spack:
include:
- environment/relative/path/to/config.yaml
- path: https://github.com/path/to/raw/config/compilers.yaml
sha256: 26e871804a92cd07bb3d611b31b4156ae93d35b6a6d6e0ef3a67871fcb1d258b
- relative/path/to/config.yaml
- https://github.com/path/to/raw/config/compilers.yaml
- /absolute/path/to/packages.yaml
- path: /path/to/$os/$target/environment
optional: true
- path: /path/to/os-specific/config-dir
when: os == "ventura"
Included configuration files are required *unless* they are explicitly optional
or the entry's condition evaluates to ``false``. Optional includes are specified
with the ``optional`` clause and conditional with the ``when`` clause. (See
:ref:`include-yaml` for more information on optional and conditional entries.)
Files are listed using paths to individual files or directories containing them.
Path entries may be absolute or relative to the environment or specified as
URLs. URLs to individual files must link to the **raw** form of the file's
contents (e.g., `GitHub
<https://docs.github.com/en/repositories/working-with-files/using-files/viewing-and-understanding-files#viewing-or-copying-the-raw-file-content>`_
or `GitLab
<https://docs.gitlab.com/ee/api/repository_files.html#get-raw-file-from-repository>`_) **and** include a valid sha256 for the file.
Only the ``file``, ``ftp``, ``http`` and ``https`` protocols (or schemes) are
supported. Spack-specific, environment and user path variables can be used.
(See :ref:`config-file-variables` for more information.)
.. warning::
Recursive includes are not currently processed in a breadth-first manner
so the value of a configuration option that is altered by multiple included
files may not be what you expect. This will be addressed in a future
update.
Environments can include files or URLs. File paths can be relative or
absolute. URLs include the path to the text for individual files or
can be the path to a directory containing configuration files.
Spack supports ``file``, ``http``, ``https`` and ``ftp`` protocols (or
schemes). Spack-specific, environment and user path variables may be
used in these paths. See :ref:`config-file-variables` for more information.
^^^^^^^^^^^^^^^^^^^^^^^^
Configuration precedence

View File

@@ -0,0 +1,161 @@
spack:
definitions:
- compiler-pkgs:
- 'llvm+clang@6.0.1 os=centos7'
- 'gcc@6.5.0 os=centos7'
- 'llvm+clang@6.0.1 os=ubuntu18.04'
- 'gcc@6.5.0 os=ubuntu18.04'
- pkgs:
- readline@7.0
# - xsdk@0.4.0
- compilers:
- '%gcc@5.5.0'
- '%gcc@6.5.0'
- '%gcc@7.3.0'
- '%clang@6.0.0'
- '%clang@6.0.1'
- oses:
- os=ubuntu18.04
- os=centos7
specs:
- matrix:
- [$pkgs]
- [$compilers]
- [$oses]
exclude:
- '%gcc@7.3.0 os=centos7'
- '%gcc@5.5.0 os=ubuntu18.04'
mirrors:
cloud_gitlab: https://mirror.spack.io
compilers:
# The .gitlab-ci.yml for this project picks a Docker container which does
# not have any compilers pre-built and ready to use, so we need to fake the
# existence of those here.
- compiler:
operating_system: centos7
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: gcc@5.5.0
target: x86_64
- compiler:
operating_system: centos7
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: gcc@6.5.0
target: x86_64
- compiler:
operating_system: centos7
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: clang@6.0.0
target: x86_64
- compiler:
operating_system: centos7
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: clang@6.0.1
target: x86_64
- compiler:
operating_system: ubuntu18.04
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: clang@6.0.0
target: x86_64
- compiler:
operating_system: ubuntu18.04
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: clang@6.0.1
target: x86_64
- compiler:
operating_system: ubuntu18.04
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: gcc@6.5.0
target: x86_64
- compiler:
operating_system: ubuntu18.04
modules: []
paths:
cc: /not/used
cxx: /not/used
f77: /not/used
fc: /not/used
spec: gcc@7.3.0
target: x86_64
gitlab-ci:
bootstrap:
- name: compiler-pkgs
compiler-agnostic: true
mappings:
- # spack-cloud-ubuntu
match:
# these are specs, if *any* match the spec under consideration, this
# 'mapping' will be used to generate the CI job
- os=ubuntu18.04
runner-attributes:
# 'tags' and 'image' go directly onto the job, 'variables' will
# be added to what we already necessarily create for the job as
# a part of the CI workflow
tags:
- spack-k8s
image:
name: scottwittenburg/spack_builder_ubuntu_18.04
entrypoint: [""]
- # spack-cloud-centos
match:
# these are specs, if *any* match the spec under consideration, this
# 'mapping' will be used to generate the CI job
- 'os=centos7'
runner-attributes:
tags:
- spack-k8s
image:
name: scottwittenburg/spack_builder_centos_7
entrypoint: [""]
cdash:
build-group: Release Testing
url: http://cdash
project: Spack Testing
site: Spack Docker-Compose Workflow
repos: []
upstreams: {}
modules:
enable: []
packages: {}
config: {}

View File

@@ -30,7 +30,7 @@ than always choosing the latest versions or default variants.
.. note::
As a rule of thumb: requirements + constraints > strong preferences > reuse > preferences > defaults.
As a rule of thumb: requirements + constraints > reuse > preferences > defaults.
The following set of criteria (from lowest to highest precedence) explain
common cases where concretization output may seem surprising at first.
@@ -56,19 +56,7 @@ common cases where concretization output may seem surprising at first.
concretizer:
reuse: dependencies # other options are 'true' and 'false'
3. :ref:`Strong preferences <package-strong-preferences>` configured in ``packages.yaml``
are higher priority than reuse, and can be used to strongly prefer a specific version
or variant, without erroring out if it's not possible. Strong preferences are specified
as follows:
.. code-block:: yaml
packages:
foo:
prefer:
- "@1.1: ~mpi"
4. :ref:`Package requirements <package-requirements>` configured in ``packages.yaml``,
3. :ref:`Package requirements <package-requirements>` configured in ``packages.yaml``,
and constraints from the command line as well as ``package.py`` files override all
of the above. Requirements are specified as follows:
@@ -78,8 +66,6 @@ common cases where concretization output may seem surprising at first.
foo:
require:
- "@1.2: +mpi"
conflicts:
- "@1.4"
Requirements and constraints restrict the set of possible solutions, while reuse
behavior and preferences influence what an optimal solution looks like.

View File

@@ -254,11 +254,12 @@ directory.
Compiler configuration
----------------------
Spack has the ability to build packages with multiple compilers and compiler versions.
Compilers can be made available to Spack by specifying them manually in ``packages.yaml``,
or automatically by running ``spack compiler find``.
For convenience, Spack will automatically detect compilers the first time it needs them,
if none is available.
Spack has the ability to build packages with multiple compilers and
compiler versions. Compilers can be made available to Spack by
specifying them manually in ``compilers.yaml`` or ``packages.yaml``,
or automatically by running ``spack compiler find``, but for
convenience Spack will automatically detect compilers the first time
it needs them.
.. _cmd-spack-compilers:
@@ -273,11 +274,16 @@ compilers`` or ``spack compiler list``:
$ spack compilers
==> Available compilers
-- gcc ubuntu20.04-x86_64 ---------------------------------------
gcc@9.4.0 gcc@8.4.0 gcc@10.5.0
-- llvm ubuntu20.04-x86_64 --------------------------------------
llvm@12.0.0 llvm@11.0.0 llvm@10.0.0
-- gcc ---------------------------------------------------------
gcc@4.9.0 gcc@4.8.0 gcc@4.7.0 gcc@4.6.2 gcc@4.4.7
gcc@4.8.2 gcc@4.7.1 gcc@4.6.3 gcc@4.6.1 gcc@4.1.2
-- intel -------------------------------------------------------
intel@15.0.0 intel@14.0.0 intel@13.0.0 intel@12.1.0 intel@10.0
intel@14.0.3 intel@13.1.1 intel@12.1.5 intel@12.0.4 intel@9.1
intel@14.0.2 intel@13.1.0 intel@12.1.3 intel@11.1
intel@14.0.1 intel@13.0.1 intel@12.1.2 intel@10.1
-- clang -------------------------------------------------------
clang@3.4 clang@3.3 clang@3.2 clang@3.1
Any of these compilers can be used to build Spack packages. More on
how this is done is in :ref:`sec-specs`.
@@ -296,22 +302,16 @@ An alias for ``spack compiler find``.
``spack compiler find``
^^^^^^^^^^^^^^^^^^^^^^^
If you do not see a compiler in the list shown by:
Lists the compilers currently available to Spack. If you do not see
a compiler in this list, but you want to use it with Spack, you can
simply run ``spack compiler find`` with the path to where the
compiler is installed. For example:
.. code-block:: console
$ spack compiler list
but you want to use it with Spack, you can simply run ``spack compiler find`` with the
path to where the compiler is installed. For example:
.. code-block:: console
$ spack compiler find /opt/intel/oneapi/compiler/2025.1/bin/
==> Added 1 new compiler to /home/user/.spack/packages.yaml
intel-oneapi-compilers@2025.1.0
==> Compilers are defined in the following files:
/home/user/.spack/packages.yaml
$ spack compiler find /usr/local/tools/ic-13.0.079
==> Added 1 new compiler to ~/.spack/linux/compilers.yaml
intel@13.0.079
Or you can run ``spack compiler find`` with no arguments to force
auto-detection. This is useful if you do not know where compilers are
@@ -322,7 +322,7 @@ installed, but you know that new compilers have been added to your
$ module load gcc/4.9.0
$ spack compiler find
==> Added 1 new compiler to /home/user/.spack/packages.yaml
==> Added 1 new compiler to ~/.spack/linux/compilers.yaml
gcc@4.9.0
This loads the environment module for gcc-4.9.0 to add it to
@@ -331,7 +331,7 @@ This loads the environment module for gcc-4.9.0 to add it to
.. note::
By default, spack does not fill in the ``modules:`` field in the
``packages.yaml`` file. If you are using a compiler from a
``compilers.yaml`` file. If you are using a compiler from a
module, then you should add this field manually.
See the section on :ref:`compilers-requiring-modules`.
@@ -341,82 +341,91 @@ This loads the environment module for gcc-4.9.0 to add it to
``spack compiler info``
^^^^^^^^^^^^^^^^^^^^^^^
If you want to see additional information on some specific compilers, you can run ``spack compiler info`` on it:
If you want to see specifics on a particular compiler, you can run
``spack compiler info`` on it:
.. code-block:: console
$ spack compiler info gcc
gcc@=8.4.0 languages='c,c++,fortran' arch=linux-ubuntu20.04-x86_64:
prefix: /usr
compilers:
c: /usr/bin/gcc-8
cxx: /usr/bin/g++-8
fortran: /usr/bin/gfortran-8
$ spack compiler info intel@15
intel@15.0.0:
paths:
cc = /usr/local/bin/icc-15.0.090
cxx = /usr/local/bin/icpc-15.0.090
f77 = /usr/local/bin/ifort-15.0.090
fc = /usr/local/bin/ifort-15.0.090
modules = []
operating_system = centos6
...
gcc@=9.4.0 languages='c,c++,fortran' arch=linux-ubuntu20.04-x86_64:
prefix: /usr
compilers:
c: /usr/bin/gcc
cxx: /usr/bin/g++
fortran: /usr/bin/gfortran
gcc@=10.5.0 languages='c,c++,fortran' arch=linux-ubuntu20.04-x86_64:
prefix: /usr
compilers:
c: /usr/bin/gcc-10
cxx: /usr/bin/g++-10
fortran: /usr/bin/gfortran-10
This shows the details of the compilers that were detected by Spack.
Notice also that we didn't have to be too specific about the version. We just said ``gcc``, and we got information
about all the matching compilers.
This shows which C, C++, and Fortran compilers were detected by Spack.
Notice also that we didn't have to be too specific about the
version. We just said ``intel@15``, and information about the only
matching Intel compiler was displayed.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Manual compiler configuration
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If auto-detection fails, you can manually configure a compiler by editing your ``~/.spack/packages.yaml`` file.
You can do this by running ``spack config edit packages``, which will open the file in
If auto-detection fails, you can manually configure a compiler by
editing your ``~/.spack/<platform>/compilers.yaml`` file. You can do this by running
``spack config edit compilers``, which will open the file in
:ref:`your favorite editor <controlling-the-editor>`.
Each compiler has an "external" entry in the file with some ``extra_attributes``:
Each compiler configuration in the file looks like this:
.. code-block:: yaml
packages:
gcc:
externals:
- spec: gcc@10.5.0 languages='c,c++,fortran'
prefix: /usr
extra_attributes:
compilers:
c: /usr/bin/gcc-10
cxx: /usr/bin/g++-10
fortran: /usr/bin/gfortran-10
compilers:
- compiler:
modules: []
operating_system: centos6
paths:
cc: /usr/local/bin/icc-15.0.024-beta
cxx: /usr/local/bin/icpc-15.0.024-beta
f77: /usr/local/bin/ifort-15.0.024-beta
fc: /usr/local/bin/ifort-15.0.024-beta
spec: intel@15.0.0
The compiler executables are listed under ``extra_attributes:compilers``, and are keyed by language.
Once you save the file, the configured compilers will show up in the list displayed by ``spack compilers``.
For compilers that do not support Fortran (like ``clang``), put
``None`` for ``f77`` and ``fc``:
You can also add compiler flags to manually configured compilers. These flags should be specified in the
``flags`` section of the compiler specification. The valid flags are ``cflags``, ``cxxflags``, ``fflags``,
.. code-block:: yaml
compilers:
- compiler:
modules: []
operating_system: centos6
paths:
cc: /usr/bin/clang
cxx: /usr/bin/clang++
f77: None
fc: None
spec: clang@3.3svn
Once you save the file, the configured compilers will show up in the
list displayed by ``spack compilers``.
You can also add compiler flags to manually configured compilers. These
flags should be specified in the ``flags`` section of the compiler
specification. The valid flags are ``cflags``, ``cxxflags``, ``fflags``,
``cppflags``, ``ldflags``, and ``ldlibs``. For example:
.. code-block:: yaml
packages:
gcc:
externals:
- spec: gcc@10.5.0 languages='c,c++,fortran'
prefix: /usr
extra_attributes:
compilers:
c: /usr/bin/gcc-10
cxx: /usr/bin/g++-10
fortran: /usr/bin/gfortran-10
flags:
cflags: -O3 -fPIC
cxxflags: -O3 -fPIC
cppflags: -O3 -fPIC
compilers:
- compiler:
modules: []
operating_system: centos6
paths:
cc: /usr/bin/gcc
cxx: /usr/bin/g++
f77: /usr/bin/gfortran
fc: /usr/bin/gfortran
flags:
cflags: -O3 -fPIC
cxxflags: -O3 -fPIC
cppflags: -O3 -fPIC
spec: gcc@4.7.2
These flags will be treated by spack as if they were entered from
the command line each time this compiler is used. The compiler wrappers
@@ -431,44 +440,95 @@ These variables should be specified in the ``environment`` section of the compil
specification. The operations available to modify the environment are ``set``, ``unset``,
``prepend_path``, ``append_path``, and ``remove_path``. For example:
.. code-block:: yaml
compilers:
- compiler:
modules: []
operating_system: centos6
paths:
cc: /opt/intel/oneapi/compiler/latest/linux/bin/icx
cxx: /opt/intel/oneapi/compiler/latest/linux/bin/icpx
f77: /opt/intel/oneapi/compiler/latest/linux/bin/ifx
fc: /opt/intel/oneapi/compiler/latest/linux/bin/ifx
spec: oneapi@latest
environment:
set:
MKL_ROOT: "/path/to/mkl/root"
unset: # A list of environment variables to unset
- CC
prepend_path: # Similar for append|remove_path
LD_LIBRARY_PATH: /ld/paths/added/by/setvars/sh
.. note::
Spack is in the process of moving compilers from a separate
attribute to be handled like all other packages. As part of this
process, the ``compilers.yaml`` section will eventually be replaced
by configuration in the ``packages.yaml`` section. This new
configuration is now available, although it is not yet the default
behavior.
Compilers can also be configured as external packages in the
``packages.yaml`` config file. Any external package for a compiler
(e.g. ``gcc`` or ``llvm``) will be treated as a configured compiler
assuming the paths to the compiler executables are determinable from
the prefix.
If the paths to the compiler executable are not determinable from the
prefix, you can add them to the ``extra_attributes`` field. Similarly,
all other fields from the compilers config can be added to the
``extra_attributes`` field for an external representing a compiler.
Note that the format for the ``paths`` field in the
``extra_attributes`` section is different than in the ``compilers``
config. For compilers configured as external packages, the section is
named ``compilers`` and the dictionary maps language names (``c``,
``cxx``, ``fortran``) to paths, rather than using the names ``cc``,
``fc``, and ``f77``.
.. code-block:: yaml
packages:
intel-oneapi-compilers:
externals:
- spec: intel-oneapi-compilers@2025.1.0
prefix: /opt/intel/oneapi
gcc:
external:
- spec: gcc@12.2.0 arch=linux-rhel8-skylake
prefix: /usr
extra_attributes:
compilers:
c: /opt/intel/oneapi/compiler/2025.1/bin/icx
cxx: /opt/intel/oneapi/compiler/2025.1/bin/icpx
fortran: /opt/intel/oneapi/compiler/2025.1/bin/ifx
environment:
set:
MKL_ROOT: "/path/to/mkl/root"
unset: # A list of environment variables to unset
- CC
prepend_path: # Similar for append|remove_path
LD_LIBRARY_PATH: /ld/paths/added/by/setvars/sh
GCC_ROOT: /usr
external:
- spec: llvm+clang@15.0.0 arch=linux-rhel8-skylake
prefix: /usr
extra_attributes:
compilers:
c: /usr/bin/clang-with-suffix
cxx: /usr/bin/clang++-with-extra-info
fortran: /usr/bin/gfortran
extra_rpaths:
- /usr/lib/llvm/
^^^^^^^^^^^^^^^^^^^^^^^
Build Your Own Compiler
^^^^^^^^^^^^^^^^^^^^^^^
If you are particular about which compiler/version you use, you might wish to have Spack build it for you.
For example:
If you are particular about which compiler/version you use, you might
wish to have Spack build it for you. For example:
.. code-block:: console
$ spack install gcc@14+binutils
$ spack install gcc@4.9.3
Once the compiler is installed, you can start using it without additional configuration:
Once that has finished, you will need to add it to your
``compilers.yaml`` file. You can then set Spack to use it by default
by adding the following to your ``packages.yaml`` file:
.. code-block:: console
.. code-block:: yaml
$ spack install hdf5~mpi %gcc@14
The same holds true for compilers that are made available from buildcaches, when reusing them is allowed.
packages:
all:
compiler: [gcc@4.9.3]
.. _compilers-requiring-modules:
@@ -476,26 +536,30 @@ The same holds true for compilers that are made available from buildcaches, when
Compilers Requiring Modules
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Many installed compilers will work regardless of the environment they are called with.
However, some installed compilers require environment variables to be set in order to run;
this is typical for Intel and other proprietary compilers.
Many installed compilers will work regardless of the environment they
are called with. However, some installed compilers require
``$LD_LIBRARY_PATH`` or other environment variables to be set in order
to run; this is typical for Intel and other proprietary compilers.
On typical HPC clusters, these environment modifications are usually delegated to some "module" system.
In such a case, you should tell Spack which module(s) to load in order to run the chosen compiler:
In such a case, you should tell Spack which module(s) to load in order
to run the chosen compiler (If the compiler does not come with a
module file, you might consider making one by hand). Spack will load
this module into the environment ONLY when the compiler is run, and
NOT in general for a package's ``install()`` method. See, for
example, this ``compilers.yaml`` file:
.. code-block:: yaml
packages:
gcc:
externals:
- spec: gcc@10.5.0 languages='c,c++,fortran'
prefix: /opt/compilers
extra_attributes:
compilers:
c: /opt/compilers/bin/gcc-10
cxx: /opt/compilers/bin/g++-10
fortran: /opt/compilers/bin/gfortran-10
modules: [gcc/10.5.0]
compilers:
- compiler:
modules: [other/comp/gcc-5.3-sp3]
operating_system: SuSE11
paths:
cc: /usr/local/other/SLES11.3/gcc/5.3.0/bin/gcc
cxx: /usr/local/other/SLES11.3/gcc/5.3.0/bin/g++
f77: /usr/local/other/SLES11.3/gcc/5.3.0/bin/gfortran
fc: /usr/local/other/SLES11.3/gcc/5.3.0/bin/gfortran
spec: gcc@5.3.0
Some compilers require special environment settings to be loaded not just
to run, but also to execute the code they build, breaking packages that
@@ -516,7 +580,7 @@ Licensed Compilers
^^^^^^^^^^^^^^^^^^
Some proprietary compilers require licensing to use. If you need to
use a licensed compiler, the process is similar to a mix of
use a licensed compiler (eg, PGI), the process is similar to a mix of
build your own, plus modules:
#. Create a Spack package (if it doesn't exist already) to install
@@ -526,21 +590,24 @@ build your own, plus modules:
using Spack to load the module it just created, and running simple
builds (eg: ``cc helloWorld.c && ./a.out``)
#. Add the newly-installed compiler to ``packages.yaml`` as shown above.
#. Add the newly-installed compiler to ``compilers.yaml`` as shown
above.
.. _mixed-toolchains:
^^^^^^^^^^^^^^^^^^^^^^^^^^
Fortran compilers on macOS
^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^
Mixed Toolchains
^^^^^^^^^^^^^^^^
Modern compilers typically come with related compilers for C, C++ and
Fortran bundled together. When possible, results are best if the same
compiler is used for all languages.
In some cases, this is not possible. For example, XCode on macOS provides no Fortran compilers.
The user is therefore forced to use a mixed toolchain: XCode-provided Clang for C/C++ and e.g.
GNU ``gfortran`` for Fortran.
In some cases, this is not possible. For example, starting with macOS El
Capitan (10.11), many packages no longer build with GCC, but XCode
provides no Fortran compilers. The user is therefore forced to use a
mixed toolchain: XCode-provided Clang for C/C++ and GNU ``gfortran`` for
Fortran.
#. You need to make sure that Xcode is installed. Run the following command:
@@ -593,25 +660,45 @@ GNU ``gfortran`` for Fortran.
Note: the flag is ``-license``, not ``--license``.
#. Run ``spack compiler find`` to locate Clang.
#. There are different ways to get ``gfortran`` on macOS. For example, you can
install GCC with Spack (``spack install gcc``), with Homebrew (``brew install
gcc``), or from a `DMG installer
<https://github.com/fxcoudert/gfortran-for-macOS/releases>`_.
#. Run ``spack compiler find`` to locate both Apple-Clang and GCC.
#. The only thing left to do is to edit ``~/.spack/darwin/compilers.yaml`` to provide
the path to ``gfortran``:
Since languages in Spack are modeled as virtual packages, ``apple-clang`` will be used to provide
C and C++, while GCC will be used for Fortran.
.. code-block:: yaml
compilers:
- compiler:
# ...
paths:
cc: /usr/bin/clang
cxx: /usr/bin/clang++
f77: /path/to/bin/gfortran
fc: /path/to/bin/gfortran
spec: apple-clang@11.0.0
If you used Spack to install GCC, you can get the installation prefix by
``spack location -i gcc`` (this will only work if you have a single version
of GCC installed). Whereas for Homebrew, GCC is installed in
``/usr/local/Cellar/gcc/x.y.z``. With the DMG installer, the correct path
will be ``/usr/local/gfortran``.
^^^^^^^^^^^^^^^^^^^^^
Compiler Verification
^^^^^^^^^^^^^^^^^^^^^
You can verify that your compilers are configured properly by installing a simple package. For example:
You can verify that your compilers are configured properly by installing a
simple package. For example:
.. code-block:: console
$ spack install zlib-ng%gcc@5.3.0
$ spack install zlib%gcc@5.3.0
.. _vendor-specific-compiler-configuration:
@@ -620,7 +707,9 @@ You can verify that your compilers are configured properly by installing a simpl
Vendor-Specific Compiler Configuration
--------------------------------------
This section provides details on how to get vendor-specific compilers working.
With Spack, things usually "just work" with GCC. Not so for other
compilers. This section provides details on how to get specific
compilers working.
^^^^^^^^^^^^^^^
Intel Compilers
@@ -642,8 +731,8 @@ compilers:
you have installed from the ``PATH`` environment variable.
If you want use a version of ``gcc`` or ``g++`` other than the default
version on your system, you need to use either the ``--gcc-install-dir``
or ``--gcc-toolchain`` compiler option to specify the path to the version of
version on your system, you need to use either the ``-gcc-name``
or ``-gxx-name`` compiler option to specify the path to the version of
``gcc`` or ``g++`` that you want to use."
-- `Intel Reference Guide <https://software.intel.com/en-us/node/522750>`_
@@ -651,12 +740,76 @@ compilers:
Intel compilers may therefore be configured in one of two ways with
Spack: using modules, or using compiler flags.
""""""""""""""""""""""""""
Configuration with Modules
""""""""""""""""""""""""""
One can control which GCC is seen by the Intel compiler with modules.
A module must be loaded both for the Intel Compiler (so it will run)
and GCC (so the compiler can find the intended GCC). The following
configuration in ``compilers.yaml`` illustrates this technique:
.. code-block:: yaml
compilers:
- compiler:
modules: [gcc-4.9.3, intel-15.0.24]
operating_system: centos7
paths:
cc: /opt/intel-15.0.24/bin/icc-15.0.24-beta
cxx: /opt/intel-15.0.24/bin/icpc-15.0.24-beta
f77: /opt/intel-15.0.24/bin/ifort-15.0.24-beta
fc: /opt/intel-15.0.24/bin/ifort-15.0.24-beta
spec: intel@15.0.24.4.9.3
.. note::
The version number on the Intel compiler is a combination of
the "native" Intel version number and the GNU compiler it is
targeting.
""""""""""""""""""""""""""
Command Line Configuration
""""""""""""""""""""""""""
One can also control which GCC is seen by the Intel compiler by adding
flags to the ``icc`` command:
#. Identify the location of the compiler you just installed:
.. code-block:: console
$ spack location --install-dir gcc
~/spack/opt/spack/linux-centos7-x86_64/gcc-4.9.3-iy4rw...
#. Set up ``compilers.yaml``, for example:
.. code-block:: yaml
compilers:
- compiler:
modules: [intel-15.0.24]
operating_system: centos7
paths:
cc: /opt/intel-15.0.24/bin/icc-15.0.24-beta
cxx: /opt/intel-15.0.24/bin/icpc-15.0.24-beta
f77: /opt/intel-15.0.24/bin/ifort-15.0.24-beta
fc: /opt/intel-15.0.24/bin/ifort-15.0.24-beta
flags:
cflags: -gcc-name ~/spack/opt/spack/linux-centos7-x86_64/gcc-4.9.3-iy4rw.../bin/gcc
cxxflags: -gxx-name ~/spack/opt/spack/linux-centos7-x86_64/gcc-4.9.3-iy4rw.../bin/g++
fflags: -gcc-name ~/spack/opt/spack/linux-centos7-x86_64/gcc-4.9.3-iy4rw.../bin/gcc
spec: intel@15.0.24.4.9.3
^^^
NAG
^^^
The Numerical Algorithms Group provides a licensed Fortran compiler.
It is recommended to use GCC for your C/C++ compilers.
The Numerical Algorithms Group provides a licensed Fortran compiler. Like Clang,
this requires you to set up a :ref:`mixed-toolchains`. It is recommended to use
GCC for your C/C++ compilers.
The NAG Fortran compilers are a bit more strict than other compilers, and many
packages will fail to install with error messages like:
@@ -673,40 +826,44 @@ the command line:
$ spack install openmpi fflags="-mismatch"
Or it can be set permanently in your ``packages.yaml``:
Or it can be set permanently in your ``compilers.yaml``:
.. code-block:: yaml
packages:
nag:
externals:
- spec: nag@6.1
prefix: /opt/nag/bin
extra_attributes:
compilers:
fortran: /opt/nag/bin/nagfor
flags:
fflags: -mismatch
- compiler:
modules: []
operating_system: centos6
paths:
cc: /soft/spack/opt/spack/linux-x86_64/gcc-5.3.0/gcc-6.1.0-q2zosj3igepi3pjnqt74bwazmptr5gpj/bin/gcc
cxx: /soft/spack/opt/spack/linux-x86_64/gcc-5.3.0/gcc-6.1.0-q2zosj3igepi3pjnqt74bwazmptr5gpj/bin/g++
f77: /soft/spack/opt/spack/linux-x86_64/gcc-4.4.7/nag-6.1-jt3h5hwt5myezgqguhfsan52zcskqene/bin/nagfor
fc: /soft/spack/opt/spack/linux-x86_64/gcc-4.4.7/nag-6.1-jt3h5hwt5myezgqguhfsan52zcskqene/bin/nagfor
flags:
fflags: -mismatch
spec: nag@6.1
---------------
System Packages
---------------
Once compilers are configured, one needs to determine which pre-installed system packages,
if any, to use in builds. These are also configured in the ``~/.spack/packages.yaml`` file.
For example, to use an OpenMPI installed in /opt/local, one would use:
Once compilers are configured, one needs to determine which
pre-installed system packages, if any, to use in builds. This is
configured in the file ``~/.spack/packages.yaml``. For example, to use
an OpenMPI installed in /opt/local, one would use:
.. code-block:: yaml
packages:
openmpi:
buildable: False
externals:
- spec: openmpi@1.10.1
prefix: /opt/local
packages:
openmpi:
externals:
- spec: openmpi@1.10.1
prefix: /opt/local
buildable: False
In general, *Spack is easier to use and more reliable if it builds all of its own dependencies*.
However, there are several packages for which one commonly needs to use system versions:
In general, Spack is easier to use and more reliable if it builds all of
its own dependencies. However, there are several packages for which one
commonly needs to use system versions:
^^^
MPI
@@ -719,7 +876,8 @@ you are unlikely to get a working MPI from Spack. Instead, use an
appropriate pre-installed MPI.
If you choose a pre-installed MPI, you should consider using the
pre-installed compiler used to build that MPI.
pre-installed compiler used to build that MPI; see above on
``compilers.yaml``.
^^^^^^^
OpenSSL
@@ -1283,9 +1441,9 @@ To configure Spack, first run the following command inside the Spack console:
spack compiler find
This creates a ``.staging`` directory in our Spack prefix, along with a ``windows`` subdirectory
containing a ``packages.yaml`` file. On a fresh Windows install with the above packages
containing a ``compilers.yaml`` file. On a fresh Windows install with the above packages
installed, this command should only detect Microsoft Visual Studio and the Intel Fortran
compiler will be integrated within the first version of MSVC present in the ``packages.yaml``
compiler will be integrated within the first version of MSVC present in the ``compilers.yaml``
output.
Spack provides a default ``config.yaml`` file for Windows that it will use unless overridden.

View File

@@ -23,6 +23,7 @@ components for use by dependent packages:
packages:
all:
compiler: [rocmcc@=5.3.0]
variants: amdgpu_target=gfx90a
hip:
buildable: false
@@ -69,15 +70,16 @@ This is in combination with the following compiler definition:
.. code-block:: yaml
packages:
llvm-amdgpu:
externals:
- spec: llvm-amdgpu@=5.3.0
prefix: /opt/rocm-5.3.0
compilers:
c: /opt/rocm-5.3.0/bin/amdclang
cxx: /opt/rocm-5.3.0/bin/amdclang++
fortran: null
compilers:
- compiler:
spec: rocmcc@=5.3.0
paths:
cc: /opt/rocm-5.3.0/bin/amdclang
cxx: /opt/rocm-5.3.0/bin/amdclang++
f77: null
fc: /opt/rocm-5.3.0/bin/amdflang
operating_system: rhel8
target: x86_64
This includes the following considerations:

View File

@@ -1,65 +0,0 @@
.. Copyright Spack Project Developers. See COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _include-yaml:
===============================
Include Settings (include.yaml)
===============================
Spack allows you to include configuration files through ``include.yaml``.
Using the ``include:`` heading results in pulling in external configuration
information to be used by any Spack command.
Included configuration files are required *unless* they are explicitly optional
or the entry's condition evaluates to ``false``. Optional includes are specified
with the ``optional`` clause and conditional with the ``when`` clause. For
example,
.. code-block:: yaml
include:
- /path/to/a/required/config.yaml
- path: /path/to/$os/$target/config
optional: true
- path: /path/to/os-specific/config-dir
when: os == "ventura"
shows all three. The first entry, ``/path/to/a/required/config.yaml``,
indicates that included ``config.yaml`` file is required (so must exist).
Use of ``optional: true`` for ``/path/to/$os/$target/config`` means
the path is only included if it exists. The condition ``os == "ventura"``
in the ``when`` clause for ``/path/to/os-specific/config-dir`` means the
path is only included when the operating system (``os``) is ``ventura``.
The same conditions and variables in `Spec List References
<https://spack.readthedocs.io/en/latest/environments.html#spec-list-references>`_
can be used for conditional activation in the ``when`` clauses.
Included files can be specified by path or by their parent directory.
Paths may be absolute, relative (to the configuration file including the path),
or specified as URLs. Only the ``file``, ``ftp``, ``http`` and ``https`` protocols (or
schemes) are supported. Spack-specific, environment and user path variables
can be used. (See :ref:`config-file-variables` for more information.)
A ``sha256`` is required for remote file URLs and must be specified as follows:
.. code-block:: yaml
include:
- path: https://github.com/path/to/raw/config/compilers.yaml
sha256: 26e871804a92cd07bb3d611b31b4156ae93d35b6a6d6e0ef3a67871fcb1d258b
Additionally, remote file URLs must link to the **raw** form of the file's
contents (e.g., `GitHub
<https://docs.github.com/en/repositories/working-with-files/using-files/viewing-and-understanding-files#viewing-or-copying-the-raw-file-content>`_
or `GitLab
<https://docs.gitlab.com/ee/api/repository_files.html#get-raw-file-from-repository>`_).
.. warning::
Recursive includes are not currently processed in a breadth-first manner
so the value of a configuration option that is altered by multiple included
files may not be what you expect. This will be addressed in a future
update.

View File

@@ -71,7 +71,6 @@ or refer to the full manual below.
configuration
config_yaml
include_yaml
packages_yaml
build_settings
environments

View File

@@ -486,8 +486,6 @@ present. For instance with a configuration like:
you will use ``mvapich2~cuda %gcc`` as an ``mpi`` provider.
.. _package-strong-preferences:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Conflicts and strong preferences
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -557,13 +555,14 @@ preferences.
FAQ: :ref:`Why does Spack pick particular versions and variants? <faq-concretizer-precedence>`
The ``target`` and ``providers`` preferences
Most package preferences (``compilers``, ``target`` and ``providers``)
can only be set globally under the ``all`` section of ``packages.yaml``:
.. code-block:: yaml
packages:
all:
compiler: [gcc@12.2.0, clang@12:, oneapi@2023:]
target: [x86_64_v3]
providers:
mpi: [mvapich2, mpich, openmpi]

View File

@@ -330,7 +330,7 @@ that ``--tests`` is passed to ``spack ci rebuild`` as part of the
- spack --version
- cd ${SPACK_CONCRETE_ENV_DIR}
- spack env activate --without-view .
- spack config add "config:install_tree:projections:${SPACK_JOB_SPEC_PKG_NAME}:'morepadding/{architecture.platform}-{architecture.target}/{name}-{version}-{hash}'"
- spack config add "config:install_tree:projections:${SPACK_JOB_SPEC_PKG_NAME}:'morepadding/{architecture}/{compiler.name}-{compiler.version}/{name}-{version}-{hash}'"
- mkdir -p ${SPACK_ARTIFACTS_ROOT}/user_data
- if [[ -r /mnt/key/intermediate_ci_signing_key.gpg ]]; then spack gpg trust /mnt/key/intermediate_ci_signing_key.gpg; fi
- if [[ -r /mnt/key/spack_public_key.gpg ]]; then spack gpg trust /mnt/key/spack_public_key.gpg; fi

View File

@@ -9,5 +9,5 @@ urllib3==2.3.0
pytest==8.3.5
isort==6.0.1
black==25.1.0
flake8==7.2.0
flake8==7.1.2
mypy==1.11.1

1
lib/spack/env/aocc/clang vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/aocc/clang++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cpp

1
lib/spack/env/aocc/flang vendored Symbolic link
View File

@@ -0,0 +1 @@
../fc

1
lib/spack/env/arm/armclang vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/arm/armclang++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/arm/armflang vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/c++ vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/c89 vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/c99 vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/case-insensitive/CC vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

View File

@@ -36,9 +36,15 @@ readonly lsep=''
# the script runs. They are set by routines in spack.build_environment
# as part of the package installation process.
readonly params="\
SPACK_COMPILER_WRAPPER_PATH
SPACK_ENV_PATH
SPACK_DEBUG_LOG_DIR
SPACK_DEBUG_LOG_ID
SPACK_COMPILER_SPEC
SPACK_CC_RPATH_ARG
SPACK_CXX_RPATH_ARG
SPACK_F77_RPATH_ARG
SPACK_FC_RPATH_ARG
SPACK_LINKER_ARG
SPACK_SHORT_SPEC
SPACK_SYSTEM_DIRS
SPACK_MANAGED_DIRS"
@@ -178,10 +184,9 @@ execute() {
unset IFS
exit
;;
dump-var-*)
var=${SPACK_TEST_COMMAND#dump-var-}
dump-env-*)
var=${SPACK_TEST_COMMAND#dump-env-}
eval "printf '%s\n' \"\$0: \$var: \$$var\""
exit
;;
*)
die "Unknown test command: '$SPACK_TEST_COMMAND'"
@@ -297,36 +302,9 @@ fi
# Note. SPACK_ALWAYS_XFLAGS are applied for all compiler invocations,
# including version checks (SPACK_XFLAGS variants are not applied
# for version checks).
command_from_argv0="${0##*/}"
command="$command_from_argv0"
command="${0##*/}"
comp="CC"
vcheck_flags=""
_command_from_flags() {
while [ $# -ne 0 ]; do
arg="$1"
shift
case "$arg" in
-x|--language)
_lang="$1"
shift ;;
-x*)
_lang="${arg#-x}" ;;
--language=*)
_lang="${arg#--language=}" ;;
*) continue ;;
esac
done
case "$_lang" in
c) command=cc ;;
c++|f77|f95|hip) command="$_lang" ;;
*) command="$command_from_argv0" ;; # drop unknown languages
esac
}
_command_from_flags "$@"
case "$command" in
cpp)
mode=cpp
@@ -365,19 +343,8 @@ case "$command" in
debug_flags="-g"
vcheck_flags="${SPACK_ALWAYS_FFLAGS}"
;;
hip)
command="$SPACK_HIPCXX"
language="HIP"
comp="HIPCXX"
lang_flags=HIP
debug_flags="-g"
vcheck_flags="${SPACK_ALWAYS_HIPCXXFLAGS}"
;;
ld|ld.gold|ld.lld)
mode=ld
if [ -z "$SPACK_CC_RPATH_ARG" ]; then
comp="CXX"
fi
;;
*)
die "Unknown compiler: $command"
@@ -432,12 +399,10 @@ fi
#
dtags_to_add="${SPACK_DTAGS_TO_ADD}"
dtags_to_strip="${SPACK_DTAGS_TO_STRIP}"
linker_arg="ERROR: LINKER ARG WAS NOT SET, MAYBE THE PACKAGE DOES NOT DEPEND ON ${comp}?"
eval "linker_arg=\${SPACK_${comp}_LINKER_ARG:?${linker_arg}}"
linker_arg="${SPACK_LINKER_ARG}"
# Set up rpath variable according to language.
rpath="ERROR: RPATH ARG WAS NOT SET, MAYBE THE PACKAGE DOES NOT DEPEND ON ${comp}?"
rpath="ERROR: RPATH ARG WAS NOT SET"
eval "rpath=\${SPACK_${comp}_RPATH_ARG:?${rpath}}"
# Dump the mode and exit if the command is dump-mode.
@@ -446,6 +411,13 @@ if [ "$SPACK_TEST_COMMAND" = "dump-mode" ]; then
exit
fi
# If, say, SPACK_CC is set but SPACK_FC is not, we want to know. Compilers do not
# *have* to set up Fortran executables, so we need to tell the user when a build is
# about to attempt to use them unsuccessfully.
if [ -z "$command" ]; then
die "Compiler '$SPACK_COMPILER_SPEC' does not have a $language compiler configured."
fi
#
# Filter '.' and Spack environment directories out of PATH so that
# this script doesn't just call itself
@@ -454,7 +426,7 @@ new_dirs=""
IFS=':'
for dir in $PATH; do
addpath=true
for spack_env_dir in $SPACK_COMPILER_WRAPPER_PATH; do
for spack_env_dir in $SPACK_ENV_PATH; do
case "${dir%%/}" in
"$spack_env_dir"|'.'|'')
addpath=false
@@ -815,17 +787,15 @@ case "$mode" in
C)
extend spack_flags_list SPACK_ALWAYS_CFLAGS
extend spack_flags_list SPACK_CFLAGS
preextend flags_list SPACK_TARGET_ARGS_CC
;;
CXX)
extend spack_flags_list SPACK_ALWAYS_CXXFLAGS
extend spack_flags_list SPACK_CXXFLAGS
preextend flags_list SPACK_TARGET_ARGS_CXX
;;
F)
preextend flags_list SPACK_TARGET_ARGS_FORTRAN
;;
esac
# prepend target args
preextend flags_list SPACK_TARGET_ARGS
;;
esac

1
lib/spack/env/cce/case-insensitive/CC vendored Symbolic link
View File

@@ -0,0 +1 @@
../../cc

View File

@@ -0,0 +1 @@
../../cc

1
lib/spack/env/cce/cc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/cce/craycc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/cce/crayftn vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/cce/ftn vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/clang/clang vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/clang/clang++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/clang/flang vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/clang/gfortran vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/cpp vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/f77 vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/f90 vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/f95 vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/fc vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/fj/case-insensitive/FCC vendored Symbolic link
View File

@@ -0,0 +1 @@
../../cc

1
lib/spack/env/fj/fcc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/fj/frt vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/ftn vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/gcc/g++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/gcc/gcc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/gcc/gfortran vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/intel/icc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/intel/icpc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/intel/ifort vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/ld vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/ld.gold vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/ld.lld vendored Symbolic link
View File

@@ -0,0 +1 @@
cc

1
lib/spack/env/nag/nagfor vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/nvhpc/nvc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/nvhpc/nvc++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/nvhpc/nvfortran vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/oneapi/dpcpp vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/oneapi/icpx vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/oneapi/icx vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/oneapi/ifx vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/pgi/pgc++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/pgi/pgcc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/pgi/pgfortran vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/rocmcc/amdclang vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/rocmcc/amdclang++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cpp

1
lib/spack/env/rocmcc/amdflang vendored Symbolic link
View File

@@ -0,0 +1 @@
../fc

1
lib/spack/env/xl/xlc vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/xl/xlc++ vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/xl/xlf vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/xl/xlf90 vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/xl_r/xlc++_r vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/xl_r/xlc_r vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/xl_r/xlf90_r vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

1
lib/spack/env/xl_r/xlf_r vendored Symbolic link
View File

@@ -0,0 +1 @@
../cc

View File

@@ -11,7 +11,6 @@
import re
import sys
import traceback
import types
import typing
import warnings
from datetime import datetime, timedelta
@@ -73,7 +72,7 @@ def index_by(objects, *funcs):
if isinstance(f, str):
f = lambda x: getattr(x, funcs[0])
elif isinstance(f, tuple):
f = lambda x: tuple(getattr(x, p, None) for p in funcs[0])
f = lambda x: tuple(getattr(x, p) for p in funcs[0])
result = {}
for o in objects:
@@ -708,24 +707,14 @@ def __init__(self, wrapped_object):
class Singleton:
"""Wrapper for lazily initialized singleton objects."""
"""Simple wrapper for lazily initialized singleton objects."""
def __init__(self, factory: Callable[[], object]):
def __init__(self, factory):
"""Create a new singleton to be inited with the factory function.
Most factories will simply create the object to be initialized and
return it.
In some cases, e.g. when bootstrapping some global state, the singleton
may need to be initialized incrementally. If the factory returns a generator
instead of a regular object, the singleton will assign each result yielded by
the generator to the singleton instance. This allows methods called by
the factory in later stages to refer back to the singleton.
Args:
factory (function): function taking no arguments that creates the
singleton instance.
factory (function): function taking no arguments that
creates the singleton instance.
"""
self.factory = factory
self._instance = None
@@ -733,16 +722,7 @@ def __init__(self, factory: Callable[[], object]):
@property
def instance(self):
if self._instance is None:
instance = self.factory()
if isinstance(instance, types.GeneratorType):
# if it's a generator, assign every value
for value in instance:
self._instance = value
else:
# if not, just assign the result like a normal singleton
self._instance = instance
self._instance = self.factory()
return self._instance
def __getattr__(self, name):
@@ -1016,8 +996,11 @@ def _receive_forwarded(self, context: str, exc: Exception, tb: List[str]):
def grouped_message(self, with_tracebacks: bool = True) -> str:
"""Print out an error message coalescing all the forwarded errors."""
each_exception_message = [
"\n\t{0} raised {1}: {2}\n{3}".format(
context, exc.__class__.__name__, exc, f"\n{''.join(tb)}" if with_tracebacks else ""
"{0} raised {1}: {2}{3}".format(
context,
exc.__class__.__name__,
exc,
"\n{0}".format("".join(tb)) if with_tracebacks else "",
)
for context, exc, tb in self.exceptions
]

View File

@@ -1,20 +0,0 @@
# Copyright Spack Project Developers. See COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
"""Alias names to convert legacy compilers to builtin packages and vice-versa"""
BUILTIN_TO_LEGACY_COMPILER = {
"llvm": "clang",
"intel-oneapi-compilers": "oneapi",
"llvm-amdgpu": "rocmcc",
"intel-oneapi-compilers-classic": "intel",
"acfl": "arm",
}
LEGACY_COMPILER_TO_BUILTIN = {
"clang": "llvm",
"oneapi": "intel-oneapi-compilers",
"rocmcc": "llvm-amdgpu",
"intel": "intel-oneapi-compilers-classic",
"arm": "acfl",
}

View File

@@ -110,13 +110,6 @@ def __init__(self, root):
self._write_transaction_impl = llnl.util.lang.nullcontext
self._read_transaction_impl = llnl.util.lang.nullcontext
def _handle_old_db_versions_read(self, check, db, *, reindex: bool):
if not self.is_readable():
raise spack_db.DatabaseNotReadableError(
f"cannot read buildcache v{self.db_version} at {self.root}"
)
return self._handle_current_version_read(check, db)
class FetchCacheError(Exception):
"""Error thrown when fetching the cache failed, usually a composite error list."""
@@ -249,7 +242,7 @@ def _associate_built_specs_with_mirror(self, cache_key, mirror_url):
self._index_file_cache.init_entry(cache_key)
cache_path = self._index_file_cache.cache_path(cache_key)
with self._index_file_cache.read_transaction(cache_key):
db._read_from_file(pathlib.Path(cache_path))
db._read_from_file(cache_path)
except spack_db.InvalidDatabaseVersionError as e:
tty.warn(
f"you need a newer Spack version to read the buildcache index for the "

View File

@@ -234,6 +234,14 @@ def _root_spec(spec_str: str) -> str:
# Add a compiler and platform requirement to the root spec.
platform = str(spack.platforms.host())
if platform == "darwin":
spec_str += " %apple-clang"
elif platform == "windows":
spec_str += " %msvc"
elif platform == "linux":
spec_str += " %gcc"
elif platform == "freebsd":
spec_str += " %clang"
spec_str += f" platform={platform}"
target = archspec.cpu.host().family
spec_str += f" target={target}"

View File

@@ -15,13 +15,11 @@
import archspec.cpu
import spack.compilers.config
import spack.compilers.libraries
import spack.config
import spack.compiler
import spack.compilers
import spack.platforms
import spack.spec
import spack.traverse
import spack.version
from .config import spec_for_current_python
@@ -40,7 +38,7 @@ def __init__(self, configuration):
self.external_cmake, self.external_bison = self._externals_from_yaml(configuration)
def _valid_compiler_or_raise(self):
def _valid_compiler_or_raise(self) -> "spack.compiler.Compiler":
if str(self.host_platform) == "linux":
compiler_name = "gcc"
elif str(self.host_platform) == "darwin":
@@ -48,30 +46,17 @@ def _valid_compiler_or_raise(self):
elif str(self.host_platform) == "windows":
compiler_name = "msvc"
elif str(self.host_platform) == "freebsd":
compiler_name = "llvm"
compiler_name = "clang"
else:
raise RuntimeError(f"Cannot bootstrap clingo from sources on {self.host_platform}")
candidates = [
x
for x in spack.compilers.config.CompilerFactory.from_packages_yaml(spack.config.CONFIG)
if x.name == compiler_name
]
candidates = spack.compilers.compilers_for_spec(
compiler_name, arch_spec=self.host_architecture
)
if not candidates:
raise RuntimeError(
f"Cannot find any version of {compiler_name} to bootstrap clingo from sources"
)
candidates.sort(key=lambda x: x.version, reverse=True)
best = candidates[0]
# Get compilers for bootstrapping from the 'builtin' repository
best.namespace = "builtin"
# If the compiler does not support C++ 14, fail with a legible error message
try:
_ = best.package.standard_flag(language="cxx", standard="14")
except RuntimeError as e:
raise RuntimeError(
"cannot find a compiler supporting C++ 14 [needed to bootstrap clingo]"
) from e
candidates.sort(key=lambda x: x.spec.version, reverse=True)
return candidates[0]
def _externals_from_yaml(
@@ -90,6 +75,9 @@ def _externals_from_yaml(
if not s.satisfies(requirements[pkg_name]):
continue
if not s.intersects(f"%{self.host_compiler.spec}"):
continue
if not s.intersects(f"arch={self.host_architecture}"):
continue
@@ -122,14 +110,11 @@ def concretize(self) -> "spack.spec.Spec":
# Tweak it to conform to the host architecture
for node in s.traverse():
node.architecture.os = str(self.host_os)
node.compiler = self.host_compiler.spec
node.architecture = self.host_architecture
if node.name == "gcc-runtime":
node.versions = self.host_compiler.versions
# Can't use re2c@3.1 with Python 3.6
if self.host_python.satisfies("@3.6"):
s["re2c"].versions.versions = [spack.version.from_string("=2.2")]
node.versions = self.host_compiler.spec.versions
for edge in spack.traverse.traverse_edges([s], cover="edges"):
if edge.spec.name == "python":
@@ -141,9 +126,6 @@ def concretize(self) -> "spack.spec.Spec":
if edge.spec.name == "cmake" and self.external_cmake:
edge.spec = self.external_cmake
if edge.spec.name == self.host_compiler.name:
edge.spec = self.host_compiler
if "libc" in edge.virtuals:
edge.spec = self.host_libc
@@ -159,12 +141,12 @@ def python_external_spec(self) -> "spack.spec.Spec":
return self._external_spec(result)
def libc_external_spec(self) -> "spack.spec.Spec":
detector = spack.compilers.libraries.CompilerPropertyDetector(self.host_compiler)
result = detector.default_libc()
result = self.host_compiler.default_libc
return self._external_spec(result)
def _external_spec(self, initial_spec) -> "spack.spec.Spec":
initial_spec.namespace = "builtin"
initial_spec.compiler = self.host_compiler.spec
initial_spec.architecture = self.host_architecture
for flag_type in spack.spec.FlagMap.valid_compiler_flags():
initial_spec.compiler_flags[flag_type] = []

View File

@@ -10,7 +10,7 @@
from llnl.util import tty
import spack.compilers.config
import spack.compilers
import spack.config
import spack.environment
import spack.modules
@@ -142,8 +142,8 @@ def _bootstrap_config_scopes() -> Sequence["spack.config.ConfigScope"]:
def _add_compilers_if_missing() -> None:
arch = spack.spec.ArchSpec.default_arch()
if not spack.compilers.config.compilers_for_arch(arch):
spack.compilers.config.find_compilers()
if not spack.compilers.compilers_for_arch(arch):
spack.compilers.find_compilers()
@contextlib.contextmanager

View File

@@ -133,7 +133,7 @@ def mypy_root_spec() -> str:
def black_root_spec() -> str:
"""Return the root spec used to bootstrap black"""
return _root_spec("py-black@:25.1.0")
return _root_spec("py-black@:24.1.0")
def flake8_root_spec() -> str:

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Some files were not shown because too many files have changed in this diff Show More