Compare commits

..

21 Commits

Author SHA1 Message Date
Todd Gamblin
42962f2409 Merge branch 'releases/v0.12' 2018-11-13 11:05:17 -06:00
Gregory Becker
8554e933d2 Make Spack relocate text files in build caches with relative binaries 2018-11-13 11:04:47 -06:00
Ubuntu
03a53dca5f Revert "Binary caching: remove symlinks, copy files instead (#9747)"
This reverts commit 058cf81312.
2018-11-13 11:04:47 -06:00
Todd Gamblin
041aa143db Merge branch 'releases/v0.11.2' 2018-02-07 12:46:55 -05:00
becker33
e905f8cf83 Add NameError to exceptions caught from configure_args in module generation (#7173) 2018-02-02 13:35:51 -08:00
Adam J. Stewart
41e6eb130c Fix gfortran 7 detection (#7017) 2018-01-28 16:31:34 -08:00
Massimiliano Culpo
6fcbc26f88 travis: removed /usr/local/include/c++ before installing gcc on OSX (#6515) (#7027)
"brew install gcc" fails for travis build because of an existing
/usr/local/include/c++. This commit removes the offending file
as suggested by brew.
2018-01-28 10:48:10 -08:00
Todd Gamblin
880e319cf6 Pull R list_urls from upstream. 2018-01-19 13:28:26 -08:00
Massimiliano Culpo
1cc9241030 Added flags to unit tests + OSX build done once per day (#6988)
* Adding flags to codecov reports

* OSX builds are triggered once a day
2018-01-19 11:59:43 -08:00
Todd Gamblin
9835f5077b Bump version to 0.11.1 2018-01-19 09:39:39 -08:00
becker33
4fb3b30d3e Fix type issues with setting flag handlers (#6960)
The flag_handlers method was being set as a bound method, but when
reset in the package.py file it was being set as an unbound method
(all python2 issues). This gets the underlying function information,
which is the same in either case.

The bug was uncovered for parmetis in #6858. This is a partial fix.
Included are changes to the parmetis package.py file to make use of
flag_handlers.
2018-01-19 09:39:38 -08:00
becker33
e0826804c2 Compiler flag handlers (#6415)
This adds the ability for packages to apply compiler flags in one of
three ways: by injecting them into the compiler wrapper calls (the
default in this PR and previously the only automated choice);
exporting environment variable definitions for variables with
corresponding names (e.g. CPPFLAGS=...); providing them as arguments
to the build system (e.g. configure).

When applying compiler flags using build system arguments, a package
must implement the 'flags_to_build_system_args" function. This is
provided for CMake and autotools packages, so for packages which
subclass those build systems, they need only update their flag
handler method specify which compiler flags should be specified as
arguments to the build system.

Convenience methods are provided to specify that all flags be applied
in one of the 3 available ways, so a custom implementation is only
required if more than one method of applying compiler flags is
needed.

This also removes redundant build system definitions from tutorial
examples
2018-01-19 09:32:24 -08:00
Todd Gamblin
c2a10a2aa2 Merge branch 'releases/v0.11.0' 2018-01-17 14:14:45 -08:00
Todd Gamblin
ba6c39310b Fix logo link in README.md to point to the develop branch. (#6969) 2018-01-17 09:07:40 -08:00
Todd Gamblin
974d166c8a Final changes for v0.11.0 (#6318) 2018-01-16 22:25:34 -08:00
scheibelp
7a0a907b5c elf relocation fix: cherry-picked from develop branch (#6889)
* Revert "Quick fix for relocation issues."

This reverts commit 57608a6dc4.

* Buildcache: relocate fixes (#6512)

* Updated function which checks if a binary file needs relocation.
  Previously this was incorrectly identifying ELF binaries as symbolic
  links (so they were being excluded from relocation). Added test to
  check that ELF binaries are not considered symlinks.

* relocate_text was not replacing paths in text files. Added test to
  check that text files are relocated properly (i.e. paths in the file
  are converted to the new prefix).

* Exclude backup files created by filter_file when installing from
  binary cache.

* Update write_buildinfo_file method signature to distinguish between
  the spec prefix and the working directory for the binary cache
  package.
2018-01-16 21:33:28 -08:00
Todd Gamblin
57608a6dc4 Quick fix for relocation issues. 2017-11-13 10:34:28 +00:00
Todd Gamblin
52a9e5d2a3 Merge branch 'releases/v0.10.0' 2017-01-17 01:36:03 -08:00
Todd Gamblin
4f8167b7ed Don't assume spack is in the path when building docs. 2016-08-15 10:57:15 -07:00
Todd Gamblin
164da8eed1 Version bump to 0.9.1
- Bugfixes for spack find
- 0.9.1 can read specs from current develop.
2016-05-18 08:30:13 -07:00
alalazo
6e1257ed2d fixes #967 2016-05-18 08:28:02 -07:00
9768 changed files with 121169 additions and 570955 deletions

View File

@@ -4,31 +4,33 @@ coverage:
range: 60...90
status:
project:
default:
threshold: 0.2%
default: true
llnl:
threshold: 0.5
paths:
- lib/spack/llnl
commands:
threshold: 0.5
paths:
- lib/spack/spack/cmd
build_systems:
threshold: 0.5
paths:
- lib/spack/spack/build_systems
modules:
threshold: 0.5
paths:
- lib/spack/spack/modules
core:
threshold: 0.5
paths:
- "!lib/spack/llnl"
- "!lib/spack/spack/cmd"
ignore:
- lib/spack/spack/test/.*
- lib/spack/env/.*
- lib/spack/docs/.*
- lib/spack/external/.*
- share/spack/qa/.*
comment: off
# Inline codecov annotations make the code hard to read, and they add
# annotations in files that seemingly have nothing to do with the PR.
github_checks:
annotations: false
# Attempt to fix "Missing base commit" messages in the codecov UI.
# Because we do not run full tests on package PRs, package PRs' merge
# commits on `develop` don't have coverage info. It appears that
# codecov will give you an error if the pseudo-base's coverage data
# doesn't all apply properly to the real PR base.
#
# See here for docs:
# https://docs.codecov.com/docs/comparing-commits#pseudo-comparison
# See here for another potential solution:
# https://community.codecov.com/t/2480/15
codecov:
allow_coverage_offsets: true

36
.coveragerc Normal file
View File

@@ -0,0 +1,36 @@
# -*- conf -*-
# .coveragerc to control coverage.py
[run]
parallel = True
concurrency = multiprocessing
branch = True
source = lib
omit =
lib/spack/spack/test/*
lib/spack/env/*
lib/spack/docs/*
lib/spack/external/*
[report]
# Regexes for lines to exclude from consideration
exclude_lines =
# Have to re-enable the standard pragma
pragma: no cover
# Don't complain about missing debug-only code:
def __repr__
if self\.debug
# Don't complain if tests don't hit defensive assertion code:
raise AssertionError
raise NotImplementedError
# Don't complain if non-runnable code isn't run:
if 0:
if False:
if __name__ == .__main__.:
ignore_errors = True
[html]
directory = htmlcov

View File

@@ -1,11 +1,6 @@
.git/*
opt/spack/*
/etc/spack/*
!/etc/spack/defaults
share/spack/dotkit/*
share/spack/lmod/*
share/spack/modules/*
lib/spack/spack/test/*
var/spack/cache/*
.git
opt/spack
share/spack/docker/Dockerfile
share/spack/docker/build-image.sh
share/spack/docker/run-image.sh
share/spack/docker/push-image.sh

64
.flake8
View File

@@ -1,56 +1,24 @@
# -*- conf -*-
# flake8 settings for Spack.
# flake8 settings for Spack core files.
#
# These exceptions are for Spack core files. We're slightly more lenient
# These exceptions ar for Spack core files. We're slightly more lenient
# with packages. See .flake8_packages for that.
#
# This is the only flake8 rule Spack violates somewhat flagrantly
# - E731: do not assign a lambda expression, use a def
# Let people line things up nicely:
# - E129: visually indented line with same indent as next logical line
# - E221: multiple spaces before operator
# - E241: multiple spaces after ','
# - E272: multiple spaces before keyword
#
# This is the only flake8 exception needed when using Black.
# - E203: white space around slice operators can be required, ignore : warn
# Let people use terse Python features:
# - E731: lambda expressions
#
# We still allow these in packages (Would like to get rid of them or rely on mypy
# in the future)
# - F403: from/import * used; unable to detect undefined names
# - F405: undefined name or from *
# - F821: undefined name (needed with from/import *)
# These are required to get the package.py files to test clean:
# - F999: syntax error in doctest
#
# Exempt to allow decorator classes to be lowercase, but follow otherwise:
# - N801: CapWords for class names.
#
[flake8]
#ignore = E129,,W503,W504,F999,N801,N813,N814,F403,F405,E203
extend-ignore = E731,E203
max-line-length = 99
# F4: Import
# - F405: `name` may be undefined, or undefined from star imports: `module`
#
# F8: Name
# - F821: undefined name `name`
#
per-file-ignores =
var/spack/repos/*/package.py:F403,F405,F821
*-ci-package.py:F403,F405,F821
# exclude things we usually do not want linting for.
# These still get linted when passed explicitly, as when spack flake8 passes
# them on the command line.
exclude =
.git
etc/
opt/
share/
var/spack/cache/
var/spack/gpg*/
var/spack/junit-report/
var/spack/mock-configs/
lib/spack/external
__pycache__
var
format = spack
[flake8:local-plugins]
report =
spack = flake8_formatter:SpackFormatter
paths =
./share/spack/qa/
ignore = E129,E221,E241,E272,E731,F999,N801,W503,W504
max-line-length = 79

22
.flake8_packages Normal file
View File

@@ -0,0 +1,22 @@
# -*- conf -*-
# flake8 settings for Spack package files.
#
# This should include all the same exceptions that we use for core files.
#
# In Spack packages, we also allow the single `from spack import *`
# wildcard import and dependencies can set globals for their
# dependents. So we add exceptions for checks related to undefined names.
#
# Note that we also add *per-line* exemptions for certain patters in the
# `spack flake8` command. This is where F403 for `from spack import *`
# is added (beause we *only* allow that wildcard).
#
# See .flake8 for regular exceptions.
#
# Redefinition exceptions:
# - F405: `name` may be undefined, or undefined from star imports: `module`
# - F821: undefined name `name` (needed for cmake, configure, etc.)
#
[flake8]
ignore = E129,E221,E241,E272,E731,F999,F405,F821,W503,W504
max-line-length = 79

View File

@@ -1,3 +0,0 @@
# .git-blame-ignore-revs
# Formatted entire codebase with black
f52f6e99dbf1131886a80112b8c79dfc414afb7c

3
.gitattributes vendored
View File

@@ -1,3 +0,0 @@
*.py diff=python
*.lp linguist-language=Prolog
lib/spack/external/* linguist-vendored

49
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,49 @@
---
name: Bug report
about: Report a bug in the core of Spack (command not working as expected, etc.)
---
*Explain, in a clear and concise way, the command you ran and the result you were trying to achieve.
Example: "I ran Spack find to list all the installed packages and..."*
### Steps to reproduce the issue
```console
$ spack <command1> <spec>
$ spack <command2> <spec>
...
```
### Error Message
If Spack reported an error, provide the error message. If it did not report an error
but the output appears incorrect, provide the incorrect output. If there was no error
message and no output but the result is incorrect, describe how it does not match
what you expect. To provide more information you might re-run the commands with
the additional -sd flags:
```console
$ spack -sd <command1> <spec>
$ spack -sd <command2> <spec>
...
```
that activate the full debug output.
### Information on your system
This includes:
1. which platform you are using
2. any relevant configuration detail (custom `packages.yaml` or `modules.yaml`, etc.)
-----
We encourage you to try, as much as possible, to reduce your problem to the minimal example that still reproduces the issue. That would help us a lot in fixing it quickly and effectively!
If you want to ask a question about the tool (how to use it, what it can currently do, etc.), try the `#general` channel on our Slack first. We have a welcoming community and chances are you'll get your reply faster and without opening an issue.
Other than that, thanks for taking the time to contribute to Spack!

View File

@@ -1,58 +0,0 @@
name: "\U0001F41E Bug report"
description: Report a bug in the core of Spack (command not working as expected, etc.)
labels: [bug, triage]
body:
- type: textarea
id: reproduce
attributes:
label: Steps to reproduce
description: |
Explain, in a clear and concise way, the command you ran and the result you were trying to achieve.
Example: "I ran `spack find` to list all the installed packages and ..."
placeholder: |
```console
$ spack <command1> <spec>
$ spack <command2> <spec>
...
```
validations:
required: true
- type: textarea
id: error
attributes:
label: Error message
description: |
If Spack reported an error, provide the error message. If it did not report an error but the output appears incorrect, provide the incorrect output. If there was no error message and no output but the result is incorrect, describe how it does not match what you expect.
placeholder: |
```console
$ spack --debug --stacktrace <command>
```
- type: textarea
id: information
attributes:
label: Information on your system
description: Please include the output of `spack debug report`
validations:
required: true
- type: markdown
attributes:
value: |
If you have any relevant configuration detail (custom `packages.yaml` or `modules.yaml`, etc.) you can add that here as well.
- type: checkboxes
id: checks
attributes:
label: General information
options:
- label: I have run `spack debug report` and reported the version of Spack/Python/Platform
required: true
- label: I have searched the issues of this repo and believe this is not a duplicate
required: true
- label: I have run the failing commands in debug mode and reported the output
required: true
- type: markdown
attributes:
value: |
We encourage you to try, as much as possible, to reduce your problem to the minimal example that still reproduces the issue. That would help us a lot in fixing it quickly and effectively!
If you want to ask a question about the tool (how to use it, what it can currently do, etc.), try the `#general` channel on [our Slack](https://slack.spack.io/) first. We have a welcoming community and chances are you'll get your reply faster and without opening an issue.
Other than that, thanks for taking the time to contribute to Spack!

78
.github/ISSUE_TEMPLATE/build_error.md vendored Normal file
View File

@@ -0,0 +1,78 @@
---
name: Build error
about: Some package in Spack didn't build correctly
---
*Thanks for taking the time to report this build failure. To proceed with the
report please:*
1. Title the issue "Installation issue: <name-of-the-package>".
2. Provide the information required below.
3. Remove the template instructions before posting the issue.
We encourage you to try, as much as possible, to reduce your problem to the minimal example that still reproduces the issue. That would help us a lot in fixing it quickly and effectively!
---
### Steps to reproduce the issue
```console
$ spack install <spec> # Fill in the exact spec you are using
... # and the relevant part of the error message
```
### Platform and user environment
Please report your OS here:
```commandline
$ uname -a
Linux nuvolari 4.15.0-29-generic #31-Ubuntu SMP Tue Jul 17 15:39:52 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
$ lsb_release -d
Description: Ubuntu 18.04.1 LTS
```
and, if relevant, post or attach:
- `packages.yaml`
- `compilers.yaml`
to the issue
### Additional information
Sometimes the issue benefits from additional details. In these cases there are
a few things we can suggest doing. First of all, you can post the full output of:
```console
$ spack spec --install-status <spec>
...
```
to show people whether Spack installed a faulty software or if it was not able to
build it at all.
If your build didn't make it past the configure stage, Spack as also commands to parse
logs and report error and warning messages:
```console
$ spack log-parse --show=errors,warnings <file-to-parse>
```
You might want to run this command on the `config.log` or any other similar file
found in the stage directory:
```console
$ spack location -s <spec>
```
In case in `config.log` there are other settings that you think might be the cause
of the build failure, you can consider attaching the file to this issue.
Rebuilding the package with the following options:
```console
$ spack -d install -j 1 <spec>
...
```
will provide additional debug information. After the failure you will find two files in the current directory:
1. `spack-cc-<spec>.in`, which contains details on the command given in input
to Spack's compiler wrapper
1. `spack-cc-<spec>.out`, which contains the command used to compile / link the
failed object after Spack's compiler wrapper did its processing
You can post or attach those files to provide maintainers with more information on what
is causing the failure.

View File

@@ -1,74 +0,0 @@
name: "\U0001F4A5 Build error"
description: Some package in Spack didn't build correctly
title: "Installation issue: "
labels: [build-error]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to report this build failure. To proceed with the report please:
1. Title the issue `Installation issue: <name-of-the-package>`.
2. Provide the information required below.
We encourage you to try, as much as possible, to reduce your problem to the minimal example that still reproduces the issue. That would help us a lot in fixing it quickly and effectively!
- type: textarea
id: reproduce
attributes:
label: Steps to reproduce the issue
description: |
Fill in the console output from the exact spec you are trying to build.
value: |
```console
$ spack spec -I <spec>
...
```
- type: textarea
id: error
attributes:
label: Error message
description: |
Please post the error message from spack inside the `<details>` tag below:
value: |
<details><summary>Error message</summary><pre>
...
</pre></details>
validations:
required: true
- type: textarea
id: information
attributes:
label: Information on your system
description: Please include the output of `spack debug report`.
validations:
required: true
- type: markdown
attributes:
value: |
If you have any relevant configuration detail (custom `packages.yaml` or `modules.yaml`, etc.) you can add that here as well.
- type: textarea
id: additional_information
attributes:
label: Additional information
description: |
Please upload the following files:
* **`spack-build-out.txt`**
* **`spack-build-env.txt`**
They should be present in the stage directory of the failing build. Also upload any `config.log` or similar file if one exists.
- type: markdown
attributes:
value: |
Some packages have maintainers who have volunteered to debug build failures. Run `spack maintainers <name-of-the-package>` and **@mention** them here if they exist.
- type: checkboxes
id: checks
attributes:
label: General information
options:
- label: I have run `spack debug report` and reported the version of Spack/Python/Platform
required: true
- label: I have run `spack maintainers <name-of-the-package>` and **@mentioned** any maintainers
required: true
- label: I have uploaded the build log and environment files
required: true
- label: I have searched the issues of this repo and believe this is not a duplicate
required: true

View File

@@ -1 +0,0 @@
blank_issues_enabled: true

View File

@@ -0,0 +1,27 @@
---
name: Feature request
about: Suggest adding a feature that is not yet in Spack
---
*Please add a concise summary of your suggestion here.*
### Rationale
*Is your feature request related to a problem? Please describe it!*
### Description
*Describe the solution you'd like and the alternatives you have considered.*
### Additional information
*Add any other context about the feature request here.*
-----
If you want to ask a question about the tool (how to use it, what it can currently do, etc.), try the `#general` channel on our Slack first. We have a welcoming community and chances are you'll get your reply faster and without opening an issue.
Other than that, thanks for taking the time to contribute to Spack!

View File

@@ -1,41 +0,0 @@
name: "\U0001F38A Feature request"
description: Suggest adding a feature that is not yet in Spack
labels: [feature]
body:
- type: textarea
id: summary
attributes:
label: Summary
description: Please add a concise summary of your suggestion here.
validations:
required: true
- type: textarea
id: rationale
attributes:
label: Rationale
description: Is your feature request related to a problem? Please describe it!
- type: textarea
id: description
attributes:
label: Description
description: Describe the solution you'd like and the alternatives you have considered.
- type: textarea
id: additional_information
attributes:
label: Additional information
description: Add any other context about the feature request here.
- type: checkboxes
id: checks
attributes:
label: General information
options:
- label: I have run `spack --version` and reported the version of Spack
required: true
- label: I have searched the issues of this repo and believe this is not a duplicate
required: true
- type: markdown
attributes:
value: |
If you want to ask a question about the tool (how to use it, what it can currently do, etc.), try the `#general` channel on [our Slack](https://slack.spack.io/) first. We have a welcoming community and chances are you'll get your reply faster and without opening an issue.
Other than that, thanks for taking the time to contribute to Spack!

View File

@@ -1,62 +0,0 @@
name: "\U0001F4A5 Tests error"
description: Some package in Spack had stand-alone tests that didn't pass
title: "Testing issue: "
labels: [test-error]
body:
- type: textarea
id: reproduce
attributes:
label: Steps to reproduce the failure(s) or link(s) to test output(s)
description: |
Fill in the test output from the exact spec that is having stand-alone test failures. Links to test outputs (e.g., CDash) can also be provided.
value: |
```console
$ spack spec -I <spec>
...
```
- type: textarea
id: error
attributes:
label: Error message
description: |
Please post the error message from spack inside the `<details>` tag below:
value: |
<details><summary>Error message</summary><pre>
...
</pre></details>
validations:
required: true
- type: textarea
id: information
attributes:
label: Information on your system or the test runner
description: Please include the output of `spack debug report` for your system.
validations:
required: true
- type: markdown
attributes:
value: |
If you have any relevant configuration detail (custom `packages.yaml` or `modules.yaml`, etc.) you can add that here as well.
- type: textarea
id: additional_information
attributes:
label: Additional information
description: |
Please upload test logs or any additional information about the problem.
- type: markdown
attributes:
value: |
Some packages have maintainers who have volunteered to debug build failures. Run `spack maintainers <name-of-the-package>` and **@mention** them here if they exist.
- type: checkboxes
id: checks
attributes:
label: General information
options:
- label: I have reported the version of Spack/Python/Platform/Runner
required: true
- label: I have run `spack maintainers <name-of-the-package>` and **@mentioned** any maintainers
required: true
- label: I have uploaded any available logs
required: true
- label: I have searched the issues of this repo and believe this is not a duplicate
required: true

View File

@@ -1,7 +0,0 @@
version: 2
updates:
# Maintain dependencies for GitHub Actions
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "daily"

View File

@@ -1,44 +0,0 @@
name: audit
on:
workflow_call:
inputs:
with_coverage:
required: true
type: string
python_version:
required: true
type: string
concurrency:
group: audit-${{inputs.python_version}}-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
# Run audits on all the packages in the built-in repository
package-audits:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: ${{inputs.python_version}}
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov coverage[toml]
- name: Package audits (with coverage)
if: ${{ inputs.with_coverage == 'true' }}
run: |
. share/spack/setup-env.sh
coverage run $(which spack) audit packages
coverage combine
coverage xml
- name: Package audits (without coverage)
if: ${{ inputs.with_coverage == 'false' }}
run: |
. share/spack/setup-env.sh
$(which spack) audit packages
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70 # @v2.1.0
if: ${{ inputs.with_coverage == 'true' }}
with:
flags: unittests,linux,audits

View File

@@ -1,7 +0,0 @@
#!/bin/bash
set -ex
source share/spack/setup-env.sh
$PYTHON bin/spack bootstrap disable spack-install
$PYTHON bin/spack -d solve zlib
tree $BOOTSTRAP/store
exit 0

View File

@@ -1,352 +0,0 @@
name: Bootstrapping
on:
# This Workflow can be triggered manually
workflow_dispatch:
workflow_call:
schedule:
# nightly at 2:16 AM
- cron: '16 2 * * *'
concurrency:
group: bootstrap-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
fedora-clingo-sources:
runs-on: ubuntu-latest
container: "fedora:latest"
steps:
- name: Install dependencies
run: |
dnf install -y \
bzip2 curl file gcc-c++ gcc gcc-gfortran git gnupg2 gzip \
make patch unzip which xz python3 python3-devel tree \
cmake bison bison-devel libstdc++-static
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
ubuntu-clingo-sources:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
DEBIAN_FRONTEND: noninteractive
run: |
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc gfortran git gnupg2 gzip \
make patch unzip xz-utils python3 python3-dev tree \
cmake bison
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
ubuntu-clingo-binaries-and-patchelf:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
DEBIAN_FRONTEND: noninteractive
run: |
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc gfortran git gnupg2 gzip \
make patch unzip xz-utils python3 python3-dev tree
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack -d solve zlib
tree ~/.spack/bootstrap/store/
opensuse-clingo-sources:
runs-on: ubuntu-latest
container: "opensuse/leap:latest"
steps:
- name: Install dependencies
run: |
# Harden CI by applying the workaround described here: https://www.suse.com/support/kb/doc/?id=000019505
zypper update -y || zypper update -y
zypper install -y \
bzip2 curl file gcc-c++ gcc gcc-fortran tar git gpg2 gzip \
make patch unzip which xz python3 python3-devel tree \
cmake bison
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup repo
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
run: |
source share/spack/setup-env.sh
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
macos-clingo-sources:
runs-on: macos-latest
steps:
- name: Install dependencies
run: |
brew install cmake bison@2.7 tree
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap clingo
run: |
source share/spack/setup-env.sh
export PATH=/usr/local/opt/bison@2.7/bin:$PATH
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack external find --not-buildable cmake bison
spack -d solve zlib
tree ~/.spack/bootstrap/store/
macos-clingo-binaries:
runs-on: ${{ matrix.macos-version }}
strategy:
matrix:
macos-version: ['macos-11', 'macos-12']
steps:
- name: Install dependencies
run: |
brew install tree
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap clingo
run: |
set -ex
for ver in '3.6' '3.7' '3.8' '3.9' '3.10' ; do
not_found=1
ver_dir="$(find $RUNNER_TOOL_CACHE/Python -wholename "*/${ver}.*/*/bin" | grep . || true)"
echo "Testing $ver_dir"
if [[ -d "$ver_dir" ]] ; then
if $ver_dir/python --version ; then
export PYTHON="$ver_dir/python"
not_found=0
old_path="$PATH"
export PATH="$ver_dir:$PATH"
./bin/spack-tmpconfig -b ./.github/workflows/bootstrap-test.sh
export PATH="$old_path"
fi
fi
# NOTE: test all pythons that exist, not all do on 12
done
ubuntu-clingo-binaries:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup repo
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
run: |
set -ex
for ver in '2.7' '3.6' '3.7' '3.8' '3.9' '3.10' ; do
not_found=1
ver_dir="$(find $RUNNER_TOOL_CACHE/Python -wholename "*/${ver}.*/*/bin" | grep . || true)"
echo "Testing $ver_dir"
if [[ -d "$ver_dir" ]] ; then
if $ver_dir/python --version ; then
export PYTHON="$ver_dir/python"
not_found=0
old_path="$PATH"
export PATH="$ver_dir:$PATH"
./bin/spack-tmpconfig -b ./.github/workflows/bootstrap-test.sh
export PATH="$old_path"
fi
fi
if (($not_found)) ; then
echo Required python version $ver not found in runner!
exit 1
fi
done
ubuntu-gnupg-binaries:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
DEBIAN_FRONTEND: noninteractive
run: |
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc patchelf gfortran git gzip \
make patch unzip xz-utils python3 python3-dev tree
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap GnuPG
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack bootstrap disable spack-install
spack -d gpg list
tree ~/.spack/bootstrap/store/
ubuntu-gnupg-sources:
runs-on: ubuntu-latest
container: "ubuntu:latest"
steps:
- name: Install dependencies
env:
DEBIAN_FRONTEND: noninteractive
run: |
apt-get update -y && apt-get upgrade -y
apt-get install -y \
bzip2 curl file g++ gcc patchelf gfortran git gzip \
make patch unzip xz-utils python3 python3-dev tree \
gawk
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- name: Setup non-root user
run: |
# See [1] below
git config --global --add safe.directory /__w/spack/spack
useradd spack-test && mkdir -p ~spack-test
chown -R spack-test . ~spack-test
- name: Setup repo
shell: runuser -u spack-test -- bash {0}
run: |
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap GnuPG
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack solve zlib
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack -d gpg list
tree ~/.spack/bootstrap/store/
macos-gnupg-binaries:
runs-on: macos-latest
steps:
- name: Install dependencies
run: |
brew install tree
# Remove GnuPG since we want to bootstrap it
sudo rm -rf /usr/local/bin/gpg
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap GnuPG
run: |
source share/spack/setup-env.sh
spack bootstrap disable spack-install
spack -d gpg list
tree ~/.spack/bootstrap/store/
macos-gnupg-sources:
runs-on: macos-latest
steps:
- name: Install dependencies
run: |
brew install gawk tree
# Remove GnuPG since we want to bootstrap it
sudo rm -rf /usr/local/bin/gpg
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
- name: Bootstrap GnuPG
run: |
source share/spack/setup-env.sh
spack solve zlib
spack bootstrap disable github-actions-v0.4
spack bootstrap disable github-actions-v0.3
spack -d gpg list
tree ~/.spack/bootstrap/store/
# [1] Distros that have patched git to resolve CVE-2022-24765 (e.g. Ubuntu patching v2.25.1)
# introduce breaking behaviorso we have to set `safe.directory` in gitconfig ourselves.
# See:
# - https://github.blog/2022-04-12-git-security-vulnerability-announced/
# - https://github.com/actions/checkout/issues/760
# - http://changelogs.ubuntu.com/changelogs/pool/main/g/git/git_2.25.1-1ubuntu3.3/changelog

View File

@@ -1,120 +0,0 @@
name: Containers
on:
# This Workflow can be triggered manually
workflow_dispatch:
# Build new Spack develop containers nightly.
schedule:
- cron: '34 0 * * *'
# Run on pull requests that modify this file
pull_request:
branches:
- develop
paths:
- '.github/workflows/build-containers.yml'
- 'share/spack/docker/*'
- 'share/spack/templates/container/*'
- 'lib/spack/spack/container/*'
# Let's also build & tag Spack containers on releases.
release:
types: [published]
concurrency:
group: build_containers-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
deploy-images:
runs-on: ubuntu-latest
permissions:
packages: write
strategy:
# Even if one container fails to build we still want the others
# to continue their builds.
fail-fast: false
# A matrix of Dockerfile paths, associated tags, and which architectures
# they support.
matrix:
# Meaning of the various items in the matrix list
# 0: Container name (e.g. ubuntu-bionic)
# 1: Platforms to build for
# 2: Base image (e.g. ubuntu:18.04)
dockerfile: [[amazon-linux, 'linux/amd64,linux/arm64', 'amazonlinux:2'],
[centos7, 'linux/amd64,linux/arm64,linux/ppc64le', 'centos:7'],
[centos-stream, 'linux/amd64,linux/arm64,linux/ppc64le', 'centos:stream'],
[leap15, 'linux/amd64,linux/arm64,linux/ppc64le', 'opensuse/leap:15'],
[ubuntu-bionic, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:18.04'],
[ubuntu-focal, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:20.04'],
[ubuntu-jammy, 'linux/amd64,linux/arm64,linux/ppc64le', 'ubuntu:22.04']]
name: Build ${{ matrix.dockerfile[0] }}
if: github.repository == 'spack/spack'
steps:
- name: Checkout
uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- name: Set Container Tag Normal (Nightly)
run: |
container="${{ matrix.dockerfile[0] }}:latest"
echo "container=${container}" >> $GITHUB_ENV
echo "versioned=${container}" >> $GITHUB_ENV
# On a new release create a container with the same tag as the release.
- name: Set Container Tag on Release
if: github.event_name == 'release'
run: |
versioned="${{matrix.dockerfile[0]}}:${GITHUB_REF##*/}"
echo "versioned=${versioned}" >> $GITHUB_ENV
- name: Generate the Dockerfile
env:
SPACK_YAML_OS: "${{ matrix.dockerfile[2] }}"
run: |
.github/workflows/generate_spack_yaml_containerize.sh
. share/spack/setup-env.sh
mkdir -p dockerfiles/${{ matrix.dockerfile[0] }}
spack containerize --last-stage=bootstrap | tee dockerfiles/${{ matrix.dockerfile[0] }}/Dockerfile
printf "Preparing to build ${{ env.container }} from dockerfiles/${{ matrix.dockerfile[0] }}/Dockerfile"
if [ ! -f "dockerfiles/${{ matrix.dockerfile[0] }}/Dockerfile" ]; then
printf "dockerfiles/${{ matrix.dockerfile[0] }}/Dockerfile does not exist"
exit 1;
fi
- name: Upload Dockerfile
uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
with:
name: dockerfiles
path: dockerfiles
- name: Set up QEMU
uses: docker/setup-qemu-action@e81a89b1732b9c48d79cd809d8d81d79c4647a18 # @v1
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@8c0edbc76e98fa90f69d9a2c020dcb50019dc325 # @v1
- name: Log in to GitHub Container Registry
uses: docker/login-action@f4ef78c080cd8ba55a85445d5b36e214a81df20a # @v1
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Log in to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@f4ef78c080cd8ba55a85445d5b36e214a81df20a # @v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build & Deploy ${{ matrix.dockerfile[0] }}
uses: docker/build-push-action@c56af957549030174b10d6867f20e78cfd7debc5 # @v2
with:
context: dockerfiles/${{ matrix.dockerfile[0] }}
platforms: ${{ matrix.dockerfile[1] }}
push: ${{ github.event_name != 'pull_request' }}
cache-from: type=gha
cache-to: type=gha,mode=max
tags: |
spack/${{ env.container }}
spack/${{ env.versioned }}
ghcr.io/spack/${{ env.container }}
ghcr.io/spack/${{ env.versioned }}

View File

@@ -1,92 +0,0 @@
name: ci
on:
push:
branches:
- develop
- releases/**
pull_request:
branches:
- develop
- releases/**
concurrency:
group: ci-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
prechecks:
needs: [ changes ]
uses: ./.github/workflows/valid-style.yml
with:
with_coverage: ${{ needs.changes.outputs.core }}
audit-ancient-python:
uses: ./.github/workflows/audit.yaml
needs: [ changes ]
with:
with_coverage: ${{ needs.changes.outputs.core }}
python_version: 2.7
all-prechecks:
needs: [ prechecks ]
runs-on: ubuntu-latest
steps:
- name: Success
run: "true"
# Check which files have been updated by the PR
changes:
runs-on: ubuntu-latest
# Set job outputs to values from filter step
outputs:
bootstrap: ${{ steps.filter.outputs.bootstrap }}
core: ${{ steps.filter.outputs.core }}
packages: ${{ steps.filter.outputs.packages }}
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
if: ${{ github.event_name == 'push' }}
with:
fetch-depth: 0
# For pull requests it's not necessary to checkout the code
- uses: dorny/paths-filter@4512585405083f25c027a35db413c2b3b9006d50
id: filter
with:
# See https://github.com/dorny/paths-filter/issues/56 for the syntax used below
# Don't run if we only modified packages in the
# built-in repository or documentation
filters: |
bootstrap:
- 'var/spack/repos/builtin/packages/clingo-bootstrap/**'
- 'var/spack/repos/builtin/packages/clingo/**'
- 'var/spack/repos/builtin/packages/python/**'
- 'var/spack/repos/builtin/packages/re2c/**'
- 'lib/spack/**'
- 'share/spack/**'
- '.github/workflows/bootstrap.yml'
- '.github/workflows/ci.yaml'
core:
- './!(var/**)/**'
packages:
- 'var/**'
# Some links for easier reference:
#
# "github" context: https://docs.github.com/en/actions/reference/context-and-expression-syntax-for-github-actions#github-context
# job outputs: https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idoutputs
# setting environment variables from earlier steps: https://docs.github.com/en/actions/reference/workflow-commands-for-github-actions#setting-an-environment-variable
#
bootstrap:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.bootstrap == 'true' }}
needs: [ prechecks, changes ]
uses: ./.github/workflows/bootstrap.yml
unit-tests:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.core == 'true' }}
needs: [ prechecks, changes ]
uses: ./.github/workflows/unit_tests.yaml
windows:
if: ${{ github.repository == 'spack/spack' && needs.changes.outputs.core == 'true' }}
needs: [ prechecks ]
uses: ./.github/workflows/windows_python.yml
all:
needs: [ windows, unit-tests, bootstrap, audit-ancient-python ]
runs-on: ubuntu-latest
steps:
- name: Success
run: "true"

View File

@@ -1,7 +0,0 @@
$ proc = Start-Process ${{ env.spack_installer }}\spack.exe "/install /quiet" -Passthru
$handle = $proc.Handle # cache proc.Handle
$proc.WaitForExit();
if ($proc.ExitCode -ne 0) {
Write-Warning "$_ exited with status code $($proc.ExitCode)"
}

View File

@@ -1,9 +0,0 @@
#!/bin/bash
(echo "spack:" \
&& echo " specs: []" \
&& echo " container:" \
&& echo " format: docker" \
&& echo " images:" \
&& echo " os: \"${SPACK_YAML_OS}\"" \
&& echo " spack:" \
&& echo " ref: ${GITHUB_REF}") > spack.yaml

View File

@@ -1,8 +0,0 @@
#!/usr/bin/env sh
. share/spack/setup-env.sh
echo -e "config:\n build_jobs: 2" > etc/spack/config.yaml
spack config add "packages:all:target:[x86_64]"
spack compiler find
spack compiler info apple-clang
spack debug report
spack solve zlib

View File

@@ -1,16 +0,0 @@
# (c) 2021 Lawrence Livermore National Laboratory
Set-Location spack
git config --global user.email "spack@example.com"
git config --global user.name "Test User"
git config --global core.longpaths true
# See https://github.com/git/git/security/advisories/GHSA-3wp6-j8xr-qw85 (CVE-2022-39253)
# This is needed to let some fixture in our unit-test suite run
git config --global protocol.file.allow always
if ($(git branch --show-current) -ne "develop")
{
git branch develop origin/develop
}

View File

@@ -1,12 +0,0 @@
#!/bin/bash -e
git config --global user.email "spack@example.com"
git config --global user.name "Test User"
# See https://github.com/git/git/security/advisories/GHSA-3wp6-j8xr-qw85 (CVE-2022-39253)
# This is needed to let some fixture in our unit-test suite run
git config --global protocol.file.allow always
# create a local pr base branch
if [[ -n $GITHUB_BASE_REF ]]; then
git fetch origin "${GITHUB_BASE_REF}:${GITHUB_BASE_REF}"
fi

View File

@@ -1,4 +0,0 @@
param ($systemFolder, $shortcut)
$start = [System.Environment]::GetFolderPath("$systemFolder")
Invoke-Item "$start\Programs\Spack\$shortcut"

View File

@@ -1,223 +0,0 @@
name: unit tests
on:
workflow_dispatch:
workflow_call:
concurrency:
group: unit_tests-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
# Run unit tests with different configurations on linux
ubuntu:
runs-on: ubuntu-20.04
strategy:
matrix:
python-version: ['2.7', '3.6', '3.7', '3.8', '3.9', '3.10', '3.11']
concretizer: ['clingo']
on_develop:
- ${{ github.ref == 'refs/heads/develop' }}
include:
- python-version: 2.7
concretizer: original
on_develop: ${{ github.ref == 'refs/heads/develop' }}
- python-version: '3.11'
concretizer: original
on_develop: ${{ github.ref == 'refs/heads/develop' }}
exclude:
- python-version: '3.7'
concretizer: 'clingo'
on_develop: false
- python-version: '3.8'
concretizer: 'clingo'
on_develop: false
- python-version: '3.9'
concretizer: 'clingo'
on_develop: false
- python-version: '3.10'
concretizer: 'clingo'
on_develop: false
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: ${{ matrix.python-version }}
- name: Install System packages
run: |
sudo apt-get -y update
# Needed for unit tests
sudo apt-get -y install \
coreutils cvs gfortran graphviz gnupg2 mercurial ninja-build \
patchelf cmake bison libbison-dev kcov
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov[toml] pytest-xdist
# Install pytest-cov only on recent Python, to avoid stalling on Python 2.7 due
# to bugs on an unmaintained version of the package when used with xdist.
if [[ ${{ matrix.python-version }} != "2.7" ]]; then
pip install --upgrade pytest-cov
fi
# ensure style checks are not skipped in unit tests for python >= 3.6
# note that true/false (i.e., 1/0) are opposite in conditions in python and bash
if python -c 'import sys; sys.exit(not sys.version_info >= (3, 6))'; then
pip install --upgrade flake8 "isort>=4.3.5" "mypy>=0.900" "click==8.0.4" "black<=21.12b0"
fi
- name: Pin pathlib for Python 2.7
if: ${{ matrix.python-version == 2.7 }}
run: |
pip install -U pathlib2==2.3.6 toml
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Bootstrap clingo
if: ${{ matrix.concretizer == 'clingo' }}
env:
SPACK_PYTHON: python
run: |
. share/spack/setup-env.sh
spack bootstrap disable spack-install
spack -v solve zlib
- name: Run unit tests
env:
SPACK_PYTHON: python
SPACK_TEST_SOLVER: ${{ matrix.concretizer }}
SPACK_TEST_PARALLEL: 2
COVERAGE: true
UNIT_TEST_COVERAGE: ${{ (matrix.python-version == '3.11') }}
run: |
share/spack/qa/run-unit-tests
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,linux,${{ matrix.concretizer }}
# Test shell integration
shell:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
- name: Install System packages
run: |
sudo apt-get -y update
# Needed for shell tests
sudo apt-get install -y coreutils kcov csh zsh tcsh fish dash bash
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov coverage[toml] pytest-xdist
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Run shell tests
env:
COVERAGE: true
run: |
share/spack/qa/run-shell-tests
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: shelltests,linux
# Test RHEL8 UBI with platform Python. This job is run
# only on PRs modifying core Spack
rhel8-platform-python:
runs-on: ubuntu-latest
container: registry.access.redhat.com/ubi8/ubi
steps:
- name: Install dependencies
run: |
dnf install -y \
bzip2 curl file gcc-c++ gcc gcc-gfortran git gnupg2 gzip \
make patch tcl unzip which xz
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- name: Setup repo and non-root user
run: |
git --version
git fetch --unshallow
. .github/workflows/setup_git.sh
useradd spack-test
chown -R spack-test .
- name: Run unit tests
shell: runuser -u spack-test -- bash {0}
run: |
source share/spack/setup-env.sh
spack -d solve zlib
spack unit-test -k 'not cvs and not svn and not hg' -x --verbose
# Test for the clingo based solver (using clingo-cffi)
clingo-cffi:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
- name: Install System packages
run: |
sudo apt-get -y update
# Needed for unit tests
sudo apt-get -y install \
coreutils cvs gfortran graphviz gnupg2 mercurial ninja-build \
patchelf kcov
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools pytest codecov coverage[toml] pytest-cov clingo pytest-xdist
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Run unit tests (full suite with coverage)
env:
COVERAGE: true
SPACK_TEST_SOLVER: clingo
run: |
share/spack/qa/run-unit-tests
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70 # @v2.1.0
with:
flags: unittests,linux,clingo
# Run unit tests on MacOS
macos:
runs-on: macos-latest
strategy:
matrix:
python-version: ["3.10"]
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: ${{ matrix.python-version }}
- name: Install Python packages
run: |
pip install --upgrade pip six setuptools
pip install --upgrade pytest codecov coverage[toml] pytest-xdist pytest-cov
- name: Setup Homebrew packages
run: |
brew install dash fish gcc gnupg2 kcov
- name: Run unit tests
env:
SPACK_TEST_SOLVER: clingo
SPACK_TEST_PARALLEL: 4
run: |
git --version
. .github/workflows/setup_git.sh
. share/spack/setup-env.sh
$(which spack) bootstrap disable spack-install
$(which spack) solve zlib
common_args=(--dist loadfile --tx '4*popen//python=./bin/spack-tmpconfig python -u ./bin/spack python' -x)
$(which spack) unit-test --cov --cov-config=pyproject.toml --cov-report=xml:coverage.xml "${common_args[@]}"
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,macos

View File

@@ -1,60 +0,0 @@
name: style
on:
workflow_call:
inputs:
with_coverage:
required: true
type: string
concurrency:
group: style-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
jobs:
# Validate that the code can be run on all the Python versions
# supported by Spack
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
cache: 'pip'
- name: Install Python Packages
run: |
pip install --upgrade pip
pip install --upgrade vermin
- name: vermin (Spack's Core)
run: vermin --backport argparse --violations --backport typing -t=2.7- -t=3.6- -vvv lib/spack/spack/ lib/spack/llnl/ bin/
- name: vermin (Repositories)
run: vermin --backport argparse --violations --backport typing -t=2.7- -t=3.6- -vvv var/spack/repos
# Run style checks on the files that have been changed
style:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8 # @v2
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984 # @v2
with:
python-version: '3.11'
cache: 'pip'
- name: Install Python packages
run: |
python3 -m pip install --upgrade pip six setuptools types-six click==8.0.2 'black==21.12b0' mypy isort clingo flake8
- name: Setup git configuration
run: |
# Need this for the git tests to succeed.
git --version
. .github/workflows/setup_git.sh
- name: Run style tests
run: |
share/spack/qa/run-style-tests
audit:
uses: ./.github/workflows/audit.yaml
with:
with_coverage: ${{ inputs.with_coverage }}
python_version: '3.11'

View File

@@ -1,158 +0,0 @@
name: windows
on:
workflow_call:
concurrency:
group: windows-${{github.ref}}-${{github.event.pull_request.number || github.run_number}}
cancel-in-progress: true
defaults:
run:
shell:
powershell Invoke-Expression -Command ".\share\spack\qa\windows_test_setup.ps1"; {0}
jobs:
unit-tests:
runs-on: windows-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov pytest-cov clingo
- name: Create local develop
run: |
.\spack\.github\workflows\setup_git.ps1
- name: Unit Test
run: |
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
cd spack
dir
spack unit-test -x --verbose --cov --cov-config=pyproject.toml --ignore=lib/spack/spack/test/cmd
coverage combine -a
coverage xml
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,windows
unit-tests-cmd:
runs-on: windows-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage pytest-cov clingo
- name: Create local develop
run: |
.\spack\.github\workflows\setup_git.ps1
- name: Command Unit Test
run: |
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
cd spack
spack unit-test -x --verbose --cov --cov-config=pyproject.toml lib/spack/spack/test/cmd
coverage combine -a
coverage xml
- uses: codecov/codecov-action@d9f34f8cd5cb3b3eb79b3e4b5dae3a16df499a70
with:
flags: unittests,windows
build-abseil:
runs-on: windows-latest
steps:
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools codecov coverage
- name: Build Test
run: |
spack compiler find
echo F|xcopy .\spack\share\spack\qa\configuration\windows_config.yaml $env:USERPROFILE\.spack\windows\config.yaml
spack external find cmake
spack external find ninja
spack -d install abseil-cpp
make-installer:
runs-on: windows-latest
steps:
- name: Disable Windows Symlinks
run: |
git config --global core.symlinks false
shell:
powershell
- uses: actions/checkout@93ea575cb5d8a053eaa0ac8fa3b40d7e05a33cc8
with:
fetch-depth: 0
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools
- name: Add Light and Candle to Path
run: |
$env:WIX >> $GITHUB_PATH
- name: Run Installer
run: |
.\spack\share\spack\qa\setup_spack.ps1
spack make-installer -s spack -g SILENT pkg
echo "installer_root=$((pwd).Path)" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
env:
ProgressPreference: SilentlyContinue
- uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
with:
name: Windows Spack Installer Bundle
path: ${{ env.installer_root }}\pkg\Spack.exe
- uses: actions/upload-artifact@83fd05a356d7e2593de66fc9913b3002723633cb
with:
name: Windows Spack Installer
path: ${{ env.installer_root}}\pkg\Spack.msi
execute-installer:
needs: make-installer
runs-on: windows-latest
defaults:
run:
shell: pwsh
steps:
- uses: actions/setup-python@13ae5bb136fac2878aff31522b9efb785519f984
with:
python-version: 3.9
- name: Install Python packages
run: |
python -m pip install --upgrade pip six pywin32 setuptools
- name: Setup installer directory
run: |
mkdir -p spack_installer
echo "spack_installer=$((pwd).Path)\spack_installer" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
- uses: actions/download-artifact@v3
with:
name: Windows Spack Installer Bundle
path: ${{ env.spack_installer }}
- name: Execute Bundled Installer
run: |
$proc = Start-Process ${{ env.spack_installer }}\spack.exe "/install /quiet" -Passthru
$handle = $proc.Handle # cache proc.Handle
$proc.WaitForExit();
$LASTEXITCODE
env:
ProgressPreference: SilentlyContinue
- uses: actions/download-artifact@v3
with:
name: Windows Spack Installer
path: ${{ env.spack_installer }}
- name: Execute MSI
run: |
$proc = Start-Process ${{ env.spack_installer }}\spack.msi "/quiet" -Passthru
$handle = $proc.Handle # cache proc.Handle
$proc.WaitForExit();
$LASTEXITCODE

517
.gitignore vendored
View File

@@ -1,515 +1,28 @@
##########################
# Spack-specific ignores #
##########################
/db
/var/spack/stage
/var/spack/cache
/var/spack/environments
/var/spack/repos/*/index.yaml
/var/spack/repos/*/lock
*.pyc
/opt
*~
.DS_Store
.idea
# Ignore everything in /etc/spack except /etc/spack/defaults
/etc/spack/*
!/etc/spack/defaults
/etc/spackconfig
/share/spack/dotkit
/share/spack/modules
/share/spack/lmod
# Debug logs
spack-db.*
/TAGS
*.swp
/htmlcov
.coverage
#*
.#*
lib/spack/spack/test/.cache
/bin/spackc
*.in.log
*.out.log
###########################
# Python-specific ignores #
###########################
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
#lib/
#lib64/
parts/
sdist/
#var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
!/lib/spack/env
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
########################
# Vim-specific ignores #
########################
# Swap
[._]*.s[a-v][a-z]
!*.svg # comment out if you don't need vector files
[._]*.sw[a-p]
[._]s[a-rt-v][a-z]
[._]ss[a-gi-z]
[._]sw[a-p]
# Session
Session.vim
Sessionx.vim
# Temporary
.netrwhist
*~
# Auto-generated tag files
tags
# Persistent undo
[._]*.un~
##########################
# Emacs-specific ignores #
##########################
*~
\#*\#
/.emacs.desktop
/.emacs.desktop.lock
*.elc
auto-save-list
tramp
.\#*
# Org-mode
.org-id-locations
*_archive
# flymake-mode
*_flymake.*
# eshell files
/eshell/history
/eshell/lastdir
# zsh byte-compiled files
*.zwc
# elpa packages
/elpa/
# reftex files
*.rel
# AUCTeX auto folder
/auto/
# cask packages
.cask/
dist/
# Flycheck
flycheck_*.el
# server auth directory
/server/
# projectiles files
.projectile
# directory configuration
.dir-locals.el
# network security
/network-security.data
############################
# Eclipse-specific ignores #
############################
.metadata
#bin/
tmp/
*.tmp
*.bak
*.swp
*~.nib
local.properties
.settings/
.loadpath
.recommenders
# External tool builders
.externalToolBuilders/
# Locally stored "Eclipse launch configurations"
*.launch
# PyDev specific (Python IDE for Eclipse)
*.pydevproject
# CDT-specific (C/C++ Development Tooling)
.cproject
# CDT- autotools
.autotools
# Java annotation processor (APT)
.factorypath
# PDT-specific (PHP Development Tools)
.buildpath
# sbteclipse plugin
.target
# Tern plugin
.tern-project
# TeXlipse plugin
.texlipse
# STS (Spring Tool Suite)
.springBeans
# Code Recommenders
.recommenders/
# Annotation Processing
.apt_generated/
.apt_generated_test/
# Scala IDE specific (Scala & Java development for Eclipse)
.cache-main
.scala_dependencies
.worksheet
# Uncomment this line if you wish to ignore the project description file.
# Typically, this file would be tracked if it contains build/dependency configurations:
#.project
##################################
# Visual Studio-specific ignores #
##################################
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json
*.code-workspace
# Local History for Visual Studio Code
.history/
#################################
# Sublime Text-specific ignores #
#################################
# Cache files for Sublime Text
*.tmlanguage.cache
*.tmPreferences.cache
*.stTheme.cache
# Workspace files are user-specific
*.sublime-workspace
# Project files should be checked into the repository, unless a significant
# proportion of contributors will probably not be using Sublime Text
# *.sublime-project
# SFTP configuration file
sftp-config.json
sftp-config-alt*.json
# Package control specific files
Package Control.last-run
Package Control.ca-list
Package Control.ca-bundle
Package Control.system-ca-bundle
Package Control.cache/
Package Control.ca-certs/
Package Control.merged-ca-bundle
Package Control.user-ca-bundle
oscrypto-ca-bundle.crt
bh_unicode_properties.cache
# Sublime-github package stores a github token in this file
# https://packagecontrol.io/packages/sublime-github
GitHub.sublime-settings
##############################
# JetBrains-specific ignores #
##############################
# Ignore the entire folder since it may conatin more files than
# just the ones listed below
.idea/
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/usage.statistics.xml
.idea/**/dictionaries
.idea/**/shelf
# Generated files
.idea/**/contentModel.xml
# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml
# Gradle
.idea/**/gradle.xml
.idea/**/libraries
# Gradle and Maven with auto-import
# When using Gradle or Maven with auto-import, you should exclude module files,
# since they will be recreated, and may cause churn. Uncomment if using
# auto-import.
# .idea/artifacts
# .idea/compiler.xml
# .idea/jarRepositories.xml
# .idea/modules.xml
# .idea/*.iml
# .idea/modules
# *.iml
# *.ipr
# CMake
cmake-build-*/
# Mongo Explorer plugin
.idea/**/mongoSettings.xml
# File-based project format
*.iws
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
# Editor-based Rest Client
.idea/httpRequests
# Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser
##########################
# macOS-specific ignores #
##########################
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
##########################
# Linux-specific ignores #
##########################
*~
# temporary files which can be created if a process still has a handle open of a deleted file
.fuse_hidden*
# KDE directory preferences
.directory
# Linux trash folder which might appear on any partition or disk
.Trash-*
# .nfs files are created when an open file is removed but is still being accessed
.nfs*
############################
# Windows-specific ignores #
############################
# Windows thumbnail cache files
Thumbs.db
Thumbs.db:encryptable
ehthumbs.db
ehthumbs_vista.db
# Dump file
*.stackdump
# Folder config file
[Dd]esktop.ini
# Recycle Bin used on file shares
$RECYCLE.BIN/
# Windows Installer files
*.cab
*.msi
*.msix
*.msm
*.msp
# Windows shortcuts
*.lnk

View File

@@ -3,8 +3,7 @@ Adam Moody <moody20@llnl.gov> Adam T. Moody
Alfredo Gimenez <gimenez1@llnl.gov> Alfredo Gimenez <alfredo.gimenez@gmail.com>
Alfredo Gimenez <gimenez1@llnl.gov> Alfredo Adolfo Gimenez <alfredo.gimenez@gmail.com>
Andrew Williams <williamsa89@cardiff.ac.uk> Andrew Williams <andrew@alshain.org.uk>
Axel Huebl <axelhuebl@lbl.gov> Axel Huebl <a.huebl@hzdr.de>
Axel Huebl <axelhuebl@lbl.gov> Axel Huebl <axel.huebl@plasma.ninja>
Axel Huebl <a.huebl@hzdr.de> Axel Huebl <axel.huebl@plasma.ninja>
Ben Boeckel <ben.boeckel@kitware.com> Ben Boeckel <mathstuf@gmail.com>
Ben Boeckel <ben.boeckel@kitware.com> Ben Boeckel <mathstuf@users.noreply.github.com>
Benedikt Hegner <hegner@cern.ch> Benedikt Hegner <benedikt.hegner@cern.ch>
@@ -21,8 +20,8 @@ Geoffrey Oxberry <oxberry1@llnl.gov> Geoffrey Oxberry
Glenn Johnson <glenn-johnson@uiowa.edu> Glenn Johnson <gjohnson@argon-ohpc.hpc.uiowa.edu>
Glenn Johnson <glenn-johnson@uiowa.edu> Glenn Johnson <glennpj@gmail.com>
Gregory Becker <becker33@llnl.gov> Gregory Becker <becker33.llnl.gov>
Gregory Becker <becker33@llnl.gov> Gregory Becker <becker33.llnl.gov>
Gregory Becker <becker33@llnl.gov> Gregory Becker <becker33@llnl.gov>
Gregory Becker <becker33@llnl.gov> becker33 <becker33.llnl.gov>
Gregory Becker <becker33@llnl.gov> becker33 <becker33@llnl.gov>
Gregory L. Lee <lee218@llnl.gov> Greg Lee <lee218@llnl.gov>
Gregory L. Lee <lee218@llnl.gov> Gregory L. Lee <lee218@cab687.llnl.gov>
Gregory L. Lee <lee218@llnl.gov> Gregory L. Lee <lee218@cab690.llnl.gov>

View File

@@ -1,10 +0,0 @@
version: 2
sphinx:
configuration: lib/spack/docs/conf.py
fail_on_warning: true
python:
version: 3.7
install:
- requirements: lib/spack/docs/requirements.txt

248
.travis.yml Normal file
View File

@@ -0,0 +1,248 @@
#=============================================================================
# Project settings
#=============================================================================
# Only build master and develop on push; do not build every branch.
branches:
only:
- master
- develop
- /^releases\/.*$/
#=============================================================================
# Build matrix
#=============================================================================
# Adding the keyword dist to permit an `allow_failures` section
# under `matrix.include`. More information here:
#
# https://docs.travis-ci.com/user/customizing-the-build/#Rows-that-are-Allowed-to-Fail
dist: trusty
jobs:
fast_finish: true
include:
- stage: 'style checks'
python: '2.7'
sudo: required
os: linux
language: python
env: TEST_SUITE=flake8
- stage: 'flake8 + documentation'
python: '2.7'
os: linux
language: python
env: TEST_SUITE=doc
- stage: 'unit tests'
python: '2.6'
sudo: required
os: linux
language: python
env: TEST_SUITE=unit
- python: '2.7'
sudo: required
os: linux
language: python
env: TEST_SUITE=unit
- python: '3.4'
sudo: required
os: linux
language: python
env: TEST_SUITE=unit
- python: '3.5'
sudo: required
os: linux
language: python
env: TEST_SUITE=unit
- python: '3.6'
sudo: required
os: linux
language: python
env: TEST_SUITE=unit
- python: '3.7'
sudo: required
os: linux
dist: xenial
language: python
env: TEST_SUITE=unit
- python: '3.6'
sudo: required
os: linux
language: python
env: TEST_SUITE=doc
- os: osx
language: generic
env: [ TEST_SUITE=unit, PYTHON_VERSION=2.7 ]
# mpich (AutotoolsPackage)
- stage: 'build tests'
python: '2.7'
os: linux
language: python
env: [ TEST_SUITE=build, 'SPEC=mpich' ]
# astyle (MakefilePackage)
- python: '2.7'
os: linux
language: python
env: [ TEST_SUITE=build, 'SPEC=astyle' ]
# tut (WafPackage)
- python: '2.7'
os: linux
language: python
env: [ TEST_SUITE=build, 'SPEC=tut' ]
# py-setuptools (PythonPackage)
- python: '2.7'
os: linux
language: python
env: [ TEST_SUITE=build, 'SPEC=py-setuptools' ]
# perl-dbi (PerlPackage)
# - python: '2.7'
# os: linux
# language: python
# env: [ TEST_SUITE=build, 'SPEC=perl-dbi' ]
# openjpeg (CMakePackage + external cmake)
- python: '2.7'
os: linux
language: python
env: [ TEST_SUITE=build, 'SPEC=openjpeg' ]
# r-rcpp (RPackage + external R)
- python: '2.7'
os: linux
language: python
env: [ TEST_SUITE=build, 'SPEC=r-rcpp' ]
# mpich (AutotoolsPackage)
- python: '3.6'
os: linux
language: python
env: [ TEST_SUITE=build, 'SPEC=mpich' ]
- stage: 'docker build'
sudo: required
os: linux
language: generic
env: TEST_SUITE=docker
allow_failures:
- dist: xenial
- env: TEST_SUITE=docker
# temporary Python 2.6 exception while we figure out why Travis is hanging
- python: '2.6'
stages:
- 'style checks'
- 'unit tests + documentation'
- 'build tests'
- name: 'docker build'
if: type = push AND branch IN (develop, master)
stages:
- 'flake8 + documentation'
- 'unit tests'
- 'build tests'
- name: 'unit tests - osx'
if: type IN (cron)
#=============================================================================
# Environment
#=============================================================================
# Use new Travis infrastructure (Docker can't sudo yet)
sudo: false
# Docs need graphviz to build
addons:
apt:
packages:
- gfortran
- mercurial
- graphviz
- gnupg2
- cmake
- ninja-build
- r-base
- r-base-core
- r-base-dev
- perl
- perl-base
cache:
pip: true
directories:
- ~/.mirror
# Work around Travis's lack of support for Python on OSX
before_install:
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then
brew update;
export HOMEBREW_NO_AUTO_UPDATE=1;
rm /usr/local/include/c++ ;
brew ls --versions python@2 > /dev/null || brew install python@2;
brew ls --versions gcc > /dev/null || brew install gcc;
brew ls --versions gnupg2 > /dev/null || brew install gnupg2;
pip2 install --upgrade pip;
pip2 install virtualenv;
virtualenv venv;
source venv/bin/activate;
fi
# Install various dependencies
install:
- pip install --upgrade pip
- pip install --upgrade six
- pip install --upgrade setuptools
- pip install --upgrade codecov
- pip install --upgrade flake8
- pip install --upgrade pep8-naming
- if [[ "$TEST_SUITE" == "doc" ]]; then
pip install --upgrade -r lib/spack/docs/requirements.txt;
fi
before_script:
# Need this for the git tests to succeed.
- git config --global user.email "spack@example.com"
- git config --global user.name "Test User"
# Need this to be able to compute the list of changed files
- git fetch origin develop:develop
# Set up external deps for build tests, b/c they take too long to compile
- if [[ "$TEST_SUITE" == "build" ]]; then cp
share/spack/qa/configuration/packages.yaml etc/spack/packages.yaml;
fi
#=============================================================================
# Building
#=============================================================================
services:
- docker
script:
- share/spack/qa/run-$TEST_SUITE-tests
- if [[ "$TEST_SUITE" == "docker build" ]]; then
login_attempted=0; login_success=0;
for config in share/spack/docker/config/* ; do
source "$config" ;
./share/spack/docker/build-image.sh;
if [ "$TRAVIS_EVENT_TYPE" != "pull_request" ]; then
if [ "$login_attempted" '=' '0' ]; then
if echo "$DOCKER_PASSWORD" | docker login -u "$DOCKER_USERNAME" --password-stdin; then
login_success=1;
fi;
login_attempted=1;
fi;
if [ "$login_success" '=' '1' ]; then
./share/spack/docker/push-image.sh;
fi
fi
done;
fi
- if [[ "$TEST_SUITE" == "unit" || "$TEST_SUITE" == "build" ]]; then
codecov --env PYTHON_VERSION
--required --flags "${TEST_SUITE}${TRAVIS_OS_NAME}";
fi
#=============================================================================
# Notifications
#=============================================================================
notifications:
email:
recipients: tgamblin@llnl.gov
on_success: change
on_failure: always

File diff suppressed because it is too large Load Diff

View File

@@ -1,58 +0,0 @@
# If you are referencing Spack in a publication, please cite the SC'15 paper
# described here.
#
# Here's the raw citation:
#
# Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee,
# Adam Moody, Bronis R. de Supinski, and W. Scott Futral.
# The Spack Package Manager: Bringing Order to HPC Software Chaos.
# In Supercomputing 2015 (SC15), Austin, Texas, November 15-20 2015. LLNL-CONF-669890.
#
# Or, in BibTeX:
#
# @inproceedings{Gamblin_The_Spack_Package_2015,
# address = {Austin, Texas, USA},
# author = {Gamblin, Todd and LeGendre, Matthew and
# Collette, Michael R. and Lee, Gregory L. and
# Moody, Adam and de Supinski, Bronis R. and Futral, Scott},
# doi = {10.1145/2807591.2807623},
# month = {November 15-20},
# note = {LLNL-CONF-669890},
# series = {Supercomputing 2015 (SC15)},
# title = {{The Spack Package Manager: Bringing Order to HPC Software Chaos}},
# url = {https://github.com/spack/spack},
# year = {2015}
# }
#
# And here's the CITATION.cff format:
#
cff-version: 1.2.0
message: "If you are referencing Spack in a publication, please cite the paper below."
preferred-citation:
type: conference-paper
doi: "10.1145/2807591.2807623"
url: "https://github.com/spack/spack"
authors:
- family-names: "Gamblin"
given-names: "Todd"
- family-names: "LeGendre"
given-names: "Matthew"
- family-names: "Collette"
given-names: "Michael R."
- family-names: "Lee"
given-names: "Gregory L."
- family-names: "Moody"
given-names: "Adam"
- family-names: "de Supinski"
given-names: "Bronis R."
- family-names: "Futral"
given-names: "Scott"
title: "The Spack Package Manager: Bringing Order to HPC Software Chaos"
conference:
name: "Supercomputing 2015 (SC15)"
city: "Austin"
region: "Texas"
country: "USA"
month: November 15-20
year: 2015
notes: LLNL-CONF-669890

View File

@@ -1,4 +1,4 @@
# Spack Community Code of Conduct
# Contributor Covenant Code of Conduct
## Our Pledge
@@ -30,7 +30,7 @@ Project maintainers have the right and responsibility to remove, edit, or reject
## Scope
This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the Spack project or its community. Examples of representing the project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of the project may be further defined and clarified by Spack maintainers.
This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.
## Enforcement

View File

@@ -28,28 +28,14 @@ text in the license header:
External Packages
-------------------
Spack bundles most external dependencies in lib/spack/external. It also
includes the sbang tool directly in bin/sbang. These packages are covered
by various permissive licenses. A summary listing follows. See the
license included with each package for full details.
PackageName: altgraph
PackageHomePage: https://altgraph.readthedocs.io/en/latest/index.html
PackageLicenseDeclared: MIT
Spack bundles its external dependencies in lib/spack/external. These
packages are covered by various permissive licenses. A summary listing
follows. See the license included with each package for full details.
PackageName: argparse
PackageHomePage: https://pypi.python.org/pypi/argparse
PackageLicenseDeclared: Python-2.0
PackageName: astunparse
PackageHomePage: https://github.com/simonpercivall/astunparse
PackageLicenseDeclared: Python-2.0
PackageName: attrs
PackageHomePage: https://github.com/python-attrs/attrs
PackageLicenseDeclared: MIT
PackageName: ctest_log_parser
PackageHomePage: https://github.com/Kitware/CMake
PackageLicenseDeclared: BSD-3-Clause
@@ -58,8 +44,8 @@ PackageName: distro
PackageHomePage: https://pypi.python.org/pypi/distro
PackageLicenseDeclared: Apache-2.0
PackageName: functools32
PackageHomePage: https://github.com/MiCHiLU/python-functools32
PackageName: functools
PackageHomePage: https://github.com/python/cpython/blob/2.7/Lib/functools.py
PackageLicenseDeclared: Python-2.0
PackageName: jinja2
@@ -70,10 +56,6 @@ PackageName: jsonschema
PackageHomePage: https://pypi.python.org/pypi/jsonschema
PackageLicenseDeclared: MIT
PackageName: macholib
PackageHomePage: https://macholib.readthedocs.io/en/latest/index.html
PackageLicenseDeclared: MIT
PackageName: markupsafe
PackageHomePage: https://pypi.python.org/pypi/MarkupSafe
PackageLicenseDeclared: BSD-3-Clause
@@ -86,9 +68,9 @@ PackageName: py
PackageHomePage: https://pypi.python.org/pypi/py
PackageLicenseDeclared: MIT
PackageName: pyrsistent
PackageHomePage: http://github.com/tobgu/pyrsistent
PackageLicenseDeclared: MIT
PackageName: pyqver
PackageHomePage: https://github.com/ghewgill/pyqver
PackageLicenseDeclared: BSD-3-Clause
PackageName: pytest
PackageHomePage: https://pypi.python.org/pypi/pytest
@@ -98,10 +80,6 @@ PackageName: ruamel.yaml
PackageHomePage: https://yaml.readthedocs.io/
PackageLicenseDeclared: MIT
PackageName: sbang
PackageHomePage: https://github.com/spack/sbang
PackageLicenseDeclared: Apache-2.0 OR MIT
PackageName: six
PackageHomePage: https://pypi.python.org/pypi/six
PackageLicenseDeclared: MIT

View File

@@ -1,21 +1,20 @@
MIT License
Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
Copyright (c) 2013-2022 LLNS, LLC and other Spack Project Developers.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

122
README.md
View File

@@ -1,12 +1,9 @@
# <img src="https://cdn.rawgit.com/spack/spack/develop/share/spack/logo/spack-logo.svg" width="64" valign="middle" alt="Spack"/> Spack
[![Unit Tests](https://github.com/spack/spack/workflows/linux%20tests/badge.svg)](https://github.com/spack/spack/actions)
[![Bootstrapping](https://github.com/spack/spack/actions/workflows/bootstrap.yml/badge.svg)](https://github.com/spack/spack/actions/workflows/bootstrap.yml)
[![Build Status](https://travis-ci.org/spack/spack.svg?branch=develop)](https://travis-ci.org/spack/spack)
[![codecov](https://codecov.io/gh/spack/spack/branch/develop/graph/badge.svg)](https://codecov.io/gh/spack/spack)
[![Containers](https://github.com/spack/spack/actions/workflows/build-containers.yml/badge.svg)](https://github.com/spack/spack/actions/workflows/build-containers.yml)
[![Read the Docs](https://readthedocs.org/projects/spack/badge/?version=latest)](https://spack.readthedocs.io)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Slack](https://slack.spack.io/badge.svg)](https://slack.spack.io)
[![Slack](https://spackpm.herokuapp.com/badge.svg)](https://spackpm.herokuapp.com)
Spack is a multi-platform package manager that builds and installs
multiple versions and configurations of software. It works on Linux,
@@ -21,54 +18,63 @@ builds of the same package. With Spack, you can build your software
*all* the ways you want to.
See the
[Feature Overview](https://spack.readthedocs.io/en/latest/features.html)
[Feature Overview](http://spack.readthedocs.io/en/latest/features.html)
for examples and highlights.
To install spack and your first package, make sure you have Python.
Then:
$ git clone -c feature.manyFiles=true https://github.com/spack/spack.git
$ git clone https://github.com/spack/spack.git
$ cd spack/bin
$ ./spack install zlib
$ ./spack install libelf
Documentation
----------------
[**Full documentation**](https://spack.readthedocs.io/) is available, or
run `spack help` or `spack help --all`.
[**Full documentation**](http://spack.readthedocs.io/) for Spack is
the first place to look.
For a cheat sheet on Spack syntax, run `spack help --spec`.
Try the
[**Spack Tutorial**](http://spack.readthedocs.io/en/latest/tutorial.html),
to learn how to use spack, write packages, or deploy packages for users
at your site.
Tutorial
----------------
See also:
* [Technical paper](http://www.computer.org/csdl/proceedings/sc/2015/3723/00/2807623.pdf) and
[slides](https://tgamblin.github.io/files/Gamblin-Spack-SC15-Talk.pdf) on Spack's design and implementation.
* [Short presentation](https://tgamblin.github.io/files/Gamblin-Spack-Lightning-Talk-BOF-SC15.pdf) from the *Getting Scientific Software Installed* BOF session at Supercomputing 2015.
We maintain a
[**hands-on tutorial**](https://spack.readthedocs.io/en/latest/tutorial.html).
It covers basic to advanced usage, packaging, developer features, and large HPC
deployments. You can do all of the exercises on your own laptop using a
Docker container.
Feel free to use these materials to teach users at your organization
about Spack.
Community
Get Involved!
------------------------
Spack is an open source project. Questions, discussion, and
contributions are welcome. Contributions can be anything from new
packages to bugfixes, documentation, or even new core features.
packages to bugfixes, or even new core features.
Resources:
### Mailing list
* **Slack workspace**: [spackpm.slack.com](https://spackpm.slack.com).
To get an invitation, visit [slack.spack.io](https://slack.spack.io).
* [**Github Discussions**](https://github.com/spack/spack/discussions): not just for discussions, also Q&A.
* **Mailing list**: [groups.google.com/d/forum/spack](https://groups.google.com/d/forum/spack)
* **Twitter**: [@spackpm](https://twitter.com/spackpm). Be sure to
`@mention` us!
If you are interested in contributing to spack, join the mailing list.
We're using Google Groups for this:
* [Spack Google Group](https://groups.google.com/d/forum/spack)
### Slack channel
Spack has a Slack channel where you can chat about all things Spack:
* [Spack on Slack](https://spackpm.slack.com)
[Sign up here](https://spackpm.herokuapp.com) to get an invitation mailed
to you.
### Twitter
You can follow [@spackpm](https://twitter.com/spackpm) on Twitter for
updates. Also, feel free to `@mention` us in in questions or comments
about your own experience with Spack.
### Contributions
Contributing
------------------------
Contributing to Spack is relatively easy. Just send us a
[pull request](https://help.github.com/articles/using-pull-requests/).
When you send your request, make ``develop`` the destination branch on the
@@ -76,40 +82,15 @@ When you send your request, make ``develop`` the destination branch on the
Your PR must pass Spack's unit tests and documentation tests, and must be
[PEP 8](https://www.python.org/dev/peps/pep-0008/) compliant. We enforce
these guidelines with our CI process. To run these tests locally, and for
helpful tips on git, see our
[Contribution Guide](https://spack.readthedocs.io/en/latest/contribution_guide.html).
these guidelines with [Travis CI](https://travis-ci.org/spack/spack). To
run these tests locally, and for helpful tips on git, see our
[Contribution Guide](http://spack.readthedocs.io/en/latest/contribution_guide.html).
Spack's `develop` branch has the latest contributions. Pull requests
should target `develop`, and users who want the latest package versions,
features, etc. can use `develop`.
Releases
--------
For multi-user site deployments or other use cases that need very stable
software installations, we recommend using Spack's
[stable releases](https://github.com/spack/spack/releases).
Each Spack release series also has a corresponding branch, e.g.
`releases/v0.14` has `0.14.x` versions of Spack, and `releases/v0.13` has
`0.13.x` versions. We backport important bug fixes to these branches but
we do not advance the package versions or make other changes that would
change the way Spack concretizes dependencies within a release branch.
So, you can base your Spack deployment on a release branch and `git pull`
to get fixes, without the package churn that comes with `develop`.
The latest release is always available with the `releases/latest` tag.
See the [docs on releases](https://spack.readthedocs.io/en/latest/developer_guide.html#releases)
for more details.
Code of Conduct
------------------------
Please note that Spack has a
[**Code of Conduct**](.github/CODE_OF_CONDUCT.md). By participating in
the Spack community, you agree to abide by its rules.
Spack uses a rough approximation of the
[Git Flow](http://nvie.com/posts/a-successful-git-branching-model/)
branching model. The ``develop`` branch contains the latest
contributions, and ``master`` is always tagged and points to the latest
stable release.
Authors
----------------
@@ -123,12 +104,9 @@ If you are referencing Spack in a publication, please cite the following paper:
* Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee,
Adam Moody, Bronis R. de Supinski, and W. Scott Futral.
[**The Spack Package Manager: Bringing Order to HPC Software Chaos**](https://www.computer.org/csdl/proceedings/sc/2015/3723/00/2807623.pdf).
[**The Spack Package Manager: Bringing Order to HPC Software Chaos**](http://www.computer.org/csdl/proceedings/sc/2015/3723/00/2807623.pdf).
In *Supercomputing 2015 (SC15)*, Austin, Texas, November 15-20 2015. LLNL-CONF-669890.
On GitHub, you can copy this citation in APA or BibTeX format via the "Cite this repository"
button. Or, see the comments in `CITATION.cff` for the raw BibTeX.
License
----------------
@@ -144,6 +122,6 @@ See [LICENSE-MIT](https://github.com/spack/spack/blob/develop/LICENSE-MIT),
[COPYRIGHT](https://github.com/spack/spack/blob/develop/COPYRIGHT), and
[NOTICE](https://github.com/spack/spack/blob/develop/NOTICE) for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
`SPDX-License-Identifier: (Apache-2.0 OR MIT)`
LLNL-CODE-811652
``LLNL-CODE-647188``

View File

@@ -1,25 +0,0 @@
# Security Policy
## Supported Versions
We provide security updates for the following releases.
For more on Spack's release structure, see
[`README.md`](https://github.com/spack/spack#releases).
| Version | Supported |
| ------- | ------------------ |
| develop | :white_check_mark: |
| 0.19.x | :white_check_mark: |
| 0.18.x | :white_check_mark: |
## Reporting a Vulnerability
To report a vulnerability or other security
issue, email maintainers@spack.io.
You can expect to hear back within two days.
If your security issue is accepted, we will do
our best to release a fix within a week. If
fixing the issue will take longer than this,
we will discuss timeline options with you.

View File

@@ -1,18 +0,0 @@
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
import subprocess
import sys
def getpywin():
try:
import win32con # noqa: F401
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "-q", "install", "--upgrade", "pip"])
subprocess.check_call([sys.executable, "-m", "pip", "-q", "install", "pywin32"])
if __name__ == "__main__":
getpywin()

165
bin/sbang
View File

@@ -1,103 +1,114 @@
#!/bin/sh
#!/bin/bash
#
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
# sbang project developers. See the top-level COPYRIGHT file for details.
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
#
# `sbang`: Run scripts with long shebang lines.
#
# Many operating systems limit the length and number of possible
# arguments in shebang lines, making it hard to use interpreters that are
# deep in the directory hierarchy or require special arguments.
# Many operating systems limit the length of shebang lines, making it
# hard to use interpreters that are deep in the directory hierarchy.
# `sbang` can run such scripts, either as a shebang interpreter, or
# directly on the command line.
#
# To use, put the long shebang on the second line of your script, and
# make sbang the interpreter, like this:
# Usage
# -----------------------------
# Suppose you have a script, long-shebang.sh, like this:
#
# #!/bin/sh /path/to/sbang
# #!/long/path/to/real/interpreter with arguments
# 1 #!/very/long/path/to/some/interpreter
# 2
# 3 echo "success!"
#
# `sbang` will run the real interpreter with the script as its argument.
# Invoking this script will result in an error on some OS's. On
# Linux, you get this:
#
# See https://github.com/spack/sbang for more details.
# $ ./long-shebang.sh
# -bash: ./long: /very/long/path/to/some/interp: bad interpreter:
# No such file or directory
#
# On Mac OS X, the system simply assumes the interpreter is the shell
# and tries to run with it, which is likely not what you want.
#
#
# `sbang` on the command line
# -----------------------------
# You can use `sbang` in two ways. The first is to use it directly,
# from the command line, like this:
#
# $ sbang ./long-shebang.sh
# success!
#
#
# `sbang` as the interpreter
# -----------------------------
# You can also use `sbang` *as* the interpreter for your script. Put
# `#!/bin/bash /path/to/sbang` on line 1, and move the original
# shebang to line 2 of the script:
#
# 1 #!/bin/bash /path/to/sbang
# 2 #!/long/path/to/real/interpreter with arguments
# 3
# 4 echo "success!"
#
# $ ./long-shebang.sh
# success!
#
# On Linux, you could shorten line 1 to `#!/path/to/sbang`, but other
# operating systems like Mac OS X require the interpreter to be a
# binary, so it's best to use `sbang` as a `bash` argument.
# Obviously, for this to work, `sbang` needs to have a short enough
# path that *it* will run without hitting OS limits.
#
# For Lua, scripts the second line can't start with #!, as # is not
# the comment character in lua (even though lua ignores #! on the
# *first* line of a script). So, instrument a lua script like this,
# using -- instead of # on the second line:
#
# 1 #!/bin/bash /path/to/sbang
# 2 --!/long/path/to/lua with arguments
# 3
# 4 print "success!"
#
# How it works
# -----------------------------
# `sbang` is a very simple bash script. It looks at the first two
# lines of a script argument and runs the last line starting with
# `#!`, with the script as an argument. It also forwards arguments.
#
# Generic error handling
die() {
echo "$@" 1>&2;
exit 1
}
# set SBANG_DEBUG to make the script print what would normally be executed.
exec="exec"
if [ -n "${SBANG_DEBUG}" ]; then
exec="echo "
fi
# First argument is the script we want to actually run.
script="$1"
# ensure that the script actually exists
if [ -z "$script" ]; then
die "error: sbang requires exactly one argument"
elif [ ! -f "$script" ]; then
die "$script: no such file or directory"
fi
# Search the first two lines of script for interpreters.
lines=0
while read -r line && [ $lines -ne 2 ]; do
if [ "${line#\#!}" != "$line" ]; then
shebang_line="${line#\#!}"
elif [ "${line#//!}" != "$line" ]; then # // comments
shebang_line="${line#//!}"
elif [ "${line#--!}" != "$line" ]; then # -- lua comments
shebang_line="${line#--!}"
elif [ "${line#<?php\ }" != "$line" ]; then # php comments
shebang_line="${line#<?php\ \#!}"
shebang_line="${shebang_line%\ ?>}"
while read line && ((lines < 2)) ; do
if [[ "$line" = '#!'* ]]; then
interpreter="${line#\#!}"
elif [[ "$line" = '//!'*node* ]]; then
interpreter="${line#//!}"
elif [[ "$line" = '--!'*lua* ]]; then
interpreter="${line#--!}"
fi
lines=$((lines+1))
done < "$script"
# this is ineeded for scripts with sbang parameter
# like ones in intltool
# #!/<spack-long-path>/perl -w
# this is the interpreter line with all the parameters as a vector
interpreter_v=(${interpreter})
# this is the single interpreter path
interpreter_f="${interpreter_v[0]}"
# error if we did not find any interpreter
if [ -z "$shebang_line" ]; then
die "error: sbang found no interpreter in $script"
fi
# parse out the interpreter and first argument
IFS=' ' read -r interpreter arg1 rest <<EOF
$shebang_line
EOF
# Determine if the interpreter is a particular program, accounting for the
# '#!/usr/bin/env PROGRAM' convention. So:
#
# interpreter_is perl
#
# will be true for '#!/usr/bin/perl' and '#!/usr/bin/env perl'
interpreter_is() {
if [ "${interpreter##*/}" = "$1" ]; then
return 0
elif [ "$interpreter" = "/usr/bin/env" ] && [ "$arg1" = "$1" ]; then
return 0
# Invoke any interpreter found, or raise an error if none was found.
if [[ -n "$interpreter_f" ]]; then
if [[ "${interpreter_f##*/}" = "perl" ]]; then
exec $interpreter_v -x "$@"
else
return 1
exec $interpreter_v "$@"
fi
}
if interpreter_is "sbang"; then
die "error: refusing to re-execute sbang to avoid infinite loop."
fi
# Finally invoke the real shebang line
# ruby and perl need -x to ignore the first line of input (the sbang line)
#
if interpreter_is perl || interpreter_is ruby; then
# shellcheck disable=SC2086
$exec $shebang_line -x "$@"
else
# shellcheck disable=SC2086
$exec $shebang_line "$@"
echo "error: sbang found no interpreter in $script"
exit 1
fi

View File

@@ -1,45 +1,19 @@
#!/bin/sh
# -*- python -*-
#!/usr/bin/env python
#
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
# This file is bilingual. The following shell code finds our preferred python.
# Following line is a shell no-op, and starts a multi-line Python comment.
# See https://stackoverflow.com/a/47886254
""":"
# prefer SPACK_PYTHON environment variable, python3, python, then python2
SPACK_PREFERRED_PYTHONS="python3 python python2 /usr/libexec/platform-python"
for cmd in "${SPACK_PYTHON:-}" ${SPACK_PREFERRED_PYTHONS}; do
if command -v > /dev/null "$cmd"; then
export SPACK_PYTHON="$(command -v "$cmd")"
exec "${SPACK_PYTHON}" "$0" "$@"
fi
done
echo "==> Error: spack could not find a python interpreter!" >&2
exit 1
":"""
# Line above is a shell no-op, and ends a python multi-line comment.
# The code above runs this file with our preferred python interpreter.
from __future__ import print_function
import os
import os.path
import sys
min_python3 = (3, 5)
if sys.version_info[:2] < (2, 7) or (
sys.version_info[:2] >= (3, 0) and sys.version_info[:2] < min_python3
):
if sys.version_info[:2] < (2, 6):
v_info = sys.version_info[:3]
msg = "Spack requires Python 2.7 or %d.%d or higher " % min_python3
msg += "You are running spack with Python %d.%d.%d." % v_info
sys.exit(msg)
sys.exit("Spack requires Python 2.6 or higher."
"This is Python %d.%d.%d." % v_info)
# Find spack's location and its prefix.
spack_file = os.path.realpath(os.path.expanduser(__file__))
@@ -49,8 +23,26 @@ spack_prefix = os.path.dirname(os.path.dirname(spack_file))
spack_lib_path = os.path.join(spack_prefix, "lib", "spack")
sys.path.insert(0, spack_lib_path)
from spack_installable.main import main # noqa: E402
# Add external libs
spack_external_libs = os.path.join(spack_lib_path, "external")
if sys.version_info[:2] == (2, 6):
sys.path.insert(0, os.path.join(spack_external_libs, 'py26'))
sys.path.insert(0, spack_external_libs)
# Here we delete ruamel.yaml in case it has been already imported from site
# (see #9206 for a broader description of the issue).
#
# Briefly: ruamel.yaml produces a .pth file when installed with pip that
# makes the site installed package the preferred one, even tough sys.path
# is modified to point to another version of ruamel.yaml.
if 'ruamel.yaml' in sys.modules:
del sys.modules['ruamel.yaml']
if 'ruamel' in sys.modules:
del sys.modules['ruamel']
# Once we've set up the system path, run the spack main method
if __name__ == "__main__":
sys.exit(main())
import spack.main # noqa
sys.exit(spack.main.main())

View File

@@ -1,6 +1,6 @@
#!/bin/sh
#
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -22,4 +22,4 @@
#
# This is compatible across platforms.
#
exec /usr/bin/env spack python "$@"
/usr/bin/env spack python "$@"

View File

@@ -1,95 +0,0 @@
#!/bin/bash
set -euo pipefail
[[ -n "${TMPCONFIG_DEBUG:=}" ]] && set -x
DIR="$(cd -P "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
mkdir -p "${XDG_RUNTIME_DIR:=/tmp}/spack-tests"
export TMPDIR="${XDG_RUNTIME_DIR}"
export TMP_DIR="$(mktemp -d -t spack-test-XXXXX)"
clean_up() {
[[ -n "$TMPCONFIG_DEBUG" ]] && printf "cleaning up: $TMP_DIR\n"
rm -rf "$TMP_DIR"
}
trap clean_up EXIT
trap clean_up ERR
[[ -n "$TMPCONFIG_DEBUG" ]] && printf "Redirecting TMP_DIR and spack directories to $TMP_DIR\n"
export BOOTSTRAP="${SPACK_USER_CACHE_PATH:=$HOME/.spack}/bootstrap"
export SPACK_USER_CACHE_PATH="$TMP_DIR/user_cache"
mkdir -p "$SPACK_USER_CACHE_PATH"
private_bootstrap="$SPACK_USER_CACHE_PATH/bootstrap"
use_spack=''
use_bwrap=''
# argument handling
while (($# >= 1)) ; do
case "$1" in
-b) # privatize bootstrap too, useful for CI but not always cheap
shift
export BOOTSTRAP="$private_bootstrap"
;;
-B) # use specified bootstrap dir
export BOOTSTRAP="$2"
shift 2
;;
-s) # run spack directly with remaining args
shift
use_spack=1
;;
--contain=bwrap)
if bwrap --help 2>&1 > /dev/null ; then
use_bwrap=1
else
echo Bubblewrap containment requested, but no bwrap command found
exit 1
fi
shift
;;
--)
shift
break
;;
*)
break
;;
esac
done
typeset -a CMD
if [[ -n "$use_spack" ]] ; then
CMD=("$DIR/spack" "$@")
else
CMD=("$@")
fi
mkdir -p "$BOOTSTRAP"
export SPACK_SYSTEM_CONFIG_PATH="$TMP_DIR/sys_conf"
export SPACK_USER_CONFIG_PATH="$TMP_DIR/user_conf"
mkdir -p "$SPACK_USER_CONFIG_PATH"
cat >"$SPACK_USER_CONFIG_PATH/config.yaml" <<EOF
config:
install_tree:
root: $TMP_DIR/install
misc_cache: $$user_cache_path/cache
source_cache: $$user_cache_path/source
EOF
cat >"$SPACK_USER_CONFIG_PATH/bootstrap.yaml" <<EOF
bootstrap:
root: $BOOTSTRAP
EOF
if [[ -n "$use_bwrap" ]] ; then
CMD=(
bwrap
--dev-bind / /
--ro-bind "$DIR/.." "$DIR/.." # do not touch spack root
--ro-bind $HOME/.spack $HOME/.spack # do not touch user config/cache dir
--bind "$TMP_DIR" "$TMP_DIR"
--bind "$BOOTSTRAP" "$BOOTSTRAP"
--die-with-parent
"${CMD[@]}"
)
fi
(( ${TMPCONFIG_DEBUG:=0} > 1)) && echo "Running: ${CMD[@]}"
"${CMD[@]}"

View File

@@ -1,223 +0,0 @@
:: Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
:: Spack Project Developers. See the top-level COPYRIGHT file for details.
::
:: SPDX-License-Identifier: (Apache-2.0 OR MIT)
::#######################################################################
::
:: This file is part of Spack and sets up the spack environment for batch,
:: This includes environment modules and lmod support,
:: and it also puts spack in your path. The script also checks that at least
:: module support exists, and provides suggestions if it doesn't. Source
:: it like this:
::
:: . /path/to/spack/install/spack_cmd.bat
::
@echo off
set spack=%SPACK_ROOT%\bin\spack
::#######################################################################
:: This is a wrapper around the spack command that forwards calls to
:: 'spack load' and 'spack unload' to shell functions. This in turn
:: allows them to be used to invoke environment modules functions.
::
:: 'spack load' is smarter than just 'load' because it converts its
:: arguments into a unique Spack spec that is then passed to module
:: commands. This allows the user to use packages without knowing all
:: their installation details.
::
:: e.g., rather than requiring a full spec for libelf, the user can type:
::
:: spack load libelf
::
:: This will first find the available libelf module file and use a
:: matching one. If there are two versions of libelf, the user would
:: need to be more specific, e.g.:
::
:: spack load libelf@0.8.13
::
:: This is very similar to how regular spack commands work and it
:: avoids the need to come up with a user-friendly naming scheme for
:: spack module files.
::#######################################################################
:_sp_shell_wrapper
set "_sp_flags="
set "_sp_args="
set "_sp_subcommand="
setlocal enabledelayedexpansion
:: commands have the form '[flags] [subcommand] [args]'
:: flags will always start with '-', e.g. --help or -V
:: subcommands will never start with '-'
:: everything after the subcommand is an arg
for %%x in (%*) do (
set t="%%~x"
if "!t:~0,1!" == "-" (
if defined _sp_subcommand (
:: We already have a subcommand, processing args now
set "_sp_args=!_sp_args! !t!"
) else (
set "_sp_flags=!_sp_flags! !t!"
shift
)
) else if not defined _sp_subcommand (
set "_sp_subcommand=!t!"
shift
) else (
set "_sp_args=!_sp_args! !t!"
shift
)
)
:: --help, -h and -V flags don't require further output parsing.
:: If we encounter, execute and exit
if defined _sp_flags (
if NOT "%_sp_flags%"=="%_sp_flags:-h=%" (
python "%spack%" %_sp_flags%
exit /B 0
) else if NOT "%_sp_flags%"=="%_sp_flags:--help=%" (
python "%spack%" %_sp_flags%
exit /B 0
) else if NOT "%_sp_flags%"=="%_sp_flags:-V=%" (
python "%spack%" %_sp_flags%
exit /B 0
)
)
:: pass parsed variables outside of local scope. Need to do
:: this because delayedexpansion can only be set by setlocal
echo %_sp_flags%>flags
echo %_sp_args%>args
echo %_sp_subcommand%>subcmd
endlocal
set /p _sp_subcommand=<subcmd
set /p _sp_flags=<flags
set /p _sp_args=<args
set str_subcommand=%_sp_subcommand:"='%
set str_flags=%_sp_flags:"='%
set str_args=%_sp_args:"='%
if "%str_subcommand%"=="ECHO is off." (set "_sp_subcommand=")
if "%str_flags%"=="ECHO is off." (set "_sp_flags=")
if "%str_args%"=="ECHO is off." (set "_sp_args=")
del subcmd
del flags
del args
:: Filter out some commands. For any others, just run the command.
if "%_sp_subcommand%" == "cd" (
goto :case_cd
) else if "%_sp_subcommand%" == "env" (
goto :case_env
) else if "%_sp_subcommand%" == "load" (
goto :case_load
) else if "%_sp_subcommand%" == "unload" (
goto :case_load
) else (
goto :default_case
)
::#######################################################################
:case_cd
:: Check for --help or -h
:: TODO: This is not exactly the same as setup-env.
:: In setup-env, '--help' or '-h' must follow the cd
:: Here, they may be anywhere in the args
if defined _sp_args (
if NOT "%_sp_args%"=="%_sp_args:--help=%" (
python "%spack%" cd -h
goto :end_switch
) else if NOT "%_sp_args%"=="%_sp_args:-h=%" (
python "%spack%" cd -h
goto :end_switch
)
)
for /F "tokens=* USEBACKQ" %%F in (
`python "%spack%" location %_sp_args%`) do (
set "LOC=%%F"
)
for %%Z in ("%LOC%") do if EXIST %%~sZ\NUL (cd /d "%LOC%")
goto :end_switch
:case_env
:: If no args or args contain --bat or -h/--help: just execute.
if NOT defined _sp_args (
goto :default_case
)else if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args: -h=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:--bat=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:deactivate=%" (
for /f "tokens=* USEBACKQ" %%I in (
`call python "%spack%" %_sp_flags% env deactivate --bat %_sp_args:deactivate=%`
) do %%I
) else if NOT "%_sp_args%"=="%_sp_args:activate=%" (
for /f "tokens=* USEBACKQ" %%I in (
`call python "%spack%" %_sp_flags% env activate --bat %_sp_args:activate=%`
) do %%I
) else (
goto :default_case
)
goto :end_switch
:case_load
:: If args contain --sh, --csh, or -h/--help: just execute.
if defined _sp_args (
if NOT "%_sp_args%"=="%_sp_args:--help=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args: -h=%" (
goto :default_case
) else if NOT "%_sp_args%"=="%_sp_args:--bat=%" (
goto :default_case
)
)
for /f "tokens=* USEBACKQ" %%I in (
`python "%spack%" %_sp_flags% %_sp_subcommand% --bat %_sp_args%`) do %%I
)
goto :end_switch
:case_unload
goto :case_load
:default_case
python "%spack%" %_sp_flags% %_sp_subcommand% %_sp_args%
goto :end_switch
:end_switch
exit /B %ERRORLEVEL%
::########################################################################
:: Prepends directories to path, if they exist.
:: pathadd /path/to/dir # add to PATH
:: or pathadd OTHERPATH /path/to/dir # add to OTHERPATH
::########################################################################
:_spack_pathadd
set "_pa_varname=PATH"
set "_pa_new_path=%~1"
if NOT "%~2" == "" (
set "_pa_varname=%~1"
set "_pa_new_path=%~2"
)
set "_pa_oldvalue=%_pa_varname%"
for %%Z in ("%_pa_new_path%") do if EXIST %%~sZ\NUL (
if defined %_pa_oldvalue% (
set "_pa_varname=%_pa_new_path%:%_pa_oldvalue%"
) else (
set "_pa_varname=%_pa_new_path%"
)
)
exit /b 0
:: set module system roots
:_sp_multi_pathadd
for %%I in (%~2) do (
for %%Z in (%_sp_compatible_sys_types%) do (
:pathadd "%~1" "%%I\%%Z"
)
)
exit /B %ERRORLEVEL%

View File

@@ -1,72 +0,0 @@
@ECHO OFF
setlocal EnableDelayedExpansion
:: (c) 2021 Lawrence Livermore National Laboratory
:: To use this file independently of Spack's installer, execute this script in its directory, or add the
:: associated bin directory to your PATH. Invoke to launch Spack Shell.
::
:: source_dir/spack/bin/spack_cmd.bat
::
pushd %~dp0..
set SPACK_ROOT=%CD%
pushd %CD%\..
set spackinstdir=%CD%
popd
:: Check if Python is on the PATH
if not defined python_pf_ver (
(for /f "delims=" %%F in ('where python.exe') do (
set "python_pf_ver=%%F"
goto :found_python
) ) 2> NUL
)
:found_python
if not defined python_pf_ver (
:: If not, look for Python from the Spack installer
:get_builtin
(for /f "tokens=*" %%g in ('dir /b /a:d "!spackinstdir!\Python*"') do (
set "python_ver=%%g")) 2> NUL
if not defined python_ver (
echo Python was not found on your system.
echo Please install Python or add Python to your PATH.
) else (
set "py_path=!spackinstdir!\!python_ver!"
set "py_exe=!py_path!\python.exe"
)
goto :exitpoint
) else (
:: Python is already on the path
set "py_exe=!python_pf_ver!"
(for /F "tokens=* USEBACKQ" %%F in (
`"!py_exe!" --version`) do (set "output=%%F")) 2>NUL
if not "!output:Microsoft Store=!"=="!output!" goto :get_builtin
goto :exitpoint
)
:exitpoint
set "PATH=%SPACK_ROOT%\bin\;%PATH%"
if defined py_path (
set "PATH=%py_path%;%PATH%"
)
if defined py_exe (
"%py_exe%" "%SPACK_ROOT%\bin\haspywin.py"
"%py_exe%" "%SPACK_ROOT%\bin\spack" external find python >NUL
)
set "EDITOR=notepad"
DOSKEY spacktivate=spack env activate $*
@echo **********************************************************************
@echo ** Spack Package Manager
@echo **********************************************************************
IF "%1"=="" GOTO CONTINUE
set
GOTO:EOF
:continue
set PROMPT=[spack] %PROMPT%
%comspec% /k

View File

@@ -1,10 +0,0 @@
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
$Env:SPACK_PS1_PATH="$PSScriptRoot\..\share\spack\setup-env.ps1"
& (Get-Process -Id $pid).Path -NoExit {
. $Env:SPACK_PS1_PATH ;
Push-Location $ENV:SPACK_ROOT
}

View File

@@ -1,23 +0,0 @@
bootstrap:
# If set to false Spack will not bootstrap missing software,
# but will instead raise an error.
enable: true
# Root directory for bootstrapping work. The software bootstrapped
# by Spack is installed in a "store" subfolder of this root directory
root: $user_cache_path/bootstrap
# Methods that can be used to bootstrap software. Each method may or
# may not be able to bootstrap all the software that Spack needs,
# depending on its type.
sources:
- name: 'github-actions-v0.4'
metadata: $spack/share/spack/bootstrap/github-actions-v0.4
- name: 'github-actions-v0.3'
metadata: $spack/share/spack/bootstrap/github-actions-v0.3
- name: 'spack-install'
metadata: $spack/share/spack/bootstrap/spack-install
trusted:
# By default we trust bootstrapping from sources and from binaries
# produced on Github via the workflow
github-actions-v0.4: true
github-actions-v0.3: true
spack-install: true

View File

@@ -1,36 +0,0 @@
# -------------------------------------------------------------------------
# This is the default spack configuration file.
#
# Settings here are versioned with Spack and are intended to provide
# sensible defaults out of the box. Spack maintainers should edit this
# file to keep it current.
#
# Users can override these settings by editing
# `$SPACK_ROOT/etc/spack/concretizer.yaml`, `~/.spack/concretizer.yaml`,
# or by adding a `concretizer:` section to an environment.
# -------------------------------------------------------------------------
concretizer:
# Whether to consider installed packages or packages from buildcaches when
# concretizing specs. If `true`, we'll try to use as many installs/binaries
# as possible, rather than building. If `false`, we'll always give you a fresh
# concretization.
reuse: true
# Options that tune which targets are considered for concretization. The
# concretization process is very sensitive to the number targets, and the time
# needed to reach a solution increases noticeably with the number of targets
# considered.
targets:
# Determine whether we want to target specific or generic microarchitectures.
# An example of the first kind might be for instance "skylake" or "bulldozer",
# while generic microarchitectures are for instance "aarch64" or "x86_64_v4".
granularity: microarchitectures
# If "false" allow targets that are incompatible with the current host (for
# instance concretize with target "icelake" while running on "haswell").
# If "true" only allow targets that are compatible with the host.
host_compatible: true
# When "true" concretize root specs of environments together, so that each unique
# package in an environment corresponds to one concrete spec. This ensures
# environments can always be activated. When "false" perform concretization separately
# on each root spec, allowing different versions and variants of the same package in
# an environment.
unify: true

View File

@@ -16,60 +16,41 @@
config:
# This is the path to the root of the Spack install tree.
# You can use $spack here to refer to the root of the spack instance.
install_tree:
root: $spack/opt/spack
projections:
all: "${ARCHITECTURE}/${COMPILERNAME}-${COMPILERVER}/${PACKAGE}-${VERSION}-${HASH}"
# install_tree can include an optional padded length (int or boolean)
# default is False (do not pad)
# if padded_length is True, Spack will pad as close to the system max path
# length as possible
# if padded_length is an integer, Spack will pad to that many characters,
# assuming it is higher than the length of the install_tree root.
# padded_length: 128
install_tree: $spack/opt/spack
# Locations where templates should be found
template_dirs:
- $spack/share/spack/templates
# Directory where licenses should be located
license_dir: $spack/etc/spack/licenses
# Default directory layout
install_path_scheme: "${ARCHITECTURE}/${COMPILERNAME}-${COMPILERVER}/${PACKAGE}-${VERSION}-${HASH}"
# Locations where different types of modules should be installed.
module_roots:
tcl: $spack/share/spack/modules
lmod: $spack/share/spack/lmod
dotkit: $spack/share/spack/dotkit
# Temporary locations Spack can try to use for builds.
#
# Recommended options are given below.
# Spack will use the first one it finds that exists and is writable.
# You can use $tempdir to refer to the system default temp directory
# (as returned by tempfile.gettempdir()).
#
# Builds can be faster in temporary directories on some (e.g., HPC) systems.
# Specifying `$tempdir` will ensure use of the default temporary directory
# (i.e., ``$TMP` or ``$TMPDIR``).
# A value of $spack/var/spack/stage indicates that Spack should run
# builds directly inside its install directory without staging them in
# temporary space.
#
# Another option that prevents conflicts and potential permission issues is
# to specify `$user_cache_path/stage`, which ensures each user builds in their
# home directory.
#
# A more traditional path uses the value of `$spack/var/spack/stage`, which
# builds directly inside Spack's instance without staging them in a
# temporary space. Problems with specifying a path inside a Spack instance
# are that it precludes its use as a system package and its ability to be
# pip installable.
#
# In any case, if the username is not already in the path, Spack will append
# the value of `$user` in an attempt to avoid potential conflicts between
# users in shared temporary spaces.
#
# The build stage can be purged with `spack clean --stage` and
# `spack clean -a`, so it is important that the specified directory uniquely
# identifies Spack staging to avoid accidentally wiping out non-Spack work.
# The build stage can be purged with `spack clean --stage`.
build_stage:
- $tempdir/$user/spack-stage
- $user_cache_path/stage
# - $spack/var/spack/stage
- $tempdir
- /nfs/tmp2/$user
- $spack/var/spack/stage
# Directory in which to run tests and store test results.
# Tests will be stored in directories named by date/time and package
# name/hash.
test_stage: $user_cache_path/test
# Cache directory for already downloaded source tarballs and archived
# repositories. This can be purged with `spack clean --downloads`.
@@ -78,13 +59,7 @@ config:
# Cache directory for miscellaneous files, like the package index.
# This can be purged with `spack clean --misc-cache`
misc_cache: $user_cache_path/cache
# Timeout in seconds used for downloading sources etc. This only applies
# to the connection phase and can be increased for slow connections or
# servers. 0 means no timeout.
connect_timeout: 10
misc_cache: ~/.spack/cache
# If this is false, tools like curl that use SSL will not verify
@@ -92,30 +67,11 @@ config:
verify_ssl: true
# Suppress gpg warnings from binary package verification
# Only suppresses warnings, gpg failure will still fail the install
# Potential rationale to set True: users have already explicitly trusted the
# gpg key they are using, and may not want to see repeated warnings that it
# is self-signed or something of the sort.
suppress_gpg_warnings: false
# If set to true, Spack will attempt to build any compiler on the spec
# that is not already available. If set to False, Spack will only use
# compilers already configured in compilers.yaml
install_missing_compilers: false
# If set to true, Spack will always check checksums after downloading
# archives. If false, Spack skips the checksum step.
checksum: true
# If set to true, Spack will fetch deprecated versions without warning.
# If false, Spack will raise an error when trying to install a deprecated version.
deprecated: false
# If set to true, `spack install` and friends will NOT clean
# potentially harmful variables from the build environment. Use wisely.
dirty: false
@@ -137,46 +93,22 @@ config:
# enabling locks.
locks: true
# The default url fetch method to use.
# If set to 'curl', Spack will require curl on the user's system
# If set to 'urllib', Spack will use python built-in libs to fetch
url_fetch_method: urllib
# The maximum number of jobs to use for the build system (e.g. `make`), when
# the -j flag is not given on the command line. Defaults to 16 when not set.
# Note that the maximum number of jobs is limited by the number of cores
# available, taking thread affinity into account when supported. For instance:
# - With `build_jobs: 16` and 4 cores available `spack install` will run `make -j4`
# - With `build_jobs: 16` and 32 cores available `spack install` will run `make -j16`
# - With `build_jobs: 2` and 4 cores available `spack install -j6` will run `make -j6`
# build_jobs: 16
# The default number of jobs to use when running `make` in parallel.
# If set to 4, for example, `spack install` will run `make -j4`.
# If not set, all available cores are used by default.
# build_jobs: 4
# If set to true, Spack will use ccache to cache C compiles.
ccache: false
# The concretization algorithm to use in Spack. Options are:
#
# 'clingo': Uses a logic solver under the hood to solve DAGs with full
# backtracking and optimization for user preferences. Spack will
# try to bootstrap the logic solver, if not already available.
#
# 'original': Spack's original greedy, fixed-point concretizer. This
# algorithm can make decisions too early and will not backtrack
# sufficiently for many specs. This will soon be deprecated in
# favor of clingo.
#
# See `concretizer.yaml` for more settings you can fine-tune when
# using clingo.
concretizer: clingo
# How long to wait to lock the Spack installation database. This lock is used
# when Spack needs to manage its own package metadata and all operations are
# expected to complete within the default time limit. The timeout should
# therefore generally be left untouched.
db_lock_timeout: 60
db_lock_timeout: 120
# How long to wait when attempting to modify a package (e.g. to install it).
@@ -185,33 +117,3 @@ config:
# anticipates that a significant delay indicates that the lock attempt will
# never succeed.
package_lock_timeout: null
# Control how shared libraries are located at runtime on Linux. See the
# the Spack documentation for details.
shared_linking:
# Spack automatically embeds runtime search paths in ELF binaries for their
# dependencies. Their type can either be "rpath" or "runpath". For glibc, rpath is
# inherited and has precedence over LD_LIBRARY_PATH; runpath is not inherited
# and of lower precedence. DO NOT MIX these within the same install tree.
type: rpath
# (Experimental) Embed absolute paths of dependent libraries directly in ELF
# binaries to avoid runtime search. This can improve startup time of
# executables with many dependencies, in particular on slow filesystems.
bind: false
# Set to 'false' to allow installation on filesystems that doesn't allow setgid bit
# manipulation by unprivileged user (e.g. AFS)
allow_sgid: true
# Whether to set the terminal title to display status information during
# building and installing packages. This gives information about Spack's
# current progress as well as the current and total number of packages.
terminal_title: false
# Number of seconds a buildcache's index.json is cached locally before probing
# for updates, within a single Spack invocation. Defaults to 10 minutes.
binary_index_ttl: 600

View File

@@ -1,16 +0,0 @@
# -------------------------------------------------------------------------
# This is the default configuration for Spack's module file generation.
#
# Settings here are versioned with Spack and are intended to provide
# sensible defaults out of the box. Spack maintainers should edit this
# file to keep it current.
#
# Users can override these settings by editing the following files.
#
# Per-spack-instance settings (overrides defaults):
# $SPACK_ROOT/etc/spack/modules.yaml
#
# Per-user settings (overrides default and site settings):
# ~/.spack/modules.yaml
# -------------------------------------------------------------------------
modules: {}

View File

@@ -15,7 +15,9 @@
# -------------------------------------------------------------------------
modules:
prefix_inspections:
./lib:
lib:
- DYLD_LIBRARY_PATH
- DYLD_FALLBACK_LIBRARY_PATH
./lib64:
lib64:
- DYLD_LIBRARY_PATH
- DYLD_FALLBACK_LIBRARY_PATH

View File

@@ -15,27 +15,13 @@
# -------------------------------------------------------------------------
packages:
all:
compiler:
- apple-clang
- clang
- gcc
- intel
compiler: [clang, gcc, intel]
providers:
elf: [libelf]
fuse: [macfuse]
unwind: [apple-libunwind]
uuid: [apple-libuuid]
apple-libunwind:
buildable: false
externals:
paths:
# Apple bundles libunwind version 35.3 with macOS 10.9 and later,
# although the version number used here isn't critical
- spec: apple-libunwind@35.3
prefix: /usr
apple-libuuid:
buildable: false
externals:
# Apple bundles libuuid in libsystem_c version 1353.100.2,
# although the version number used here isn't critical
- spec: apple-libuuid@1353.100.2
prefix: /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
apple-libunwind@35.3: /usr
buildable: False

View File

@@ -13,4 +13,9 @@
# Per-user settings (overrides default and site settings):
# ~/.spack/modules.yaml
# -------------------------------------------------------------------------
modules: {}
modules:
prefix_inspections:
lib:
- LD_LIBRARY_PATH
lib64:
- LD_LIBRARY_PATH

View File

@@ -1,2 +0,0 @@
mirrors:
spack-public: https://mirror.spack.io

View File

@@ -14,43 +14,31 @@
# ~/.spack/modules.yaml
# -------------------------------------------------------------------------
modules:
# This maps paths in the package install prefix to environment variables
# they should be added to. For example, <prefix>/bin should be in PATH.
enable:
- tcl
- dotkit
prefix_inspections:
./bin:
bin:
- PATH
./man:
man:
- MANPATH
./share/man:
share/man:
- MANPATH
./share/aclocal:
share/aclocal:
- ACLOCAL_PATH
./lib/pkgconfig:
lib:
- LIBRARY_PATH
lib64:
- LIBRARY_PATH
include:
- CPATH
lib/pkgconfig:
- PKG_CONFIG_PATH
./lib64/pkgconfig:
lib64/pkgconfig:
- PKG_CONFIG_PATH
./share/pkgconfig:
- PKG_CONFIG_PATH
./:
'':
- CMAKE_PREFIX_PATH
# These are configurations for the module set named "default"
default:
# Where to install modules
roots:
tcl: $spack/share/spack/modules
lmod: $spack/share/spack/lmod
# What type of modules to use
enable:
- tcl
tcl:
all:
autoload: none
# Default configurations if lmod is enabled
lmod:
all:
autoload: direct
hierarchy:
- mpi
lmod:
hierarchy:
- mpi

View File

@@ -15,50 +15,32 @@
# -------------------------------------------------------------------------
packages:
all:
compiler: [gcc, intel, pgi, clang, xl, nag, fj, aocc]
compiler: [gcc, intel, pgi, clang, xl, nag]
providers:
awk: [gawk]
blas: [openblas, amdblis]
D: [ldc]
awk: [gawk]
blas: [openblas]
daal: [intel-daal]
elf: [elfutils]
fftw-api: [fftw, amdfftw]
flame: [libflame, amdlibflame]
fuse: [libfuse]
gl: [glx, osmesa]
fftw-api: [fftw]
gl: [mesa, opengl]
glu: [mesa-glu, openglu]
golang: [go, gcc]
go-external-or-gccgo-bootstrap: [go-bootstrap, gcc]
iconv: [libiconv]
golang: [gcc]
ipp: [intel-ipp]
java: [openjdk, jdk, ibm-java]
java: [jdk]
jpeg: [libjpeg-turbo, libjpeg]
lapack: [openblas, amdlibflame]
libglx: [mesa+glx, mesa18+glx]
libllvm: [llvm]
libosmesa: [mesa+osmesa, mesa18+osmesa]
lua-lang: [lua, lua-luajit-openresty, lua-luajit]
luajit: [lua-luajit-openresty, lua-luajit]
mariadb-client: [mariadb-c-client, mariadb]
lapack: [openblas]
mkl: [intel-mkl]
mpe: [mpe2]
mpi: [openmpi, mpich]
mysql-client: [mysql, mariadb-c-client]
opencl: [pocl]
onedal: [intel-oneapi-dal]
pbs: [openpbs, torque]
openfoam: [openfoam-com, openfoam-org, foam-extend]
pil: [py-pillow]
pkgconfig: [pkgconf, pkg-config]
rpc: [libtirpc]
scalapack: [netlib-scalapack, amdscalapack]
sycl: [hipsycl]
szip: [libaec, libszip]
scalapack: [netlib-scalapack]
szip: [libszip, libaec]
tbb: [intel-tbb]
unwind: [libunwind]
uuid: [util-linux-uuid, libuuid]
xxd: [xxd-standalone, vim]
yacc: [bison, byacc]
ziglang: [zig]
permissions:
read: world
write: user

View File

@@ -1,5 +0,0 @@
config:
locks: false
concretizer: clingo
build_stage::
- '$spack/.staging'

View File

@@ -3,5 +3,3 @@ command_index.rst
spack*.rst
llnl*.rst
_build
.spack-env
spack.lock

View File

@@ -2,7 +2,7 @@
#
# You can set these variables from the command line.
SPHINXOPTS = -W --keep-going
SPHINXOPTS = -E
SPHINXBUILD = sphinx-build
PAPER =
BUILDDIR = _build

View File

@@ -1,10 +1,10 @@
<html>
<head>
<meta http-equiv="refresh" content="0; url=https://spack.readthedocs.io/" />
<meta http-equiv="refresh" content="0; url=http://spack.readthedocs.io/" />
</head>
<body>
<p>
This page has moved to <a href="https://spack.readthedocs.io/">https://spack.readthedocs.io/</a>
This page has moved to <a href="http://spack.readthedocs.io/">http://spack.readthedocs.io/</a>
</p>
</body>
</html>

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -31,32 +31,9 @@ Build caches are created via:
.. code-block:: console
$ spack buildcache create <spec>
$ spack buildcache create spec
If you wanted to create a build cache in a local directory, you would provide
the ``-d`` argument to target that directory, again also specifying the spec.
Here is an example creating a local directory, "spack-cache" and creating
build cache files for the "ninja" spec:
.. code-block:: console
$ mkdir -p ./spack-cache
$ spack buildcache create -d ./spack-cache ninja
==> Buildcache files will be output to file:///home/spackuser/spack/spack-cache/build_cache
gpgconf: socketdir is '/run/user/1000/gnupg'
gpg: using "E6DF6A8BD43208E4D6F392F23777740B7DBD643D" as default secret key for signing
Note that the targeted spec must already be installed. Once you have a build cache,
you can add it as a mirror, discussed next.
.. warning::
Spack improved the format used for binary caches in v0.18. The entire v0.18 series
will be able to verify and install binary caches both in the new and in the old format.
Support for using the old format is expected to end in v0.19, so we advise users to
recreate relevant buildcaches using Spack v0.18 or higher.
---------------------------------------
Finding or installing build cache files
---------------------------------------
@@ -66,104 +43,19 @@ with:
.. code-block:: console
$ spack mirror add <name> <url>
Note that the url can be a web url _or_ a local filesystem location. In the previous
example, you might add the directory "spack-cache" and call it ``mymirror``:
$ spack mirror add <name> <url>
Build caches are found via:
.. code-block:: console
$ spack mirror add mymirror ./spack-cache
$ spack buildcache list
You can see that the mirror is added with ``spack mirror list`` as follows:
Build caches are installed via:
.. code-block:: console
$ spack mirror list
mymirror file:///home/spackuser/spack/spack-cache
spack-public https://spack-llnl-mirror.s3-us-west-2.amazonaws.com/
At this point, you've create a buildcache, but spack hasn't indexed it, so if
you run ``spack buildcache list`` you won't see any results. You need to index
this new build cache as follows:
.. code-block:: console
$ spack buildcache update-index -d spack-cache/
Now you can use list:
.. code-block:: console
$ spack buildcache list
==> 1 cached build.
-- linux-ubuntu20.04-skylake / gcc@9.3.0 ------------------------
ninja@1.10.2
Great! So now let's say you have a different spack installation, or perhaps just
a different environment for the same one, and you want to install a package from
that build cache. Let's first uninstall the actual library "ninja" to see if we can
re-install it from the cache.
.. code-block:: console
$ spack uninstall ninja
And now reinstall from the buildcache
.. code-block:: console
$ spack buildcache install ninja
==> buildcache spec(s) matching ninja
==> Fetching file:///home/spackuser/spack/spack-cache/build_cache/linux-ubuntu20.04-skylake/gcc-9.3.0/ninja-1.10.2/linux-ubuntu20.04-skylake-gcc-9.3.0-ninja-1.10.2-i4e5luour7jxdpc3bkiykd4imke3mkym.spack
####################################################################################################################################### 100.0%
==> Installing buildcache for spec ninja@1.10.2%gcc@9.3.0 arch=linux-ubuntu20.04-skylake
gpgconf: socketdir is '/run/user/1000/gnupg'
gpg: Signature made Tue 23 Mar 2021 10:16:29 PM MDT
gpg: using RSA key E6DF6A8BD43208E4D6F392F23777740B7DBD643D
gpg: Good signature from "spackuser (GPG created for Spack) <spackuser@noreply.users.github.com>" [ultimate]
It worked! You've just completed a full example of creating a build cache with
a spec of interest, adding it as a mirror, updating it's index, listing the contents,
and finally, installing from it.
Note that the above command is intended to install a particular package to a
build cache you have created, and not to install a package from a build cache.
For the latter, once a mirror is added, by default when you do ``spack install`` the ``--use-cache``
flag is set, and you will install a package from a build cache if it is available.
If you want to always use the cache, you can do:
.. code-block:: console
$ spack install --cache-only <package>
For example, to combine all of the commands above to add the E4S build cache
and then install from it exclusively, you would do:
.. code-block:: console
$ spack mirror add E4S https://cache.e4s.io
$ spack buildcache keys --install --trust
$ spack install --cache-only <package>
We use ``--install`` and ``--trust`` to say that we are installing keys to our
keyring, and trusting all downloaded keys.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
List of popular build caches
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* `Extreme-scale Scientific Software Stack (E4S) <https://e4s-project.github.io/>`_: `build cache <https://oaciss.uoregon.edu/e4s/inventory.html>`_
$ spack buildcache install
----------

View File

@@ -1,173 +0,0 @@
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _bootstrapping:
=============
Bootstrapping
=============
In the :ref:`Getting started <getting_started>` Section we already mentioned that
Spack can bootstrap some of its dependencies, including ``clingo``. In fact, there
is an entire command dedicated to the management of every aspect of bootstrapping:
.. command-output:: spack bootstrap --help
Spack is configured to bootstrap its dependencies lazily by default; i.e. the first time they are needed and
can't be found. You can readily check if any prerequisite for using Spack is missing by running:
.. code-block:: console
% spack bootstrap status
Spack v0.19.0 - python@3.8
[FAIL] Core Functionalities
[B] MISSING "clingo": required to concretize specs
[FAIL] Binary packages
[B] MISSING "gpg2": required to sign/verify buildcaches
Spack will take care of bootstrapping any missing dependency marked as [B]. Dependencies marked as [-] are instead required to be found on the system.
In the case of the output shown above Spack detected that both ``clingo`` and ``gnupg``
are missing and it's giving detailed information on why they are needed and whether
they can be bootstrapped. Running a command that concretize a spec, like:
.. code-block:: console
% spack solve zlib
==> Bootstrapping clingo from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.1/build_cache/darwin-catalina-x86_64/apple-clang-12.0.0/clingo-bootstrap-spack/darwin-catalina-x86_64-apple-clang-12.0.0-clingo-bootstrap-spack-p5on7i4hejl775ezndzfdkhvwra3hatn.spack
==> Installing "clingo-bootstrap@spack%apple-clang@12.0.0~docs~ipo+python build_type=Release arch=darwin-catalina-x86_64" from a buildcache
[ ... ]
triggers the bootstrapping of clingo from pre-built binaries as expected.
Users can also bootstrap all the dependencies needed by Spack in a single command, which
might be useful to setup containers or other similar environments:
.. code-block:: console
$ spack bootstrap now
==> Bootstrapping clingo from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64-gcc-10.2.1-clingo-bootstrap-spack-shqedxgvjnhiwdcdrvjhbd73jaevv7wt.spec.json
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64/gcc-10.2.1/clingo-bootstrap-spack/linux-centos7-x86_64-gcc-10.2.1-clingo-bootstrap-spack-shqedxgvjnhiwdcdrvjhbd73jaevv7wt.spack
==> Installing "clingo-bootstrap@spack%gcc@10.2.1~docs~ipo+python+static_libstdcpp build_type=Release arch=linux-centos7-x86_64" from a buildcache
==> Bootstrapping patchelf from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64-gcc-10.2.1-patchelf-0.15.0-htk62k7efo2z22kh6kmhaselru7bfkuc.spec.json
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.3/build_cache/linux-centos7-x86_64/gcc-10.2.1/patchelf-0.15.0/linux-centos7-x86_64-gcc-10.2.1-patchelf-0.15.0-htk62k7efo2z22kh6kmhaselru7bfkuc.spack
==> Installing "patchelf@0.15.0%gcc@10.2.1 ldflags="-static-libstdc++ -static-libgcc" arch=linux-centos7-x86_64" from a buildcache
-----------------------
The Bootstrapping store
-----------------------
The software installed for bootstrapping purposes is deployed in a separate store.
Its location can be checked with the following command:
.. code-block:: console
% spack bootstrap root
It can also be changed with the same command by just specifying the newly desired path:
.. code-block:: console
% spack bootstrap root /opt/spack/bootstrap
You can check what is installed in the bootstrapping store at any time using:
.. code-block:: console
% spack find -b
==> Showing internal bootstrap store at "/Users/spack/.spack/bootstrap/store"
==> 11 installed packages
-- darwin-catalina-x86_64 / apple-clang@12.0.0 ------------------
clingo-bootstrap@spack libassuan@2.5.5 libgpg-error@1.42 libksba@1.5.1 pinentry@1.1.1 zlib@1.2.11
gnupg@2.3.1 libgcrypt@1.9.3 libiconv@1.16 npth@1.6 python@3.8
In case it is needed you can remove all the software in the current bootstrapping store with:
.. code-block:: console
% spack clean -b
==> Removing bootstrapped software and configuration in "/Users/spack/.spack/bootstrap"
% spack find -b
==> Showing internal bootstrap store at "/Users/spack/.spack/bootstrap/store"
==> 0 installed packages
--------------------------------------------
Enabling and disabling bootstrapping methods
--------------------------------------------
Bootstrapping is always performed by trying the methods listed by:
.. command-output:: spack bootstrap list
in the order they appear, from top to bottom. By default Spack is
configured to try first bootstrapping from pre-built binaries and to
fall-back to bootstrapping from sources if that failed.
If need be, you can disable bootstrapping altogether by running:
.. code-block:: console
% spack bootstrap disable
in which case it's your responsibility to ensure Spack runs in an
environment where all its prerequisites are installed. You can
also configure Spack to skip certain bootstrapping methods by disabling
them specifically:
.. code-block:: console
% spack bootstrap disable github-actions
==> "github-actions" is now disabled and will not be used for bootstrapping
tells Spack to skip trying to bootstrap from binaries. To add the "github-actions" method back you can:
.. code-block:: console
% spack bootstrap enable github-actions
There is also an option to reset the bootstrapping configuration to Spack's defaults:
.. code-block:: console
% spack bootstrap reset
==> Bootstrapping configuration is being reset to Spack's defaults. Current configuration will be lost.
Do you want to continue? [Y/n]
%
----------------------------------------
Creating a mirror for air-gapped systems
----------------------------------------
Spack's default configuration for bootstrapping relies on the user having
access to the internet, either to fetch pre-compiled binaries or source tarballs.
Sometimes though Spack is deployed on air-gapped systems where such access is denied.
To help with similar situations Spack has a command that recreates, in a local folder
of choice, a mirror containing the source tarballs and/or binary packages needed for
bootstrapping.
.. code-block:: console
% spack bootstrap mirror --binary-packages /opt/bootstrap
==> Adding "clingo-bootstrap@spack+python %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "gnupg@2.3: %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "patchelf@0.13.1:0.13.99 %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding binary packages from "https://github.com/alalazo/spack-bootstrap-mirrors/releases/download/v0.1-rc.2/bootstrap-buildcache.tar.gz" to the mirror at /opt/bootstrap/local-mirror
To register the mirror on the platform where it's supposed to be used run the following command(s):
% spack bootstrap add --trust local-sources /opt/bootstrap/metadata/sources
% spack bootstrap add --trust local-binaries /opt/bootstrap/metadata/binaries
This command needs to be run on a machine with internet access and the resulting folder
has to be moved over to the air-gapped system. Once the local sources are added using the
commands suggested at the prompt, they can be used to bootstrap Spack.

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _build-settings:
================================
Package Settings (packages.yaml)
================================
===================
Build Customization
===================
Spack allows you to customize how your software is built through the
``packages.yaml`` file. Using it, you can make Spack prefer particular
@@ -49,44 +49,30 @@ packages rather than building its own packages. This may be desirable
if machines ship with system packages, such as a customized MPI
that should be used instead of Spack building its own MPI.
External packages are configured through the ``packages.yaml`` file.
Here's an example of an external configuration:
External packages are configured through the ``packages.yaml`` file found
in a Spack installation's ``etc/spack/`` or a user's ``~/.spack/``
directory. Here's an example of an external configuration:
.. code-block:: yaml
packages:
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
paths:
openmpi@1.4.3%gcc@4.4.7 arch=linux-x86_64-debian7: /opt/openmpi-1.4.3
openmpi@1.4.3%gcc@4.4.7 arch=linux-x86_64-debian7+debug: /opt/openmpi-1.4.3-debug
openmpi@1.6.5%intel@10.1 arch=linux-x86_64-debian7: /opt/openmpi-1.6.5-intel
This example lists three installations of OpenMPI, one built with GCC,
one built with GCC and debug information, and another built with Intel.
If Spack is asked to build a package that uses one of these MPIs as a
dependency, it will use the pre-installed OpenMPI in
the given directory. Note that the specified path is the top-level
install prefix, not the ``bin`` subdirectory.
the given directory. ``packages.yaml`` can also be used to specify modules
to load instead of the installation prefixes.
``packages.yaml`` can also be used to specify modules to load instead
of the installation prefixes. The following example says that module
``CMake/3.7.2`` provides cmake version 3.7.2.
.. code-block:: yaml
cmake:
externals:
- spec: cmake@3.7.2
modules:
- CMake/3.7.2
Each ``packages.yaml`` begins with a ``packages:`` attribute, followed
by a list of package names. To specify externals, add an ``externals:``
attribute under the package name, which lists externals.
Each external should specify a ``spec:`` string that should be as
Each ``packages.yaml`` begins with a ``packages:`` token, followed
by a list of package names. To specify externals, add a ``paths`` or ``modules``
token under the package name, which lists externals in a
``spec: /path`` or ``spec: module-name`` format. Each spec should be as
well-defined as reasonably possible. If a
package lacks a spec component, such as missing a compiler or
package version, then Spack will guess the missing component based
@@ -96,14 +82,11 @@ Each package version and compiler listed in an external should
have entries in Spack's packages and compiler configuration, even
though the package and compiler may not ever be built.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Prevent packages from being built from sources
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding an external spec in ``packages.yaml`` allows Spack to use an external location,
but it does not prevent Spack from building packages from sources. In the above example,
Spack might choose for many valid reasons to start building and linking with the
latest version of OpenMPI rather than continue using the pre-installed OpenMPI versions.
The packages configuration can tell Spack to use an external location
for certain package versions, but it does not restrict Spack to using
external packages. In the above example, since newer versions of OpenMPI
are available, Spack will choose to start building and linking with the
latest version rather than continue using the pre-installed OpenMPI versions.
To prevent this, the ``packages.yaml`` configuration also allows packages
to be flagged as non-buildable. The previous example could be modified to
@@ -113,25 +96,16 @@ be:
packages:
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
paths:
openmpi@1.4.3%gcc@4.4.7 arch=linux-x86_64-debian7: /opt/openmpi-1.4.3
openmpi@1.4.3%gcc@4.4.7 arch=linux-x86_64-debian7+debug: /opt/openmpi-1.4.3-debug
openmpi@1.6.5%intel@10.1 arch=linux-x86_64-debian7: /opt/openmpi-1.6.5-intel
buildable: False
The addition of the ``buildable`` flag tells Spack that it should never build
its own version of OpenMPI from sources, and it will instead always rely on a pre-built
OpenMPI.
.. note::
If ``concretizer:reuse`` is on (see :ref:`concretizer-options` for more information on that flag)
pre-built specs include specs already available from a local store, an upstream store, a registered
buildcache or specs marked as externals in ``packages.yaml``. If ``concretizer:reuse`` is off, only
external specs in ``packages.yaml`` are included in the list of pre-built specs.
its own version of OpenMPI, and it will instead always rely on a pre-built
OpenMPI. Similar to ``paths``, ``buildable`` is specified as a property under
a package name.
If an external module is specified as not buildable, then Spack will load the
external module into the build environment which can be used for linking.
@@ -140,305 +114,18 @@ The ``buildable`` does not need to be paired with external packages.
It could also be used alone to forbid packages that may be
buggy or otherwise undesirable.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Non-buildable virtual packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Virtual packages in Spack can also be specified as not buildable, and
external implementations can be provided. In the example above,
OpenMPI is configured as not buildable, but Spack will often prefer
other MPI implementations over the externally available OpenMPI. Spack
can be configured with every MPI provider not buildable individually,
but more conveniently:
.. _concretization-preferences:
.. code-block:: yaml
--------------------------
Concretization Preferences
--------------------------
packages:
mpi:
buildable: False
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
Spack can then use any of the listed external implementations of MPI
to satisfy a dependency, and will choose depending on the compiler and
architecture.
In cases where the concretizer is configured to reuse specs, and other ``mpi`` providers
(available via stores or buildcaches) are not wanted, Spack can be configured to require
specs matching only the available externals:
.. code-block:: yaml
packages:
mpi:
buildable: False
require:
- one_of: [
"openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64",
"openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug",
"openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
]
openmpi:
externals:
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.4.3
- spec: "openmpi@1.4.3%gcc@4.4.7 arch=linux-debian7-x86_64+debug"
prefix: /opt/openmpi-1.4.3-debug
- spec: "openmpi@1.6.5%intel@10.1 arch=linux-debian7-x86_64"
prefix: /opt/openmpi-1.6.5-intel
This configuration prevents any spec using MPI and originating from stores or buildcaches to be reused,
unless it matches the requirements under ``packages:mpi:require``. For more information on requirements see
:ref:`package-requirements`.
.. _cmd-spack-external-find:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Automatically Find External Packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can run the :ref:`spack external find <spack-external-find>` command
to search for system-provided packages and add them to ``packages.yaml``.
After running this command your ``packages.yaml`` may include new entries:
.. code-block:: yaml
packages:
cmake:
externals:
- spec: cmake@3.17.2
prefix: /usr
Generally this is useful for detecting a small set of commonly-used packages;
for now this is generally limited to finding build-only dependencies.
Specific limitations include:
* Packages are not discoverable by default: For a package to be
discoverable with ``spack external find``, it needs to add special
logic. See :ref:`here <make-package-findable>` for more details.
* The logic does not search through module files, it can only detect
packages with executables defined in ``PATH``; you can help Spack locate
externals which use module files by loading any associated modules for
packages that you want Spack to know about before running
``spack external find``.
* Spack does not overwrite existing entries in the package configuration:
If there is an external defined for a spec at any configuration scope,
then Spack will not add a new external entry (``spack config blame packages``
can help locate all external entries).
.. _concretizer-options:
----------------------
Concretizer options
----------------------
``packages.yaml`` gives the concretizer preferences for specific packages,
but you can also use ``concretizer.yaml`` to customize aspects of the
algorithm it uses to select the dependencies you install:
.. literalinclude:: _spack_root/etc/spack/defaults/concretizer.yaml
:language: yaml
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reuse already installed packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``reuse`` attribute controls whether Spack will prefer to use installed packages (``true``), or
whether it will do a "fresh" installation and prefer the latest settings from
``package.py`` files and ``packages.yaml`` (``false``).
You can use:
.. code-block:: console
% spack install --reuse <spec>
to enable reuse for a single installation, and you can use:
.. code-block:: console
spack install --fresh <spec>
to do a fresh install if ``reuse`` is enabled by default.
``reuse: true`` is the default.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Selection of the target microarchitectures
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The options under the ``targets`` attribute control which targets are considered during a solve.
Currently the options in this section are only configurable from the ``concretization.yaml`` file
and there are no corresponding command line arguments to enable them for a single solve.
The ``granularity`` option can take two possible values: ``microarchitectures`` and ``generic``.
If set to:
.. code-block:: yaml
concretizer:
targets:
granularity: microarchitectures
Spack will consider all the microarchitectures known to ``archspec`` to label nodes for
compatibility. If instead the option is set to:
.. code-block:: yaml
concretizer:
targets:
granularity: generic
Spack will consider only generic microarchitectures. For instance, when running on an
Haswell node, Spack will consider ``haswell`` as the best target in the former case and
``x86_64_v3`` as the best target in the latter case.
The ``host_compatible`` option is a Boolean option that determines whether or not the
microarchitectures considered during the solve are constrained to be compatible with the
host Spack is currently running on. For instance, if this option is set to ``true``, a
user cannot concretize for ``target=icelake`` while running on an Haswell node.
.. _package-requirements:
--------------------
Package Requirements
--------------------
Spack can be configured to always use certain compilers, package
versions, and variants during concretization through package
requirements.
Package requirements are useful when you find yourself repeatedly
specifying the same constraints on the command line, and wish that
Spack respects these constraints whether you mention them explicitly
or not. Another use case is specifying constraints that should apply
to all root specs in an environment, without having to repeat the
constraint everywhere.
Apart from that, requirements config is more flexible than constraints
on the command line, because it can specify constraints on packages
*when they occur* as a dependency. In contrast, on the command line it
is not possible to specify constraints on dependencies while also keeping
those dependencies optional.
The package requirements configuration is specified in ``packages.yaml``
keyed by package name:
.. code-block:: yaml
packages:
libfabric:
require: "@1.13.2"
openmpi:
require:
- any_of: ["~cuda", "%gcc"]
mpich:
require:
- one_of: ["+cuda", "+rocm"]
Requirements are expressed using Spec syntax (the same as what is provided
to ``spack install``). In the simplest case, you can specify attributes
that you always want the package to have by providing a single spec to
``require``; in the above example, ``libfabric`` will always build
with version 1.13.2.
You can provide a more-relaxed constraint and allow the concretizer to
choose between a set of options using ``any_of`` or ``one_of``:
* ``any_of`` is a list of specs. One of those specs must be satisfied
and it is also allowed for the concretized spec to match more than one.
In the above example, that means you could build ``openmpi+cuda%gcc``,
``openmpi~cuda%clang`` or ``openmpi~cuda%gcc`` (in the last case,
note that both specs in the ``any_of`` for ``openmpi`` are
satisfied).
* ``one_of`` is also a list of specs, and the final concretized spec
must match exactly one of them. In the above example, that means
you could build ``mpich+cuda`` or ``mpich+rocm`` but not
``mpich+cuda+rocm`` (note the current package definition for
``mpich`` already includes a conflict, so this is redundant but
still demonstrates the concept).
.. note::
For ``any_of`` and ``one_of``, the order of specs indicates a
preference: items that appear earlier in the list are preferred
(note that these preferences can be ignored in favor of others).
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting default requirements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can also set default requirements for all packages under ``all``
like this:
.. code-block:: yaml
packages:
all:
require: '%clang'
which means every spec will be required to use ``clang`` as a compiler.
Note that in this case ``all`` represents a *default set of requirements* -
if there are specific package requirements, then the default requirements
under ``all`` are disregarded. For example, with a configuration like this:
.. code-block:: yaml
packages:
all:
require: '%clang'
cmake:
require: '%gcc'
Spack requires ``cmake`` to use ``gcc`` and all other nodes (including ``cmake``
dependencies) to use ``clang``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting requirements on virtual specs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A requirement on a virtual spec applies whenever that virtual is present in the DAG.
This can be useful for fixing which virtual provider you want to use:
.. code-block:: yaml
packages:
mpi:
require: 'mvapich2 %gcc'
With the configuration above the only allowed ``mpi`` provider is ``mvapich2 %gcc``.
Requirements on the virtual spec and on the specific provider are both applied, if
present. For instance with a configuration like:
.. code-block:: yaml
packages:
mpi:
require: 'mvapich2 %gcc'
mvapich2:
require: '~cuda'
you will use ``mvapich2~cuda %gcc`` as an ``mpi`` provider.
.. _package-preferences:
-------------------
Package Preferences
-------------------
In some cases package requirements can be too strong, and package
preferences are the better option. Package preferences do not impose
constraints on packages for particular versions or variants values,
they rather only set defaults -- the concretizer is free to change
them if it must due to other constraints. Also note that package
preferences are of lower priority than reuse of already installed
packages.
Spack can be configured to prefer certain compilers, package
versions, dependencies, and variants during concretization.
The preferred configuration can be controlled via the
``~/.spack/packages.yaml`` file for user configurations, or the
``etc/spack/packages.yaml`` site configuration.
Here's an example ``packages.yaml`` file that sets preferred packages:
@@ -451,12 +138,11 @@ Here's an example ``packages.yaml`` file that sets preferred packages:
gperftools:
version: [2.2, 2.4, 2.3]
all:
compiler: [gcc@4.4.7, 'gcc@4.6:', intel, clang, pgi]
target: [sandybridge]
compiler: [gcc@4.4.7, gcc@4.6:, intel, clang, pgi]
providers:
mpi: [mvapich2, mpich, openmpi]
At a high level, this example is specifying how packages are preferably
At a high level, this example is specifying how packages should be
concretized. The opencv package should prefer using GCC 4.9 and
be built with debug options. The gperftools package should prefer version
2.2 over 2.4. Every package on the system should prefer mvapich2 for
@@ -464,11 +150,13 @@ its MPI and GCC 4.4.7 (except for opencv, which overrides this by preferring GCC
These options are used to fill in implicit defaults. Any of them can be overwritten
on the command line if explicitly requested.
Package preferences accept the follow keys or components under
the specific package (or ``all``) section: ``compiler``, ``variants``,
``version``, ``providers``, and ``target``. Each component has an
ordered list of spec ``constraints``, with earlier entries in the
list being preferred over later entries.
Each ``packages.yaml`` file begins with the string ``packages:`` and
package names are specified on the next level. The special string ``all``
applies settings to each package. Underneath each package name is
one or more components: ``compiler``, ``variants``, ``version``,
or ``providers``. Each component has an ordered list of spec
``constraints``, with earlier entries in the list being preferred over
later entries.
Sometimes a package installation may have constraints that forbid
the first concretization rule, in which case Spack will use the first
@@ -483,7 +171,7 @@ gcc to pgi will thus be preferred over the xlc compiler.
The syntax for the ``provider`` section differs slightly from other
concretization rules. A provider lists a value that packages may
``depends_on`` (e.g, MPI) and a list of rules for fulfilling that
``depend_on`` (e.g, MPI) and a list of rules for fulfilling that
dependency.
.. _package_permissions:
@@ -534,25 +222,3 @@ directories inside the install prefix. This will ensure that even
manually placed files within the install prefix are owned by the
assigned group. If no group is assigned, Spack will allow the OS
default behavior to go as expected.
----------------------------
Assigning Package Attributes
----------------------------
You can assign class-level attributes in the configuration:
.. code-block:: yaml
packages:
mpileaks:
# Override existing attributes
url: http://www.somewhereelse.com/mpileaks-1.0.tar.gz
# ... or add new ones
x: 1
Attributes set this way will be accessible to any method executed
in the package.py file (e.g. the ``install()`` method). Values for these
attributes may be any value parseable by yaml.
These can only be applied to specific packages, not "all" or
virtual packages.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -29,7 +29,6 @@ on these ideas for each distinct build system that Spack supports:
:maxdepth: 1
:caption: Make-incompatible
build_systems/mavenpackage
build_systems/sconspackage
build_systems/wafpackage
@@ -39,34 +38,26 @@ on these ideas for each distinct build system that Spack supports:
build_systems/autotoolspackage
build_systems/cmakepackage
build_systems/cachedcmakepackage
build_systems/mesonpackage
build_systems/qmakepackage
build_systems/sippackage
.. toctree::
:maxdepth: 1
:caption: Language-specific
build_systems/luapackage
build_systems/octavepackage
build_systems/perlpackage
build_systems/pythonpackage
build_systems/rpackage
build_systems/racketpackage
build_systems/rubypackage
.. toctree::
:maxdepth: 1
:caption: Other
build_systems/bundlepackage
build_systems/cudapackage
build_systems/custompackage
build_systems/inteloneapipackage
build_systems/intelpackage
build_systems/rocmpackage
build_systems/sourceforgepackage
build_systems/custompackage
For reference, the :py:mod:`Build System API docs <spack.build_systems>`
provide a list of build systems and methods/attributes that can be

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _autotoolspackage:
---------
Autotools
---------
----------------
AutotoolsPackage
----------------
Autotools is a GNU build system that provides a build-script generator.
By running the platform-independent ``./configure`` script that comes
@@ -17,7 +17,7 @@ with the package, you can generate a platform-dependent Makefile.
Phases
^^^^^^
The ``AutotoolsBuilder`` and ``AutotoolsPackage`` base classes come with the following phases:
The ``AutotoolsPackage`` base class comes with the following phases:
#. ``autoreconf`` - generate the configure script
#. ``configure`` - generate the Makefiles
@@ -112,44 +112,20 @@ phase runs:
.. code-block:: console
$ autoreconf --install --verbose --force -I <aclocal-prefix>/share/aclocal
In case you need to add more arguments, override ``autoreconf_extra_args``
in your ``package.py`` on class scope like this:
.. code-block:: python
autoreconf_extra_args = ["-Im4"]
$ libtoolize
$ aclocal
$ autoreconf --install --verbose --force
All you need to do is add a few Autotools dependencies to the package.
Most stable releases will come with a ``configure`` script, but if you
check out a commit from the ``master`` branch, you would want to add:
check out a commit from the ``develop`` branch, you would want to add:
.. code-block:: python
depends_on('autoconf', type='build', when='@master')
depends_on('automake', type='build', when='@master')
depends_on('libtool', type='build', when='@master')
It is typically redundant to list the ``m4`` macro processor package as a
dependency, since ``autoconf`` already depends on it.
"""""""""""""""""""""""""""""""
Using a custom autoreconf phase
"""""""""""""""""""""""""""""""
In some cases, it might be needed to replace the default implementation
of the autoreconf phase with one running a script interpreter. In this
example, the ``bash`` shell is used to run the ``autogen.sh`` script.
.. code-block:: python
def autoreconf(self, spec, prefix):
which('bash')('autogen.sh')
"""""""""""""""""""""""""""""""""""""""
patching configure or Makefile.in files
"""""""""""""""""""""""""""""""""""""""
depends_on('autoconf', type='build', when='@develop')
depends_on('automake', type='build', when='@develop')
depends_on('libtool', type='build', when='@develop')
depends_on('m4', type='build', when='@develop')
In some cases, developers might need to distribute a patch that modifies
one of the files used to generate ``configure`` or ``Makefile.in``.
@@ -159,57 +135,6 @@ create a new patch that directly modifies ``configure``. That way,
Spack can use the secondary patch and additional build system
dependencies aren't necessary.
""""""""""""""""""""""""""""
Old Autotools helper scripts
""""""""""""""""""""""""""""
Autotools based tarballs come with helper scripts such as ``config.sub`` and
``config.guess``. It is the responsibility of the developers to keep these files
up to date so that they run on every platform, but for very old software
releases this is impossible. In these cases Spack can help to replace these
files with newer ones, without having to add the heavy dependency on
``automake``.
Automatic helper script replacement is currently enabled by default on
``ppc64le`` and ``aarch64``, as these are the known cases where old scripts fail.
On these targets, ``AutotoolsPackage`` adds a build dependency on ``gnuconfig``,
which is a very light-weight package with newer versions of the helper files.
Spack then tries to run all the helper scripts it can find in the release, and
replaces them on failure with the helper scripts from ``gnuconfig``.
To opt out of this feature, use the following setting:
.. code-block:: python
patch_config_files = False
To enable it conditionally on different architectures, define a property and
make the package depend on ``gnuconfig`` as a build dependency:
.. code-block
depends_on('gnuconfig', when='@1.0:')
@property
def patch_config_files(self):
return self.spec.satisfies("@1.0:")
.. note::
On some exotic architectures it is necessary to use system provided
``config.sub`` and ``config.guess`` files. In this case, the most
transparent solution is to mark the ``gnuconfig`` package as external and
non-buildable, with a prefix set to the directory containing the files:
.. code-block:: yaml
gnuconfig:
buildable: false
externals:
- spec: gnuconfig@master
prefix: /usr/share/configure_files/
""""""""""""""""
force_autoreconf
""""""""""""""""
@@ -230,7 +155,7 @@ version, this can be done like so:
@property
def force_autoreconf(self):
return self.version == Version('1.2.3')
return self.version == Version('1.2.3'):
^^^^^^^^^^^^^^^^^^^^^^^
Finding configure flags
@@ -308,163 +233,7 @@ You may have noticed that most of the Autotools flags are of the form
``--without-baz``. Since these flags are so common, Spack provides a
couple of helper functions to make your life easier.
"""""""""""""""""
enable_or_disable
"""""""""""""""""
Autotools flags for simple boolean variants can be automatically
generated by calling the ``enable_or_disable`` method. This is
typically used to enable or disable some feature within the package.
.. code-block:: python
variant(
'memchecker',
default=False,
description='Memchecker support for debugging [degrades performance]'
)
config_args.extend(self.enable_or_disable('memchecker'))
In this example, specifying the variant ``+memchecker`` will generate
the following configuration options:
.. code-block:: console
--enable-memchecker
"""""""""""""""
with_or_without
"""""""""""""""
Autotools flags for more complex variants, including boolean variants
and multi-valued variants, can be automatically generated by calling
the ``with_or_without`` method.
.. code-block:: python
variant(
'schedulers',
values=disjoint_sets(
('auto',), ('alps', 'lsf', 'tm', 'slurm', 'sge', 'loadleveler')
).with_non_feature_values('auto', 'none'),
description="List of schedulers for which support is enabled; "
"'auto' lets openmpi determine",
)
if 'schedulers=auto' not in spec:
config_args.extend(self.with_or_without('schedulers'))
In this example, specifying the variant ``schedulers=slurm,sge`` will
generate the following configuration options:
.. code-block:: console
--with-slurm --with-sge
``enable_or_disable`` is actually functionally equivalent with
``with_or_without``, and accepts the same arguments and variant types;
but idiomatic autotools packages often follow these naming
conventions.
""""""""""""""""
activation_value
""""""""""""""""
Autotools parameters that require an option can still be automatically
generated, using the ``activation_value`` argument to
``with_or_without`` (or, rarely, ``enable_or_disable``).
.. code-block:: python
variant(
'fabrics',
values=disjoint_sets(
('auto',), ('psm', 'psm2', 'verbs', 'mxm', 'ucx', 'libfabric')
).with_non_feature_values('auto', 'none'),
description="List of fabrics that are enabled; "
"'auto' lets openmpi determine",
)
if 'fabrics=auto' not in spec:
config_args.extend(self.with_or_without('fabrics',
activation_value='prefix'))
``activation_value`` accepts a callable that generates the configure
parameter value given the variant value; but the special value
``prefix`` tells Spack to automatically use the dependenency's
installation prefix, which is the most common use for such
parameters. In this example, specifying the variant
``fabrics=libfabric`` will generate the following configuration
options:
.. code-block:: console
--with-libfabric=</path/to/libfabric>
"""""""""""""""""""""""
The ``variant`` keyword
"""""""""""""""""""""""
When Spack variants and configure flags do not correspond one-to-one, the
``variant`` keyword can be passed to ``with_or_without`` and
``enable_or_disable``. For example:
.. code-block:: python
variant('debug_tools', default=False)
config_args += self.enable_or_disable('debug-tools', variant='debug_tools')
Or when one variant controls multiple flags:
.. code-block:: python
variant('debug_tools', default=False)
config_args += self.with_or_without('memchecker', variant='debug_tools')
config_args += self.with_or_without('profiler', variant='debug_tools')
""""""""""""""""""""
Conditional variants
""""""""""""""""""""
When a variant is conditional and its condition is not met on the concrete spec, the
``with_or_without`` and ``enable_or_disable`` methods will simply return an empty list.
For example:
.. code-block:: python
variant('profiler', when='@2.0:')
config_args += self.with_or_without('profiler')
will neither add ``--with-profiler`` nor ``--without-profiler`` when the version is
below ``2.0``.
""""""""""""""""""""
Activation overrides
""""""""""""""""""""
Finally, the behavior of either ``with_or_without`` or
``enable_or_disable`` can be overridden for specific variant
values. This is most useful for multi-values variants where some of
the variant values require atypical behavior.
.. code-block:: python
def with_or_without_verbs(self, activated):
# Up through version 1.6, this option was named --with-openib.
# In version 1.7, it was renamed to be --with-verbs.
opt = 'verbs' if self.spec.satisfies('@1.7:') else 'openib'
if not activated:
return '--without-{0}'.format(opt)
return '--with-{0}={1}'.format(opt, self.spec['rdma-core'].prefix)
Defining ``with_or_without_verbs`` overrides the behavior of a
``fabrics=verbs`` variant, changing the configure-time option to
``--with-openib`` for older versions of the package and specifying an
alternative dependency name:
.. code-block::
--with-openib=</path/to/rdma-core>
TODO: document ``with_or_without`` and ``enable_or_disable``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Configure script in a sub-directory

View File

@@ -1,52 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _bundlepackage:
------
Bundle
------
``BundlePackage`` represents a set of packages that are expected to work well
together, such as a collection of commonly used software libraries. The
associated software is specified as bundle dependencies.
^^^^^^^^
Creation
^^^^^^^^
Be sure to specify the ``bundle`` template if you are using ``spack create``
to generate a package from the template. For example, use the following
command to create a bundle package whose class name will be ``Mybundle``:
.. code-block:: console
$ spack create --template bundle --name mybundle
^^^^^^
Phases
^^^^^^
The ``BundlePackage`` base class does not provide any phases by default
since the bundle does not represent a build system.
^^^
URL
^^^
The ``url`` property does not have meaning since there is no package-specific
code to fetch.
^^^^^^^
Version
^^^^^^^
At least one ``version`` must be specified in order for the package to
build.

View File

@@ -1,123 +0,0 @@
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _cachedcmakepackage:
------------------
CachedCMakePackage
------------------
The CachedCMakePackage base class is used for CMake-based workflows
that create a CMake cache file prior to running ``cmake``. This is
useful for packages with arguments longer than the system limit, and
for reproducibility.
The documentation for this class assumes that the user is familiar with
the ``CMakePackage`` class from which it inherits. See the documentation
for :ref:`CMakePackage <cmakepackage>`.
^^^^^^
Phases
^^^^^^
The ``CachedCMakePackage`` base class comes with the following phases:
#. ``initconfig`` - generate the CMake cache file
#. ``cmake`` - generate the Makefile
#. ``build`` - build the package
#. ``install`` - install the package
By default, these phases run:
.. code-block:: console
$ mkdir spack-build
$ cd spack-build
$ cat << EOF > name-arch-compiler@version.cmake
# Write information on compilers and dependencies
# includes information on mpi and cuda if applicable
$ cmake .. -DCMAKE_INSTALL_PREFIX=/path/to/installation/prefix -C name-arch-compiler@version.cmake
$ make
$ make test # optional
$ make install
The ``CachedCMakePackage`` class inherits from the ``CMakePackage``
class, and accepts all of the same options and adds all of the same
flags to the ``cmake`` command. Similar to the ``CMakePAckage`` class,
you may need to add a few arguments yourself, and the
``CachedCMakePackage`` provides the same interface to add those
flags.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding entries to the CMake cache
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In addition to adding flags to the ``cmake`` command, you may need to
add entries to the CMake cache in the ``initconfig`` phase. This can
be done by overriding one of four methods:
#. ``CachedCMakePackage.initconfig_compiler_entries``
#. ``CachedCMakePackage.initconfig_mpi_entries``
#. ``CachedCMakePackage.initconfig_hardware_entries``
#. ``CachedCMakePackage.initconfig_package_entries``
Each of these methods returns a list of CMake cache strings. The
distinction between these methods is merely to provide a
well-structured and legible cmake cache file -- otherwise, entries
from each of these methods are handled identically.
Spack also provides convenience methods for generating CMake cache
entries. These methods are available at module scope in every Spack
package. Because CMake parses boolean options, strings, and paths
differently, there are three such methods:
#. ``cmake_cache_option``
#. ``cmake_cache_string``
#. ``cmake_cache_path``
These methods each accept three parameters -- the name of the CMake
variable associated with the entry, the value of the entry, and an
optional comment -- and return strings in the appropriate format to be
returned from any of the ``initconfig*`` methods. Additionally, these
methods may return comments beginning with the ``#`` character.
A typical usage of these methods may look something like this:
.. code-block:: python
def initconfig_mpi_entries(self)
# Get existing MPI configurations
entries = super(self, Foo).initconfig_mpi_entries()
# The existing MPI configurations key on whether ``mpi`` is in the spec
# This spec has an MPI variant, and we need to enable MPI when it is on.
# This hypothetical package controls MPI with the ``FOO_MPI`` option to
# cmake.
if '+mpi' in self.spec:
entries.append(cmake_cache_option('FOO_MPI', True, "enable mpi"))
else:
entries.append(cmake_cache_option('FOO_MPI', False, "disable mpi"))
def initconfig_package_entries(self):
# Package specific options
entries = []
entries.append('#Entries for build options')
bar_on = '+bar' in self.spec
entries.append(cmake_cache_option('FOO_BAR', bar_on, 'toggle bar'))
entries.append('#Entries for dependencies')
if self.spec['blas'].name == 'baz': # baz is our blas provider
entries.append(cmake_cache_string('FOO_BLAS', 'baz', 'Use baz'))
entries.append(cmake_cache_path('BAZ_PREFIX', self.spec['baz'].prefix))
^^^^^^^^^^^^^^^^^^^^^^
External documentation
^^^^^^^^^^^^^^^^^^^^^^
For more information on CMake cache files, see:
https://cmake.org/cmake/help/latest/manual/cmake.1.html

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _cmakepackage:
-----
CMake
-----
------------
CMakePackage
------------
Like Autotools, CMake is a widely-used build-script generator. Designed
by Kitware, CMake is the most popular build system for new C, C++, and
@@ -21,7 +21,7 @@ whereas Autotools is Unix-only.
Phases
^^^^^^
The ``CMakeBuilder`` and ``CMakePackage`` base classes come with the following phases:
The ``CMakePackage`` base class comes with the following phases:
#. ``cmake`` - generate the Makefile
#. ``build`` - build the package
@@ -128,116 +128,20 @@ Adding flags to cmake
^^^^^^^^^^^^^^^^^^^^^
To add additional flags to the ``cmake`` call, simply override the
``cmake_args`` function. The following example defines values for the flags
``WHATEVER``, ``ENABLE_BROKEN_FEATURE``, ``DETECT_HDF5``, and ``THREADS`` with
and without the :meth:`~spack.build_systems.cmake.CMakeBuilder.define` and
:meth:`~spack.build_systems.cmake.CMakeBuilder.define_from_variant` helper functions:
``cmake_args`` function:
.. code-block:: python
def cmake_args(self):
args = [
'-DWHATEVER:STRING=somevalue',
self.define('ENABLE_BROKEN_FEATURE', False),
self.define_from_variant('DETECT_HDF5', 'hdf5'),
self.define_from_variant('THREADS'), # True if +threads
]
args = []
if '+hdf5' in self.spec:
args.append('-DDETECT_HDF5=ON')
else:
args.append('-DDETECT_HDF5=OFF')
return args
Spack supports CMake defines from conditional variants too. Whenever the condition on
the variant is not met, ``define_from_variant()`` will simply return an empty string,
and CMake simply ignores the empty command line argument. For example the following
.. code-block:: python
variant('example', default=True, when='@2.0:')
def cmake_args(self):
return [self.define_from_variant('EXAMPLE', 'example')]
will generate ``'cmake' '-DEXAMPLE=ON' ...`` when `@2.0: +example` is met, but will
result in ``'cmake' '' ...`` when the spec version is below ``2.0``.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
CMake arguments provided by Spack
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following default arguments are controlled by Spack:
``CMAKE_INSTALL_PREFIX``
------------------------
Is set to the the package's install directory.
``CMAKE_PREFIX_PATH``
---------------------
CMake finds dependencies through calls to ``find_package()``, ``find_program()``,
``find_library()``, ``find_file()``, and ``find_path()``, which use a list of search
paths from ``CMAKE_PREFIX_PATH``. Spack sets this variable to a list of prefixes of the
spec's transitive dependencies.
For troubleshooting cases where CMake fails to find a dependency, add the
``--debug-find`` flag to ``cmake_args``.
``CMAKE_BUILD_TYPE``
--------------------
Every CMake-based package accepts a ``-DCMAKE_BUILD_TYPE`` flag to
dictate which level of optimization to use. In order to ensure
uniformity across packages, the ``CMakePackage`` base class adds
a variant to control this:
.. code-block:: python
variant('build_type', default='RelWithDebInfo',
description='CMake build type',
values=('Debug', 'Release', 'RelWithDebInfo', 'MinSizeRel'))
However, not every CMake package accepts all four of these options.
Grep the ``CMakeLists.txt`` file to see if the default values are
missing or replaced. For example, the
`dealii <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/dealii/package.py>`_
package overrides the default variant with:
.. code-block:: python
variant('build_type', default='DebugRelease',
description='The build type to build',
values=('Debug', 'Release', 'DebugRelease'))
For more information on ``CMAKE_BUILD_TYPE``, see:
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
``CMAKE_INSTALL_RPATH`` and ``CMAKE_INSTALL_RPATH_USE_LINK_PATH=ON``
--------------------------------------------------------------------
CMake uses different RPATHs during the build and after installation, so that executables
can locate the libraries they're linked to during the build, and installed executables
do not have RPATHs to build directories. In Spack, we have to make sure that RPATHs are
set properly after installation.
Spack sets ``CMAKE_INSTALL_RPATH`` to a list of ``<prefix>/lib`` or ``<prefix>/lib64``
directories of the spec's link-type dependencies. Apart from that, it sets
``-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=ON``, which should add RPATHs for directories of
linked libraries not in the directories covered by ``CMAKE_INSTALL_RPATH``.
Usually it's enough to set only ``-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=ON``, but the
reason to provide both options is that packages may dynamically open shared libraries,
which CMake cannot detect. In those cases, the RPATHs from ``CMAKE_INSTALL_RPATH`` are
used as search paths.
.. note::
Some packages provide stub libraries, which contain an interface for linking without
an implementation. When using such libraries, it's best to override the option
``-DCMAKE_INSTALL_RPATH_USE_LINK_PATH=OFF`` in ``cmake_args``, so that stub libraries
are not used at runtime.
^^^^^^^^^^
Generators
@@ -275,6 +179,36 @@ generators, but it should be simple to add support for alternative
generators. For more information on CMake generators, see:
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html
^^^^^^^^^^^^^^^^
CMAKE_BUILD_TYPE
^^^^^^^^^^^^^^^^
Every CMake-based package accepts a ``-DCMAKE_BUILD_TYPE`` flag to
dictate which level of optimization to use. In order to ensure
uniformity across packages, the ``CMakePackage`` base class adds
a variant to control this:
.. code-block:: python
variant('build_type', default='RelWithDebInfo',
description='CMake build type',
values=('Debug', 'Release', 'RelWithDebInfo', 'MinSizeRel'))
However, not every CMake package accepts all four of these options.
Grep the ``CMakeLists.txt`` file to see if the default values are
missing or replaced. For example, the
`dealii <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/dealii/package.py>`_
package overrides the default variant with:
.. code-block:: python
variant('build_type', default='DebugRelease',
description='The build type to build',
values=('Debug', 'Release', 'DebugRelease'))
For more information on ``CMAKE_BUILD_TYPE``, see:
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
CMakeLists.txt in a sub-directory
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -9,120 +9,35 @@
CudaPackage
-----------
Different from other packages, ``CudaPackage`` does not represent a build system.
Instead its goal is to simplify and unify usage of ``CUDA`` in other packages by providing a `mixin-class <https://en.wikipedia.org/wiki/Mixin>`_.
Different from other packages, ``CudaPackage`` does not represent a build
system. Instead its goal is to simplify and unify usage of ``CUDA`` in other
packages.
You can find source for the package at
`<https://github.com/spack/spack/blob/develop/lib/spack/spack/build_systems/cuda.py>`__.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Provided variants and dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^
Variants
^^^^^^^^
This package provides the following variants:
* **cuda**
This variant is used to enable/disable building with ``CUDA``. The default
is disabled (or ``False``).
* **cuda_arch**
This variant supports the optional specification of the architecture.
Valid values are maintained in the ``cuda_arch_values`` property and
are the numeric character equivalent of the compute capability version
(e.g., '10' for version 1.0). Each provided value affects associated
``CUDA`` dependencies and compiler conflicts.
GPUs and their compute capability versions are listed at
https://developer.nvidia.com/cuda-gpus .
^^^^^^^^^
Conflicts
^^^^^^^^^
Conflicts are used to prevent builds with known bugs or issues. While
base ``CUDA`` conflicts have been included with this package, you may
want to add more for your software.
For example, if your package requires ``cuda_arch`` to be specified when
``cuda`` is enabled, you can add the following conflict to your package
to terminate such build attempts with a suitable message:
.. code-block:: python
conflicts('cuda_arch=none', when='+cuda',
msg='CUDA architecture is required')
Similarly, if your software does not support all versions of the property,
you could add ``conflicts`` to your package for those versions. For example,
suppose your software does not work with CUDA compute capability versions
prior to SM 5.0 (``50``). You can add the following code to display a
custom message should a user attempt such a build:
.. code-block:: python
unsupported_cuda_archs = [
'10', '11', '12', '13',
'20', '21',
'30', '32', '35', '37'
]
for value in unsupported_cuda_archs:
conflicts('cuda_arch={0}'.format(value), when='+cuda',
msg='CUDA architecture {0} is not supported'.format(value))
^^^^^^^
Methods
^^^^^^^
This package provides one custom helper method, which is used to build
standard CUDA compiler flags.
**cuda_flags**
This built-in static method returns a list of command line flags
for the chosen ``cuda_arch`` value(s). The flags are intended to
be passed to the CUDA compiler driver (i.e., ``nvcc``).
This method must be explicitly called when you are creating the
arguments for your build in order to use the values.
``CudaPackage`` provides ``cuda`` variant (default to ``off``) to enable/disable
``CUDA``, and ``cuda_arch`` variant to optionally specify the architecture.
It also declares dependencies on the ``CUDA`` package ``depends_on('cuda@...')``
based on the architecture as well as specifies conflicts for certain compiler versions.
^^^^^
Usage
^^^^^
This helper package can be added to your package by adding it as a base
class of your package. For example, you can add it to your
:ref:`CMakePackage <cmakepackage>`-based package as follows:
In order to use it, just add another base class to your package, for example:
.. code-block:: python
:emphasize-lines: 1,7-16
class MyCudaPackage(CMakePackage, CudaPackage):
class MyPackage(CMakePackage, CudaPackage):
...
def cmake_args(self):
spec = self.spec
args = []
...
if '+cuda' in spec:
# Set up the cuda macros needed by the build
args.append('-DWITH_CUDA=ON')
cuda_arch_list = spec.variants['cuda_arch'].value
cuda_arch = cuda_arch_list[0]
if cuda_arch != 'none':
args.append('-DCUDA_FLAGS=-arch=sm_{0}'.format(cuda_arch))
options.append('-DWITH_CUDA=ON')
cuda_arch = spec.variants['cuda_arch'].value
if cuda_arch is not None:
options.append('-DCUDA_FLAGS=-arch=sm_{0}'.format(cuda_arch[0]))
else:
# Ensure build with cuda is disabled
args.append('-DWITH_CUDA=OFF')
...
return args
assuming only the ``WITH_CUDA`` and ``CUDA_FLAGS`` flags are required.
You will need to customize options as needed for your build.
This example also illustrates how to check for the ``cuda`` variant using
``self.spec`` and how to retrieve the ``cuda_arch`` variant's value, which
is a list, using ``self.spec.variants['cuda_arch'].value``.
With over 70 packages using ``CudaPackage`` as of January 2021 there are
lots of examples to choose from to get more ideas for using this package.
options.append('-DWITH_CUDA=OFF')

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -9,7 +9,7 @@
Custom Build Systems
--------------------
While the built-in build systems should meet your needs for the
While the build systems listed above should meet your needs for the
vast majority of packages, some packages provide custom build scripts.
This guide is intended for the following use cases:
@@ -31,7 +31,7 @@ installation. Both of these packages require custom build systems.
Base class
^^^^^^^^^^
If your package does not belong to any of the built-in build
If your package does not belong to any of the aforementioned build
systems that Spack already supports, you should inherit from the
``Package`` base class. ``Package`` is a simple base class with a
single phase: ``install``. If your package is simple, you may be able
@@ -168,8 +168,7 @@ if and only if this flag is set, we would use the following line:
Testing
^^^^^^^
Let's put everything together and add unit tests to be optionally run
during the installation of our package.
Let's put everything together and add unit tests to our package.
In the ``perl`` package, we can see:
.. code-block:: python
@@ -183,6 +182,12 @@ As you can guess, this runs ``make test`` *after* building the package,
if and only if testing is requested. Again, this is not specific to
custom build systems, it can be added to existing build systems as well.
Ideally, every package in Spack will have some sort of test to ensure
that it was built correctly. It is up to the package authors to make
sure this happens. If you are adding a package for some software and
the developers list commands to test the installation, please add these
tests to your ``package.py``.
.. warning::
The order of decorators matters. The following ordering:
@@ -202,12 +207,3 @@ custom build systems, it can be added to existing build systems as well.
the tests will always be run regardless of whether or not
``--test=root`` is requested. See https://github.com/spack/spack/issues/3833
for more information
Ideally, every package in Spack will have some sort of test to ensure
that it was built correctly. It is up to the package authors to make
sure this happens. If you are adding a package for some software and
the developers list commands to test the installation, please add these
tests to your ``package.py``.
For more information on other forms of package testing, refer to
:ref:`Checking an installation <checking_an_installation>`.

View File

@@ -1,155 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _inteloneapipackage:
====================
IntelOneapiPackage
====================
.. contents::
oneAPI packages in Spack
========================
Spack can install and use the Intel oneAPI products. You may either
use spack to install the oneAPI tools or use the `Intel
installers`_. After installation, you may use the tools directly, or
use Spack to build packages with the tools.
The Spack Python class ``IntelOneapiPackage`` is a base class that is
used by ``IntelOneapiCompilers``, ``IntelOneapiMkl``,
``IntelOneapiTbb`` and other classes to implement the oneAPI
packages. See the :ref:`package-list` for the full list of available
oneAPI packages or use::
spack list -d oneAPI
For more information on a specific package, do::
spack info --all <package-name>
Intel no longer releases new versions of Parallel Studio, which can be
used in Spack via the :ref:`intelpackage`. All of its components can
now be found in oneAPI.
Examples
========
Building a Package With icx
---------------------------
In this example, we build patchelf with ``icc`` and ``icx``. The
compilers are installed with spack.
Install the oneAPI compilers::
spack install intel-oneapi-compilers
Add the compilers to your ``compilers.yaml`` so spack can use them::
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin/intel64
spack compiler add `spack location -i intel-oneapi-compilers`/compiler/latest/linux/bin
Verify that the compilers are available::
spack compiler list
The ``intel-oneapi-compilers`` package includes 2 families of
compilers:
* ``intel``: ``icc``, ``icpc``, ``ifort``. Intel's *classic*
compilers.
* ``oneapi``: ``icx``, ``icpx``, ``ifx``. Intel's new generation of
compilers based on LLVM.
To build the ``patchelf`` Spack package with ``icc``, do::
spack install patchelf%intel
To build with with ``icx``, do ::
spack install patchelf%oneapi
Using oneAPI MPI to Satisfy a Virtual Dependence
------------------------------------------------------
The ``hdf5`` package works with any compatible MPI implementation. To
build ``hdf5`` with Intel oneAPI MPI do::
spack install hdf5 +mpi ^intel-oneapi-mpi
Using Externally Installed oneAPI Tools
=======================================
Spack can also use oneAPI tools that are manually installed with
`Intel Installers`_. The procedures for configuring Spack to use
external compilers and libraries are different.
Compilers
---------
To use the compilers, add some information about the installation to
``compilers.yaml``. For most users, it is sufficient to do::
spack compiler add /opt/intel/oneapi/compiler/latest/linux/bin/intel64
spack compiler add /opt/intel/oneapi/compiler/latest/linux/bin
Adapt the paths above if you did not install the tools in the default
location. After adding the compilers, using them is the same
as if you had installed the ``intel-oneapi-compilers`` package.
Another option is to manually add the configuration to
``compilers.yaml`` as described in :ref:`Compiler configuration
<compiler-config>`.
Libraries
---------
If you want Spack to use oneMKL that you have installed without Spack in
the default location, then add the following to
``~/.spack/packages.yaml``, adjusting the version as appropriate::
intel-oneapi-mkl:
externals:
- spec: intel-oneapi-mkl@2021.1.1
prefix: /opt/intel/oneapi/
Using oneAPI Tools Installed by Spack
=====================================
Spack can be a convenient way to install and configure compilers and
libaries, even if you do not intend to build a Spack package. If you
want to build a Makefile project using Spack-installed oneAPI compilers,
then use spack to configure your environment::
spack load intel-oneapi-compilers
And then you can build with::
CXX=icpx make
You can also use Spack-installed libraries. For example::
spack load intel-oneapi-mkl
Will update your environment CPATH, LIBRARY_PATH, and other
environment variables for building an application with oneMKL.
More information
================
This section describes basic use of oneAPI, especially if it has
changed compared to Parallel Studio. See :ref:`intelpackage` for more
information on :ref:`intel-virtual-packages`,
:ref:`intel-unrelated-packages`,
:ref:`intel-integrating-external-libraries`, and
:ref:`using-mkl-tips`.
.. _`Intel installers`: https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top.html

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -15,9 +15,6 @@ IntelPackage
Intel packages in Spack
^^^^^^^^^^^^^^^^^^^^^^^^
This is an earlier version of Intel software development tools and has
now been replaced by Intel oneAPI Toolkits.
Spack can install and use several software development products offered by Intel.
Some of these are available under no-cost terms, others require a paid license.
All share the same basic steps for configuration, installation, and, where
@@ -123,7 +120,7 @@ version numbers seen with most other Spack packages. For example, we have:
...
Preferred version:
professional.2018.3 http:...
Safe versions:
professional.2018.3 http:...
...
@@ -140,7 +137,6 @@ If you need to save disk space or installation time, you could install the
``intel`` compilers-only subset (0.6 GB) and just the library packages you
need, for example ``intel-mpi`` (0.5 GB) and ``intel-mkl`` (2.5 GB).
.. _intel-unrelated-packages:
""""""""""""""""""""
Unrelated packages
@@ -362,8 +358,6 @@ affected by an advanced third method:
Next, visit section `Selecting Intel Compilers`_ to learn how to tell
Spack to use the newly configured compilers.
.. _intel-integrating-external-libraries:
""""""""""""""""""""""""""""""""""
Integrating external libraries
""""""""""""""""""""""""""""""""""
@@ -424,13 +418,9 @@ Adapt the following example. Be sure to maintain the indentation:
# other content ...
intel-mkl:
externals:
- spec: "intel-mkl@2018.2.199 arch=linux-centos6-x86_64"
modules:
- intel-mkl/18/18.0.2
- spec: "intel-mkl@2018.3.222 arch=linux-centos6-x86_64"
modules:
- intel-mkl/18/18.0.3
modules:
intel-mkl@2018.2.199 arch=linux-centos6-x86_64: intel-mkl/18/18.0.2
intel-mkl@2018.3.222 arch=linux-centos6-x86_64: intel-mkl/18/18.0.3
The version numbers for the ``intel-mkl`` specs defined here correspond to file
and directory names that Intel uses for its products because they were adopted
@@ -461,16 +451,12 @@ mechanism.
packages:
intel-parallel-studio:
externals:
- spec: "intel-parallel-studio@cluster.2018.2.199 +mkl+mpi+ipp+tbb+daal arch=linux-centos6-x86_64"
modules:
- intel/18/18.0.2
- spec: "intel-parallel-studio@cluster.2018.3.222 +mkl+mpi+ipp+tbb+daal arch=linux-centos6-x86_64"
modules:
- intel/18/18.0.3
modules:
intel-parallel-studio@cluster.2018.2.199 +mkl+mpi+ipp+tbb+daal arch=linux-centos6-x86_64: intel/18/18.0.2
intel-parallel-studio@cluster.2018.3.222 +mkl+mpi+ipp+tbb+daal arch=linux-centos6-x86_64: intel/18/18.0.3
buildable: False
One additional example illustrates the use of ``prefix:`` instead of
One additional example illustrates the use of ``paths:`` instead of
``modules:``, useful when external modulefiles are not available or not
suitable:
@@ -478,15 +464,13 @@ suitable:
packages:
intel-parallel-studio:
externals:
- spec: "intel-parallel-studio@cluster.2018.2.199 +mkl+mpi+ipp+tbb+daal"
prefix: /opt/intel
- spec: "intel-parallel-studio@cluster.2018.3.222 +mkl+mpi+ipp+tbb+daal"
prefix: /opt/intel
paths:
intel-parallel-studio@cluster.2018.2.199 +mkl+mpi+ipp+tbb+daal: /opt/intel
intel-parallel-studio@cluster.2018.3.222 +mkl+mpi+ipp+tbb+daal: /opt/intel
buildable: False
Note that for the Intel packages discussed here, the directory values in the
``prefix:`` entries must be the high-level and typically version-less
``paths:`` entries must be the high-level and typically version-less
"installation directory" that has been used by Intel's product installer.
Such a directory will typically accumulate various product versions. Amongst
them, Spack will select the correct version-specific product directory based on
@@ -564,29 +548,43 @@ follow `the next section <intel-install-libs_>`_ instead.
modules: []
spec: intel@18.0.3
paths:
cc: /usr/bin/true
cxx: /usr/bin/true
f77: /usr/bin/true
fc: /usr/bin/true
cc: stub
cxx: stub
f77: stub
fc: stub
Replace ``18.0.3`` with the version that you determined in the preceding
step. The exact contents under ``paths:`` do not matter yet, but the paths must exist.
Replace ``18.0.3`` with the version that you determined in the preceeding
step. The contents under ``paths:`` do not matter yet.
This temporary stub is required such that the ``intel-parallel-studio`` package
can be installed for the ``intel`` compiler (which the package itself is going
to provide after the installation) rather than an arbitrary system compiler.
The paths given in ``cc``, ``cxx``, ``f77``, ``fc`` must exist, but will
never be used to build anything during the installation of ``intel-parallel-studio``.
You are right to ask: "Why on earth is that necessary?" [fn8]_.
The answer lies in Spack striving for strict compiler consistency.
Consider what happens without such a pre-declared compiler stub:
Say, you ask Spack to install a particular version
``intel-parallel-studio@edition.V``. Spack will apply an unrelated compiler
spec to concretize and install your request, resulting in
``intel-parallel-studio@edition.V %X``. That compiler ``%X`` is not going to
be the version that this new package itself provides. Rather, it would
typically be ``%gcc@...`` in a default Spack installation or possibly indeed
``%intel@...``, but at a version that precedes ``V``.
The reason for this stub is that ``intel-parallel-studio`` also provides the
``mpi`` and ``mkl`` packages and when concretizing a spec, Spack ensures
strong consistency of the used compiler across all dependencies: [fn8]_.
Installing a package ``foo +mkl %intel`` will make Spack look for a package
``mkl %intel``, which can be provided by ``intel-parallel-studio+mkl %intel``,
but not by ``intel-parallel-studio+mkl %gcc``.
The problem comes to the fore as soon as you try to use any virtual ``mkl``
or ``mpi`` packages that you would expect to now be provided by
``intel-parallel-studio@edition.V``. Spack will indeed see those virtual
packages, but only as being tied to the compiler that the package
``intel-parallel-studio@edition.V`` was concretized with *at installation*.
If you were to install a client package with the new compilers now available
to you, you would naturally run ``spack install foo +mkl %intel@V``, yet
Spack will either complain about ``mkl%intel@V`` being missing (because it
only knows about ``mkl%X``) or it will go and attempt to install *another
instance* of ``intel-parallel-studio@edition.V %intel@V`` so as to match the
compiler spec ``%intel@V`` that you gave for your client package ``foo``.
This will be unexpected and will quickly get annoying because each
reinstallation takes up time and extra disk space.
Failure to do so may result in additional installations of ``mkl``, ``intel-mpi`` or
even ``intel-parallel-studio`` as dependencies for other packages.
To escape this trap, put the compiler stub declaration shown here in place,
then use that pre-declared compiler spec to install the actual package, as
shown next. This approach works because during installation only the
package's own self-sufficient installer will be used, not any compiler.
.. _`verify-compiler-anticipated`:
@@ -637,25 +635,11 @@ follow `the next section <intel-install-libs_>`_ instead.
want to use the ``intel64`` variant. The ``icpc`` and ``ifort`` compilers
will be located in the same directory as ``icc``.
* Make sure to specify ``modules: ['intel-parallel-studio-cluster2018.3-intel-18.0.3-HASH']``
(with ``HASH`` being the short hash as displayed when running
``spack find -l intel-parallel-studio@cluster.2018.3`` and the versions adapted accordingly)
to ensure that the correct and complete environment for the Intel compilers gets
loaded when running them. With modern versions of the Intel compiler you may otherwise see
issues about missing libraries. Please also note that module name must exactly match
the name as returned by ``module avail`` (and shown in the example above).
* Use the ``modules:`` and/or ``cflags:`` tokens to further specify a suitable accompanying
* Use the ``modules:`` and/or ``cflags:`` tokens to specify a suitable accompanying
``gcc`` version to help pacify picky client packages that ask for C++
standards more recent than supported by your system-provided ``gcc`` and its
``libstdc++.so``.
* If you specified a custom variant (for example ``+vtune``) you may want to add this as your
preferred variant in the packages configuration for the ``intel-parallel-studio`` package
as described in :ref:`package-preferences`. Otherwise you will have to specify
the variant everytime ``intel-parallel-studio`` is being used as ``mkl``, ``fftw`` or ``mpi``
implementation to avoid pulling in a different variant.
* To set the Intel compilers for default use in Spack, instead of the usual ``%gcc``,
follow section `Selecting Intel compilers`_.
@@ -712,7 +696,7 @@ follow `the next section <intel-install-libs_>`_ instead.
- /home/$user/spack-stage
Do not duplicate the ``config:`` line if it already is present.
Adapt the location, which here is the same as in the preceding example.
Adapt the location, which here is the same as in the preceeding example.
3. Retry installing the large package.
@@ -744,7 +728,7 @@ For packages that contain a compiler, follow `the previous section
.. code-block:: console
$ spack install intel-mpi@2018.3.199
$ spack install intel-mpi@2018.3.199
$ spack install intel-mpi@2018.3.199 %intel@18
4. To prepare the new packages for use with client packages,
@@ -814,13 +798,13 @@ by one of the following means:
$ spack install libxc@3.0.0%intel
* Alternatively, request Intel compilers implicitly by package preferences.
* Alternatively, request Intel compilers implicitly by concretization preferences.
Configure the order of compilers in the appropriate ``packages.yaml`` file,
under either an ``all:`` or client-package-specific entry, in a
``compiler:`` list. Consult the Spack documentation for
`Configuring Package Preferences <https://spack-tutorial.readthedocs.io/en/latest/tutorial_configuration.html#configuring-package-preferences>`_
:ref:`Configuring Package Preferences <configs-tutorial-package-prefs>`
and
:ref:`Package Preferences <package-preferences>`.
:ref:`Concretization Preferences <concretization-preferences>`.
Example: ``etc/spack/packages.yaml`` might simply contain:
@@ -840,7 +824,6 @@ for example:
compiler: [ intel@18, intel@17, gcc@4.4.7, gcc@4.9.3, gcc@7.3.0, ]
.. _intel-virtual-packages:
""""""""""""""""""""""""""""""""""""""""""""""""
Selecting libraries to satisfy virtual packages
@@ -868,9 +851,9 @@ client packages, edit the ``packages.yaml`` file. Customize, either in the
the virtual packages and whose values are the Spack specs that satisfy the
virtual package, in order of decreasing preference. To learn more about the
``providers:`` settings, see the Spack tutorial for
`Configuring Package Preferences <https://spack-tutorial.readthedocs.io/en/latest/tutorial_configuration.html#configuring-package-preferences>`_
:ref:`Configuring Package Preferences <configs-tutorial-package-prefs>`
and the section
:ref:`Package Preferences <package-preferences>`.
:ref:`Concretization Preferences <concretization-preferences>`.
Example: The following fairly minimal example for ``packages.yaml`` shows how
to exclusively use the standalone ``intel-mkl`` package for all the linear
@@ -914,7 +897,6 @@ With the proper installation as detailed above, no special steps should be
required when a client package specifically (and thus deliberately) requests an
Intel package as dependency, this being one of the target use cases for Spack.
.. _using-mkl-tips:
"""""""""""""""""""""""""""""""""""""""""""""""
Tips for configuring client packages to use MKL
@@ -983,14 +965,14 @@ a *virtual* ``mkl`` package is declared in Spack.
Likewise, in a
:ref:`MakefilePackage <makefilepackage>`
or similar package that does not use AutoTools you may need to provide include
or similiar package that does not use AutoTools you may need to provide include
and link options for use on command lines or in environment variables.
For example, to generate an option string of the form ``-I<dir>``, use:
.. code-block:: python
self.spec['blas'].headers.include_flags
and to generate linker options (``-L<dir> -llibname ...``), use the same as above,
.. code-block:: python
@@ -1073,6 +1055,6 @@ Footnotes
2. Set the hash length in ``install-path-scheme``, also in ``config.yaml``
(:ref:`q.v. <config-yaml>`).
3. You will want to set the *same* hash length for
:ref:`module files <modules-projections>`
if you have Spack produce them for you, under ``projections`` in
``modules.yaml``.
:ref:`tcl module files <modules-naming-scheme>`
if you have Spack produce them for you, under ``naming_scheme`` in
``modules.yaml``. Other module dialects cannot be altered in this manner.

View File

@@ -1,105 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _luapackage:
---
Lua
---
The ``Lua`` build-system is a helper for the common case of Lua packages that provide
a rockspec file. This is not meant to take a rock archive, but to build
a source archive or repository that provides a rockspec, which should cover
most lua packages. In the case a Lua package builds by Make rather than
luarocks, prefer MakefilePackage.
^^^^^^
Phases
^^^^^^
The ``LuaBuilder`` and `LuaPackage`` base classes come with the following phases:
#. ``unpack`` - if using a rock, unpacks the rock and moves into the source directory
#. ``preprocess`` - adjust sources or rockspec to fix build
#. ``install`` - install the project
By default, these phases run:
.. code-block:: console
# If the archive is a source rock
$ luarocks unpack <archive>.src.rock
$ # preprocess is a noop by default
$ luarocks make <name>.rockspec
Any of these phases can be overridden in your package as necessary.
^^^^^^^^^^^^^^^
Important files
^^^^^^^^^^^^^^^
Packages that use the Lua/LuaRocks build system can be identified by the
presence of a ``*.rockspec`` file in their sourcetree, or can be fetched as
a source rock archive (``.src.rock``). This file declares things like build
instructions and dependencies, the ``.src.rock`` also contains all code.
It is common for the rockspec file to list the lua version required in
a dependency. The LuaPackage class adds appropriate dependencies on a Lua
implementation, but it is a good idea to specify the version required with
a ``depends_on`` statement. The block normally will be a table definition like
this:
.. code-block:: lua
dependencies = {
"lua >= 5.1",
}
The LuaPackage class supports source repositories and archives containing
a rockspec and directly downloading source rock files. It *does not* support
downloading dependencies listed inside a rockspec, and thus does not support
directly downloading a rockspec as an archive.
^^^^^^^^^^^^^^^^^^^^^^^^^
Build system dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^
All base dependencies are added by the build system, but LuaRocks is run to
avoid downloading extra Lua dependencies during build. If the package needs
Lua libraries outside the standard set, they should be added as dependencies.
To specify a Lua version constraint but allow all lua implementations, prefer
to use ``depends_on("lua-lang@5.1:5.1.99")`` to express any 5.1 compatible
version. If the package requires LuaJit rather than Lua,
a ``depends_on("luajit")`` should be used to ensure a LuaJit distribution is
used instead of the Lua interpreter. Alternately, if only interpreted Lua will
work ``depends_on("lua")`` will express that.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Passing arguments to luarocks make
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you need to pass any arguments to the ``luarocks make`` call, you can
override the ``luarocks_args`` method like so:
.. code-block:: python
def luarocks_args(self):
return ['flag1', 'flag2']
One common use of this is to override warnings or flags for newer compilers, as in:
.. code-block:: python
def luarocks_args(self):
return ["CFLAGS='-Wno-error=implicit-function-declaration'"]
^^^^^^^^^^^^^^^^^^^^^^
External documentation
^^^^^^^^^^^^^^^^^^^^^^
For more information on the LuaRocks build system, see:
https://luarocks.org/

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _makefilepackage:
--------
Makefile
--------
---------------
MakefilePackage
---------------
The most primitive build system a package can use is a plain Makefile.
Makefiles are simple to write for small projects, but they usually
@@ -18,7 +18,7 @@ variables.
Phases
^^^^^^
The ``MakefileBuilder`` and ``MakefilePackage`` base classes come with 3 phases:
The ``MakefilePackage`` base class comes with 3 phases:
#. ``edit`` - edit the Makefile
#. ``build`` - build the project
@@ -147,10 +147,8 @@ and a ``filter_file`` method to help with this. For example:
def edit(self, spec, prefix):
makefile = FileFilter('Makefile')
makefile.filter(r'^\s*CC\s*=.*', 'CC = ' + spack_cc)
makefile.filter(r'^\s*CXX\s*=.*', 'CXX = ' + spack_cxx)
makefile.filter(r'^\s*F77\s*=.*', 'F77 = ' + spack_f77)
makefile.filter(r'^\s*FC\s*=.*', 'FC = ' + spack_fc)
makefile.filter('CC = gcc', 'CC = cc')
makefile.filter('CXX = g++', 'CC = c++')
`stream <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/stream/package.py>`_

View File

@@ -1,102 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _mavenpackage:
-----
Maven
-----
Apache Maven is a general-purpose build system that does not rely
on Makefiles to build software. It is designed for building and
managing and Java-based project.
^^^^^^
Phases
^^^^^^
The ``MavenBuilder`` and ``MavenPackage`` base classes come with the following phases:
#. ``build`` - compile code and package into a JAR file
#. ``install`` - copy to installation prefix
By default, these phases run:
.. code-block:: console
$ mvn package
$ install . <prefix>
^^^^^^^^^^^^^^^
Important files
^^^^^^^^^^^^^^^
Maven packages can be identified by the presence of a ``pom.xml`` file.
This file lists dependencies and other metadata about the project.
There may also be configuration files in the ``.mvn`` directory.
^^^^^^^^^^^^^^^^^^^^^^^^^
Build system dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^
Maven requires the ``mvn`` executable to build the project. It also
requires Java at both build- and run-time. Because of this, the base
class automatically adds the following dependencies:
.. code-block:: python
depends_on('java', type=('build', 'run'))
depends_on('maven', type='build')
In the ``pom.xml`` file, you may see sections like:
.. code-block:: xml
<requireJavaVersion>
<version>[1.7,)</version>
</requireJavaVersion>
<requireMavenVersion>
<version>[3.5.4,)</version>
</requireMavenVersion>
This specifies the versions of Java and Maven that are required to
build the package. See
https://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm#MAVEN402
for a description of this version range syntax. In this case, you
should add:
.. code-block:: python
depends_on('java@7:', type='build')
depends_on('maven@3.5.4:', type='build')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Passing arguments to the build phase
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The default build and install phases should be sufficient to install
most packages. However, you may want to pass additional flags to
the build phase. For example:
.. code-block:: python
def build_args(self):
return [
'-Pdist,native',
'-Dtar',
'-Dmaven.javadoc.skip=true'
]
^^^^^^^^^^^^^^^^^^^^^^
External documentation
^^^^^^^^^^^^^^^^^^^^^^
For more information on the Maven build system, see:
https://maven.apache.org/index.html

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _mesonpackage:
-----
Meson
-----
------------
MesonPackage
------------
Much like Autotools and CMake, Meson is a build system. But it is
meant to be both fast and as user friendly as possible. GNOME's goal
@@ -17,7 +17,7 @@ is to port modules to use the Meson build system.
Phases
^^^^^^
The ``MesonBuilder`` and ``MesonPackage`` base classes come with the following phases:
The ``MesonPackage`` base class comes with the following phases:
#. ``meson`` - generate ninja files
#. ``build`` - build the project
@@ -54,28 +54,6 @@ Packages that use the Meson build system can be identified by the
presence of a ``meson.build`` file. This file declares things
like build instructions and dependencies.
One thing to look for is the ``meson_version`` key that gets passed
to the ``project`` function:
.. code-block:: none
:emphasize-lines: 10
project('gtk+', 'c',
version: '3.94.0',
default_options: [
'buildtype=debugoptimized',
'warning_level=1',
# We only need c99, but glib needs GNU-specific features
# https://github.com/mesonbuild/meson/issues/2289
'c_std=gnu99',
],
meson_version: '>= 0.43.0',
license: 'LGPLv2.1+')
This means that Meson 0.43.0 is the earliest release that will work.
You should specify this in a ``depends_on`` statement.
^^^^^^^^^^^^^^^^^^^^^^^^^
Build system dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -89,28 +67,6 @@ the ``MesonPackage`` base class already contains:
depends_on('meson', type='build')
depends_on('ninja', type='build')
If you need to specify a particular version requirement, you can
override this in your package:
.. code-block:: python
depends_on('meson@0.43.0:', type='build')
depends_on('ninja', type='build')
^^^^^^^^^^^^^^^^^^^
Finding meson flags
^^^^^^^^^^^^^^^^^^^
To get a list of valid flags that can be passed to ``meson``, run the
following command in the directory that contains ``meson.build``:
.. code-block:: console
$ meson setup --help
^^^^^^^^^^^^^^^^^^^^^^^^^^
Passing arguments to meson
^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -121,15 +77,11 @@ override the ``meson_args`` method like so:
.. code-block:: python
def meson_args(self):
return ['--warnlevel=3']
return ['--default-library=both']
This method can be used to pass flags as well as variables.
Note that the ``MesonPackage`` base class already defines variants for
``buildtype``, ``default_library`` and ``strip``, which are mapped to default
Meson arguments, meaning that you don't have to specify these.
^^^^^^^^^^^^^^^^^^^^^^
External documentation
^^^^^^^^^^^^^^^^^^^^^^

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _octavepackage:
------
Octave
------
-------------
OctavePackage
-------------
Octave has its own build system for installing packages.
@@ -15,7 +15,7 @@ Octave has its own build system for installing packages.
Phases
^^^^^^
The ``OctaveBuilder`` and ``OctavePackage`` base classes have a single phase:
The ``OctavePackage`` base class has a single phase:
#. ``install`` - install the package

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _perlpackage:
----
Perl
----
-----------
PerlPackage
-----------
Much like Octave, Perl has its own language-specific
build system.
@@ -16,7 +16,7 @@ build system.
Phases
^^^^^^
The ``PerlBuilder`` and ``PerlPackage`` base classes come with 3 phases that can be overridden:
The ``PerlPackage`` base class comes with 3 phases that can be overridden:
#. ``configure`` - configure the package
#. ``build`` - build the package
@@ -120,6 +120,8 @@ so ``PerlPackage`` contains:
extends('perl')
depends_on('perl', type=('build', 'run'))
If your package requires a specific version of Perl, you should
specify this.

File diff suppressed because it is too large Load Diff

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _qmakepackage:
-----
QMake
-----
------------
QMakePackage
------------
Much like Autotools and CMake, QMake is a build-script generator
designed by the developers of Qt. In its simplest form, Spack's
@@ -29,7 +29,7 @@ variables or edit ``*.pro`` files to get things working properly.
Phases
^^^^^^
The ``QMakeBuilder`` and ``QMakePackage`` base classes come with the following phases:
The ``QMakePackage`` base class comes with the following phases:
#. ``qmake`` - generate Makefiles
#. ``build`` - build the project
@@ -108,19 +108,6 @@ override the ``qmake_args`` method like so:
This method can be used to pass flags as well as variables.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``*.pro`` file in a sub-directory
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the ``*.pro`` file used to tell QMake how to build the package is
found in a sub-directory, you can tell Spack to run all phases in this
sub-directory by adding the following to the package:
.. code-block:: python
build_directory = 'src'
^^^^^^^^^^^^^^^^^^^^^^
External documentation
^^^^^^^^^^^^^^^^^^^^^^

View File

@@ -1,46 +0,0 @@
.. Copyright 2013-2021 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _racketpackage:
------
Racket
------
Much like Python, Racket packages and modules have their own special build system.
To learn more about the specifics of Racket package system, please refer to the
`Racket Docs <https://docs.racket-lang.org/pkg/cmdline.html>`_.
^^^^^^
Phases
^^^^^^
The ``RacketBuilder`` and ``RacketPackage`` base classes provides an ``install`` phase that
can be overridden, corresponding to the use of:
.. code-block:: console
$ raco pkg install
^^^^^^^
Caveats
^^^^^^^
In principle, ``raco`` supports a second, ``setup`` phase; however, we have not
implemented this separately, as in normal circumstances, ``install`` also handles
running ``setup`` automatically.
Unlike Python, Racket currently on supports two installation scopes for packages, user
or system, and keeps a registry of installed packages at each scope in its configuration files.
This means we can't simply compose a "``RACKET_PATH``" environment variable listing all of the
places packages are installed, and update this at will.
Unfortunately this means that all currently installed packages which extend Racket via ``raco pkg install``
are accessible whenever Racket is accessible.
Additionally, because Spack does not implement uninstall hooks, uninstalling a Spack ``rkt-`` package
will have no effect on the ``raco`` installed packages visible to your Racket installation.
Instead, you must manually run ``raco pkg remove`` to keep the two package managers in a mutually
consistent state.

View File

@@ -1,122 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _rocmpackage:
-----------
ROCmPackage
-----------
The ``ROCmPackage`` is not a build system but a helper package. Like ``CudaPackage``,
it provides standard variants, dependencies, and conflicts to facilitate building
packages using GPUs though for AMD in this case.
You can find the source for this package (and suggestions for setting up your
``compilers.yaml`` and ``packages.yaml`` files) at
`<https://github.com/spack/spack/blob/develop/lib/spack/spack/build_systems/rocm.py>`__.
^^^^^^^^
Variants
^^^^^^^^
This package provides the following variants:
* **rocm**
This variant is used to enable/disable building with ``rocm``.
The default is disabled (or ``False``).
* **amdgpu_target**
This variant supports the optional specification of the AMD GPU architecture.
Valid values are the names of the GPUs (e.g., ``gfx701``), which are maintained
in the ``amdgpu_targets`` property.
^^^^^^^^^^^^
Dependencies
^^^^^^^^^^^^
This package defines basic ``rocm`` dependencies, including ``llvm`` and ``hip``.
^^^^^^^^^
Conflicts
^^^^^^^^^
Conflicts are used to prevent builds with known bugs or issues. This package
already requires that the ``amdgpu_target`` always be specified for ``rocm``
builds. It also defines a conflict that prevents builds with an ``amdgpu_target``
when ``rocm`` is disabled.
Refer to `Conflicts <https://spack.readthedocs.io/en/latest/packaging_guide.html?highlight=conflicts#conflicts>`__
for more information on package conflicts.
^^^^^^^
Methods
^^^^^^^
This package provides one custom helper method, which is used to build
standard AMD hip compiler flags.
**hip_flags**
This built-in static method returns the appropriately formatted
``--amdgpu-target`` build option for ``hipcc``.
This method must be explicitly called when you are creating the
arguments for your build in order to use the values.
^^^^^
Usage
^^^^^
This helper package can be added to your package by adding it as a base
class of your package. For example, you can add it to your
:ref:`CMakePackage <cmakepackage>`-based package as follows:
.. code-block:: python
:emphasize-lines: 1,3-7,14-25
class MyRocmPackage(CMakePackage, ROCmPackage):
...
# Ensure +rocm and amdgpu_targets are passed to dependencies
depends_on('mydeppackage', when='+rocm')
for val in ROCmPackage.amdgpu_targets:
depends_on('mydeppackage amdgpu_target={0}'.format(val),
when='amdgpu_target={0}'.format(val))
...
def cmake_args(self):
spec = self.spec
args = []
...
if '+rocm' in spec:
# Set up the hip macros needed by the build
args.extend([
'-DENABLE_HIP=ON',
'-DHIP_ROOT_DIR={0}'.format(spec['hip'].prefix)])
rocm_archs = spec.variants['amdgpu_target'].value
if 'none' not in rocm_archs:
args.append('-DHIP_HIPCC_FLAGS=--amdgpu-target={0}'
.format(",".join(rocm_archs)))
else:
# Ensure build with hip is disabled
args.append('-DENABLE_HIP=OFF')
...
return args
...
assuming only on the ``ENABLE_HIP``, ``HIP_ROOT_DIR``, and ``HIP_HIPCC_FLAGS``
macros are required to be set and the only dependency needing rocm options
is ``mydeppackage``. You will need to customize the flags as needed for your
build.
This example also illustrates how to check for the ``rocm`` variant using
``self.spec`` and how to retrieve the ``amdgpu_target`` variant's value
using ``self.spec.variants['amdgpu_target'].value``.
All five packages using ``ROCmPackage`` as of January 2021 also use the
:ref:`CudaPackage <cudapackage>`. So it is worth looking at those packages
to get ideas for creating a package that can support both ``cuda`` and
``rocm``.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -19,7 +19,7 @@ new Spack packages for.
Phases
^^^^^^
The ``RBuilder`` and ``RPackage`` base classes have a single phase:
The ``RPackage`` base class has a single phase:
#. ``install`` - install the package
@@ -42,11 +42,7 @@ If it isn't on CRAN, try Bioconductor, another common R repository.
For the purposes of this tutorial, we will be walking through
`r-caret <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/r-caret/package.py>`_
as an example. If you search for "CRAN caret", you will quickly find what
you are looking for at https://cran.r-project.org/package=caret.
https://cran.r-project.org is the main CRAN website. However, CRAN also
has a https://cloud.r-project.org site that automatically redirects to
`mirrors around the world <https://cloud.r-project.org/mirrors.html>`_.
For stability and performance reasons, we will use https://cloud.r-project.org/package=caret.
you are looking for at https://cran.r-project.org/web/packages/caret/index.html.
If you search for "Package source", you will find the download URL for
the latest release. Use this URL with ``spack create`` to create a new
package.
@@ -79,14 +75,12 @@ Description
The first thing you'll need to add to your new package is a description.
The top of the homepage for ``caret`` lists the following description:
Classification and Regression Training
caret: Classification and Regression Training
Misc functions for training and plotting classification and regression models.
The first line is a short description (title) and the second line is a long
description. In this case the description is only one line but often the
description is several lines. Spack makes use of both short and long
descriptions and convention is to use both when creating an R package.
You can either use the short description (first line), long description
(second line), or both depending on what you feel is most appropriate.
^^^^^^^^
Homepage
@@ -99,8 +93,8 @@ If you look at the bottom of the page, you'll see:
Please use the canonical form https://CRAN.R-project.org/package=caret to link to this page.
Please uphold the wishes of the CRAN admins and use
https://cloud.r-project.org/package=caret as the homepage instead of
https://cloud.r-project.org/web/packages/caret/index.html. The latter may
https://CRAN.R-project.org/package=caret as the homepage instead of
https://cran.r-project.org/web/packages/caret/index.html. The latter may
change without notice.
^^^
@@ -115,101 +109,41 @@ List URL
^^^^^^^^
CRAN maintains a single webpage containing the latest release of every
single package: https://cloud.r-project.org/src/contrib/
single package: https://cran.r-project.org/src/contrib/
Of course, as soon as a new release comes out, the version you were using
in your package is no longer available at that URL. It is moved to an
archive directory. If you search for "Old sources", you will find:
https://cloud.r-project.org/src/contrib/Archive/caret
https://cran.r-project.org/src/contrib/Archive/caret
If you only specify the URL for the latest release, your package will
no longer be able to fetch that version as soon as a new release comes
out. To get around this, add the archive directory as a ``list_url``.
^^^^^^^^^^^^^^^^^^^^^
Bioconductor packages
^^^^^^^^^^^^^^^^^^^^^
Bioconductor packages are set up in a similar way to CRAN packages, but there
are some very important distinctions. Bioconductor packages can be found at:
https://bioconductor.org/. Bioconductor packages are R packages and so follow
the same packaging scheme as CRAN packages. What is different is that
Bioconductor itself is versioned and released. This scheme, using the
Bioconductor package installer, allows further specification of the minimum
version of R as well as further restrictions on the dependencies between
packages than what is possible with the native R packaging system. Spack can
not replicate these extra features and thus Bioconductor packages in Spack need
to be managed as a group during updates in order to maintain package
consistency with Bioconductor itself.
Another key difference is that, while previous versions of packages are
available, they are not available from a site that can be programmatically set,
thus a ``list_url`` attribute can not be used. However, each package is also
available in a git repository, with branches corresponding to each Bioconductor
release. Thus, it is always possible to retrieve the version of any package
corresponding to a Bioconductor release simply by fetching the branch that
corresponds to the Bioconductor release of the package repository. For this
reason, spack Bioconductor R packages use the git repository, with the commit
of the respective branch used in the ``version()`` attribute of the package.
^^^^^^^^^^^^^^^^^^^^^^^^
cran and bioc attributes
^^^^^^^^^^^^^^^^^^^^^^^^
Much like the ``pypi`` attribute for python packages, due to the fact that R
packages are obtained from specific repositories, it is possible to set up shortcut
attributes that can be used to set ``homepage``, ``url``, ``list_url``, and
``git``. For example, the following ``cran`` attribute:
.. code-block:: python
cran = 'caret'
is equivalent to:
.. code-block:: python
homepage = 'https://cloud.r-project.org/package=caret'
url = 'https://cloud.r-project.org/src/contrib/caret_6.0-86.tar.gz'
list_url = 'https://cloud.r-project.org/src/contrib/Archive/caret'
Likewise, the following ``bioc`` attribute:
.. code-block:: python
bioc = 'BiocVersion'
is equivalent to:
.. code-block:: python
homepage = 'https://bioconductor.org/packages/BiocVersion/'
git = 'https://git.bioconductor.org/packages/BiocVersion'
^^^^^^^^^^^^^^^^^^^^^^^^^
Build system dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^
As an extension of the R ecosystem, your package will obviously depend
on R to build and run. Normally, we would use ``depends_on`` to express
this, but for R packages, we use ``extends``. This implies a special
dependency on R, which is used to set environment variables such as
``R_LIBS`` uniformly. Since every R package needs this, the ``RPackage``
base class contains:
this, but for R packages, we use ``extends``. ``extends`` is similar to
``depends_on``, but adds an additional feature: the ability to "activate"
the package by symlinking it to the R installation directory. Since
every R package needs this, the ``RPackage`` base class contains:
.. code-block:: python
extends('r')
depends_on('r', type=('build', 'run'))
Take a close look at the homepage for ``caret``. If you look at the
"Depends" section, you'll notice that ``caret`` depends on "R (≥ 3.2.0)".
"Depends" section, you'll notice that ``caret`` depends on "R (≥ 2.10)".
You should add this to your package like so:
.. code-block:: python
depends_on('r@3.2.0:', type=('build', 'run'))
depends_on('r@2.10:', type=('build', 'run'))
^^^^^^^^^^^^^^
@@ -219,7 +153,7 @@ R dependencies
R packages are often small and follow the classic Unix philosophy
of doing one thing well. They are modular and usually depend on
several other packages. You may find a single package with over a
hundred dependencies. Luckily, R packages are well-documented
hundred dependencies. Luckily, CRAN packages are well-documented
and list all of their dependencies in the following sections:
* Depends
@@ -228,7 +162,7 @@ and list all of their dependencies in the following sections:
As far as Spack is concerned, all 3 of these dependency types
correspond to ``type=('build', 'run')``, so you don't have to worry
about the details. If you are curious what they mean,
about them. If you are curious what they mean,
https://github.com/spack/spack/issues/2951 has a pretty good summary:
``Depends`` is required and will cause those R packages to be *attached*,
@@ -259,14 +193,6 @@ R packages already have enough dependencies as it is, and adding
optional dependencies can really slow down the concretization
process. They can also introduce circular dependencies.
A fifth rarely used section is:
* Enhances
This means that the package can be used as an optional dependency
for another package. Again, these packages should **NOT** be listed
as dependencies.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Core, recommended, and non-core packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -282,8 +208,8 @@ If you look at the ``caret`` homepage, you'll notice a few dependencies
that don't have a link to the package, like ``methods``, ``stats``, and
``utils``. These packages are part of the core R distribution and are
tied to the R version installed. You can basically consider these to be
"R itself". These are so essential to R that it would not make sense for
them to be updated via CRAN. If you did, you would basically get a different
"R itself". These are so essential to R so it would not make sense that
they could be updated via CRAN. If so, you would basically get a different
version of R. Thus, they're updated when R is updated.
You can find a list of these core libraries at:
@@ -339,7 +265,7 @@ Non-R dependencies
Some packages depend on non-R libraries for linking. Check out the
`r-stringi <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/r-stringi/package.py>`_
package for an example: https://cloud.r-project.org/package=stringi.
package for an example: https://CRAN.R-project.org/package=stringi.
If you search for the text "SystemRequirements", you will see:
ICU4C (>= 52, optional)
@@ -360,8 +286,8 @@ like so:
.. code-block:: python
def configure_args(self):
mpi_name = self.spec['mpi'].name
def configure_args(self, spec, prefix):
mpi_name = spec['mpi'].name
# The type of MPI. Supported values are:
# OPENMPI, LAM, MPICH, MPICH2, or CRAY
@@ -418,11 +344,3 @@ External documentation
For more information on installing R packages, see:
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/INSTALL.html
For more information on writing R packages, see:
https://cloud.r-project.org/doc/manuals/r-release/R-exts.html
In particular,
https://cloud.r-project.org/doc/manuals/r-release/R-exts.html#Package-Dependencies
has a great explanation of the difference between Depends, Imports,
and LinkingTo.

View File

@@ -1,183 +1,16 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _rubypackage:
----
Ruby
----
-----------
RubyPackage
-----------
Like Perl, Python, and R, Ruby has its own build system for
installing Ruby gems.
^^^^^^
Phases
^^^^^^
The ``RubyBuilder`` and ``RubyPackage`` base classes provide the following phases that
can be overridden:
#. ``build`` - build everything needed to install
#. ``install`` - install everything from build directory
For packages that come with a ``*.gemspec`` file, these phases run:
.. code-block:: console
$ gem build *.gemspec
$ gem install *.gem
For packages that come with a ``Rakefile`` file, these phases run:
.. code-block:: console
$ rake package
$ gem install *.gem
For packages that come pre-packaged as a ``*.gem`` file, the build
phase is skipped and the install phase runs:
.. code-block:: console
$ gem install *.gem
These are all standard ``gem`` commands and can be found by running:
.. code-block:: console
$ gem help commands
For packages that only distribute ``*.gem`` files, these files can be
downloaded with the ``expand=False`` option in the ``version`` directive.
The build phase will be automatically skipped.
^^^^^^^^^^^^^^^
Important files
^^^^^^^^^^^^^^^
When building from source, Ruby packages can be identified by the
presence of any of the following files:
* ``*.gemspec``
* ``Rakefile``
* ``setup.rb`` (not yet supported)
However, not all Ruby packages are released as source code. Some are only
released as ``*.gem`` files. These files can be extracted using:
.. code-block:: console
$ gem unpack *.gem
^^^^^^^^^^^
Description
^^^^^^^^^^^
The ``*.gemspec`` file may contain something like:
.. code-block:: ruby
summary = 'An implementation of the AsciiDoc text processor and publishing toolchain'
description = 'A fast, open source text processor and publishing toolchain for converting AsciiDoc content to HTML 5, DocBook 5, and other formats.'
Either of these can be used for the description of the Spack package.
^^^^^^^^
Homepage
^^^^^^^^
The ``*.gemspec`` file may contain something like:
.. code-block:: ruby
homepage = 'https://asciidoctor.org'
This should be used as the official homepage of the Spack package.
^^^^^^^^^^^^^^^^^^^^^^^^^
Build system dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^
All Ruby packages require Ruby at build and run-time. For this reason,
the base class contains:
.. code-block:: python
extends('ruby')
The ``*.gemspec`` file may contain something like:
.. code-block:: ruby
required_ruby_version = '>= 2.3.0'
This can be added to the Spack package using:
.. code-block:: python
depends_on('ruby@2.3.0:', type=('build', 'run'))
^^^^^^^^^^^^^^^^^
Ruby dependencies
^^^^^^^^^^^^^^^^^
When you install a package with ``gem``, it reads the ``*.gemspec``
file in order to determine the dependencies of the package.
If the dependencies are not yet installed, ``gem`` downloads them
and installs them for you. This may sound convenient, but Spack
cannot rely on this behavior for two reasons:
#. Spack needs to be able to install packages on air-gapped networks.
If there is no internet connection, ``gem`` can't download the
package dependencies. By explicitly listing every dependency in
the ``package.py``, Spack knows what to download ahead of time.
#. Duplicate installations of the same dependency may occur.
Spack supports *activation* of Ruby extensions, which involves
symlinking the package installation prefix to the Ruby installation
prefix. If your package is missing a dependency, that dependency
will be installed to the installation directory of the same package.
If you try to activate the package + dependency, it may cause a
problem if that package has already been activated.
For these reasons, you must always explicitly list all dependencies.
Although the documentation may list the package's dependencies,
often the developers assume people will use ``gem`` and won't have to
worry about it. Always check the ``*.gemspec`` file to find the true
dependencies.
Check for the following clues in the ``*.gemspec`` file:
* ``add_runtime_dependency``
These packages are required for installation.
* ``add_dependency``
This is an alias for ``add_runtime_dependency``
* ``add_development_dependency``
These packages are optional dependencies used for development.
They should not be added as dependencies of the package.
^^^^^^^^^^^^^^^^^^^^^^
External documentation
^^^^^^^^^^^^^^^^^^^^^^
For more information on Ruby packaging, see:
https://guides.rubygems.org/
This build system is a work-in-progress. See
https://github.com/spack/spack/pull/3127 for more information.

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _sconspackage:
-----
SCons
-----
------------
SConsPackage
------------
SCons is a general-purpose build system that does not rely on
Makefiles to build software. SCons is written in Python, and handles
@@ -42,7 +42,7 @@ As previously mentioned, SCons allows developers to add subcommands like
$ scons install
To facilitate this, the ``SConsBuilder`` and ``SconsPackage`` base classes provide the
To facilitate this, the ``SConsPackage`` base class provides the
following phases:
#. ``build`` - build the package

View File

@@ -1,146 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _sippackage:
---
SIP
---
SIP is a tool that makes it very easy to create Python bindings for C and C++
libraries. It was originally developed to create PyQt, the Python bindings for
the Qt toolkit, but can be used to create bindings for any C or C++ library.
SIP comprises a code generator and a Python module. The code generator
processes a set of specification files and generates C or C++ code which is
then compiled to create the bindings extension module. The SIP Python module
provides support functions to the automatically generated code.
^^^^^^
Phases
^^^^^^
The ``SIPBuilder`` and ``SIPPackage`` base classes come with the following phases:
#. ``configure`` - configure the package
#. ``build`` - build the package
#. ``install`` - install the package
By default, these phases run:
.. code-block:: console
$ python configure.py --bindir ... --destdir ...
$ make
$ make install
^^^^^^^^^^^^^^^
Important files
^^^^^^^^^^^^^^^
Each SIP package comes with a custom ``configure.py`` build script,
written in Python. This script contains instructions to build the project.
^^^^^^^^^^^^^^^^^^^^^^^^^
Build system dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^
``SIPPackage`` requires several dependencies. Python is needed to run
the ``configure.py`` build script, and to run the resulting Python
libraries. Qt is needed to provide the ``qmake`` command. SIP is also
needed to build the package. All of these dependencies are automatically
added via the base class
.. code-block:: python
extends('python')
depends_on('qt', type='build')
depends_on('py-sip', type='build')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Passing arguments to ``configure.py``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Each phase comes with a ``<phase_args>`` function that can be used to pass
arguments to that particular phase. For example, if you need to pass
arguments to the configure phase, you can use:
.. code-block:: python
def configure_args(self, spec, prefix):
return ['--no-python-dbus']
A list of valid options can be found by running ``python configure.py --help``.
^^^^^^^
Testing
^^^^^^^
Just because a package successfully built does not mean that it built
correctly. The most reliable test of whether or not the package was
correctly installed is to attempt to import all of the modules that
get installed. To get a list of modules, run the following command
in the site-packages directory:
.. code-block:: console
$ python
>>> import setuptools
>>> setuptools.find_packages()
[
'PyQt5', 'PyQt5.QtCore', 'PyQt5.QtGui', 'PyQt5.QtHelp',
'PyQt5.QtMultimedia', 'PyQt5.QtMultimediaWidgets', 'PyQt5.QtNetwork',
'PyQt5.QtOpenGL', 'PyQt5.QtPrintSupport', 'PyQt5.QtQml',
'PyQt5.QtQuick', 'PyQt5.QtSvg', 'PyQt5.QtTest', 'PyQt5.QtWebChannel',
'PyQt5.QtWebSockets', 'PyQt5.QtWidgets', 'PyQt5.QtXml',
'PyQt5.QtXmlPatterns'
]
Large, complex packages like ``py-pyqt5`` will return a long list of
packages, while other packages may return an empty list. These packages
only install a single ``foo.py`` file. In Python packaging lingo,
a "package" is a directory containing files like:
.. code-block:: none
foo/__init__.py
foo/bar.py
foo/baz.py
whereas a "module" is a single Python file.
The ``SIPPackage`` base class automatically detects these module
names for you. If, for whatever reason, the module names detected
are wrong, you can provide the names yourself by overriding
``import_modules`` like so:
.. code-block:: python
import_modules = ['PyQt5']
These tests often catch missing dependencies and non-RPATHed
libraries. Make sure not to add modules/packages containing the word
"test", as these likely won't end up in the installation directory,
or may require test dependencies like pytest to be installed.
These tests can be triggered by running ``spack install --test=root``
or by running ``spack test run`` after the installation has finished.
^^^^^^^^^^^^^^^^^^^^^^
External documentation
^^^^^^^^^^^^^^^^^^^^^^
For more information on the SIP build system, see:
* https://www.riverbankcomputing.com/software/sip/intro
* https://www.riverbankcomputing.com/static/Docs/sip/
* https://wiki.python.org/moin/SIP

View File

@@ -1,55 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _sourceforgepackage:
------------------
SourceforgePackage
------------------
``SourceforgePackage`` is a
`mixin-class <https://en.wikipedia.org/wiki/Mixin>`_. It automatically
sets the URL based on a list of Sourceforge mirrors listed in
`sourceforge_mirror_path`, which defaults to a half dozen known mirrors.
Refer to the package source
(`<https://github.com/spack/spack/blob/develop/lib/spack/spack/build_systems/sourceforge.py>`__) for the current list of mirrors used by Spack.
^^^^^^^
Methods
^^^^^^^
This package provides a method for populating mirror URLs.
**urls**
This method returns a list of possible URLs for package source.
It is decorated with `property` so its results are treated as
a package attribute.
Refer to
`<https://spack.readthedocs.io/en/latest/packaging_guide.html#mirrors-of-the-main-url>`__
for information on how Spack uses the `urls` attribute during
fetching.
^^^^^
Usage
^^^^^
This helper package can be added to your package by adding it as a base
class of your package and defining the relative location of an archive
file for one version of your software.
.. code-block:: python
:emphasize-lines: 1,3
class MyPackage(AutotoolsPackage, SourceforgePackage):
...
sourceforge_mirror_path = "my-package/mypackage.1.0.0.tar.gz"
...
Over 40 packages are using ``SourceforcePackage`` this mix-in as of
July 2022 so there are multiple packages to choose from if you want
to see a real example.

View File

@@ -1,13 +1,13 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _wafpackage:
---
Waf
---
----------
WafPackage
----------
Like SCons, Waf is a general-purpose build system that does not rely
on Makefiles to build software.
@@ -16,7 +16,7 @@ on Makefiles to build software.
Phases
^^^^^^
The ``WafBuilder`` and ``WafPackage`` base classes come with the following phases:
The ``WafPackage`` base class comes with the following phases:
#. ``configure`` - configure the project
#. ``build`` - build the project
@@ -47,9 +47,8 @@ Each phase provides a ``<phase>`` function that runs:
where ``<jobs>`` is the number of parallel jobs to build with. Each phase
also has a ``<phase_args>`` function that can pass arguments to this call.
All of these functions are empty. The ``configure`` phase
automatically adds ``--prefix=/path/to/installation/prefix``, so you
don't need to add that in the ``configure_args``.
All of these functions are empty except for the ``configure_args``
function, which passes ``--prefix=/path/to/installation/prefix``.
^^^^^^^
Testing

View File

@@ -1,96 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. chain:
============================
Chaining Spack Installations
============================
You can point your Spack installation to another installation to use any
packages that are installed there. To register the other Spack instance,
you can add it as an entry to ``upstreams.yaml``:
.. code-block:: yaml
upstreams:
spack-instance-1:
install_tree: /path/to/other/spack/opt/spack
spack-instance-2:
install_tree: /path/to/another/spack/opt/spack
``install_tree`` must point to the ``opt/spack`` directory inside of the
Spack base directory.
Once the upstream Spack instance has been added, ``spack find`` will
automatically check the upstream instance when querying installed packages,
and new package installations for the local Spack install will use any
dependencies that are installed in the upstream instance.
This other instance of Spack has no knowledge of the local Spack instance
and may not have the same permissions or ownership as the local Spack instance.
This has the following consequences:
#. Upstream Spack instances are not locked. Therefore it is up to users to
make sure that the local instance is not using an upstream instance when it
is being modified.
#. Users should not uninstall packages from the upstream instance. Since the
upstream instance doesn't know about the local instance, it cannot prevent
the uninstallation of packages which the local instance depends on.
Other details about upstream installations:
#. If a package is installed both locally and upstream, the local installation
will always be used as a dependency. This can occur if the local Spack
installs a package which is not present in the upstream, but later on the
upstream Spack instance also installs that package.
#. If an upstream Spack instance registers and installs an external package,
the local Spack instance will treat this the same as a Spack-installed
package. This feature will only work if the upstream Spack instance
includes the upstream functionality (i.e. if its commit is after March
27, 2019).
---------------------------------------
Using Multiple Upstream Spack Instances
---------------------------------------
A single Spack instance can use multiple upstream Spack installations. Spack
will search upstream instances in the order you list them in your
configuration. If your installation refers to instances X and Y, in that order,
then instance X must list Y as an upstream in its own ``upstreams.yaml``.
-----------------------------------
Using Modules for Upstream Packages
-----------------------------------
The local Spack instance does not generate modules for packages which are
installed upstream. The local Spack instance can be configured to use the
modules generated by the upstream Spack instance.
There are two requirements to use the modules created by an upstream Spack
instance: firstly the upstream instance must do a ``spack module tcl refresh``,
which generates an index file that maps installed packages to their modules;
secondly, the local Spack instance must add a ``modules`` entry to the
configuration:
.. code-block:: yaml
upstreams:
spack-instance-1:
install_tree: /path/to/other/spack/opt/spack
modules:
tcl: /path/to/other/spack/share/spack/modules
Each time new packages are installed in the upstream Spack instance, the
upstream Spack maintainer should run ``spack module tcl refresh`` (or the
corresponding command for the type of module they intend to use).
.. note::
Spack can generate modules that :ref:`automatically load
<autoloading-dependencies>` the modules of dependency packages. Spack cannot
currently do this for modules in upstream packages.

View File

@@ -1,4 +1,4 @@
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -17,57 +17,70 @@
# All configuration values have a default; values that are commented out
# serve to show the default.
import sys
import os
import re
import shutil
import subprocess
import sys
from glob import glob
from docutils.statemachine import StringList
from sphinx.domains.python import PythonDomain
from sphinx.ext.apidoc import main as sphinx_apidoc
from sphinx.parsers import RSTParser
# Since Sphinx 1.7, sphinx.apidoc has been moved to sphinx.ext.apidoc
# sphinx.apidoc is deprecated and will be removed in Sphinx 2.0
try:
from sphinx.ext.apidoc import main as sphinx_apidoc
except ImportError:
from sphinx.apidoc import main as sphinx_apidoc
# -- Spack customizations -----------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
link_name = os.path.abspath("_spack_root")
if not os.path.exists(link_name):
os.symlink(os.path.abspath("../../.."), link_name, target_is_directory=True)
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external"))
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external/pytest-fallback"))
sys.path.insert(0, os.path.abspath('../external'))
if sys.version_info[0] < 3:
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external/yaml/lib"))
sys.path.insert(0, os.path.abspath('../external/yaml/lib'))
else:
sys.path.insert(0, os.path.abspath("_spack_root/lib/spack/external/yaml/lib3"))
sys.path.append(os.path.abspath("_spack_root/lib/spack/"))
sys.path.insert(0, os.path.abspath('../external/yaml/lib3'))
sys.path.append(os.path.abspath('..'))
# Add the Spack bin directory to the path so that we can use its output in docs.
os.environ["SPACK_ROOT"] = os.path.abspath("_spack_root")
os.environ["PATH"] += "%s%s" % (os.pathsep, os.path.abspath("_spack_root/bin"))
spack_root = '../../..'
os.environ['SPACK_ROOT'] = spack_root
os.environ['PATH'] += '%s%s/bin' % (os.pathsep, spack_root)
# Set an environment variable so that colify will print output like it would to
# a terminal.
os.environ["COLIFY_SIZE"] = "25x120"
os.environ["COLUMNS"] = "120"
os.environ['COLIFY_SIZE'] = '25x120'
# Generate full package list if needed
subprocess.call(["spack", "list", "--format=html", "--update=package_list.html"])
#
# Generate package list using spack command
#
with open('package_list.html', 'w') as plist_file:
subprocess.Popen(
[spack_root + '/bin/spack', 'list', '--format=html'],
stdout=plist_file)
# Generate a command index if an update is needed
subprocess.call(
[
"spack",
"commands",
"--format=rst",
"--header=command_index.in",
"--update=command_index.rst",
]
+ glob("*rst")
)
#
# Find all the `cmd-spack-*` references and add them to a command index
#
import spack
import spack.cmd
command_names = spack.cmd.all_commands()
documented_commands = set()
for filename in glob('*rst'):
with open(filename) as f:
for line in f:
match = re.match('.. _cmd-(spack-.*):', line)
if match:
documented_commands.add(match.group(1).strip())
os.environ['COLUMNS'] = '120'
shutil.copy('command_index.in', 'command_index.rst')
with open('command_index.rst', 'a') as index:
subprocess.Popen(
[spack_root + '/bin/spack', 'commands', '--format=rst'] + list(
documented_commands),
stdout=index)
#
# Run sphinx-apidoc
@@ -77,12 +90,13 @@
# Without this, the API Docs will never actually update
#
apidoc_args = [
"--force", # Overwrite existing files
"--no-toc", # Don't create a table of contents file
"--output-dir=.", # Directory to place all output
'--force', # Older versions of Sphinx ignore the first argument
'--force', # Overwrite existing files
'--no-toc', # Don't create a table of contents file
'--output-dir=.', # Directory to place all output
]
sphinx_apidoc(apidoc_args + ["_spack_root/lib/spack/spack"])
sphinx_apidoc(apidoc_args + ["_spack_root/lib/spack/llnl"])
sphinx_apidoc(apidoc_args + ['../spack'])
sphinx_apidoc(apidoc_args + ['../llnl'])
# Enable todo items
todo_include_todos = True
@@ -90,298 +104,231 @@
#
# Disable duplicate cross-reference warnings.
#
from sphinx.domains.python import PythonDomain
class PatchedPythonDomain(PythonDomain):
def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode):
if "refspecific" in node:
del node["refspecific"]
if 'refspecific' in node:
del node['refspecific']
return super(PatchedPythonDomain, self).resolve_xref(
env, fromdocname, builder, typ, target, node, contnode
)
#
# Disable tabs to space expansion in code blocks
# since Makefiles require tabs.
#
class NoTabExpansionRSTParser(RSTParser):
def parse(self, inputstring, document):
if isinstance(inputstring, str):
lines = inputstring.splitlines()
inputstring = StringList(lines, document.current_source)
super().parse(inputstring, document)
env, fromdocname, builder, typ, target, node, contnode)
def setup(sphinx):
sphinx.add_domain(PatchedPythonDomain, override=True)
sphinx.add_source_parser(NoTabExpansionRSTParser, override=True)
sphinx.override_domain(PatchedPythonDomain)
# -- General configuration -----------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
needs_sphinx = "3.4"
#needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.graphviz",
"sphinx.ext.intersphinx",
"sphinx.ext.napoleon",
"sphinx.ext.todo",
"sphinx.ext.viewcode",
"sphinx_design",
"sphinxcontrib.programoutput",
]
extensions = ['sphinx.ext.autodoc',
'sphinx.ext.graphviz',
'sphinx.ext.napoleon',
'sphinx.ext.todo',
'sphinxcontrib.programoutput']
# Set default graphviz options
graphviz_dot_args = [
"-Grankdir=LR",
"-Gbgcolor=transparent",
"-Nshape=box",
"-Nfontname=monaco",
"-Nfontsize=10",
]
'-Grankdir=LR', '-Gbgcolor=transparent',
'-Nshape=box', '-Nfontname=monaco', '-Nfontsize=10']
# Get nice vector graphics
graphviz_output_format = "svg"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = ".rst"
source_suffix = '.rst'
# The encoding of source files.
source_encoding = "utf-8-sig"
source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = "index"
master_doc = 'index'
# General information about the project.
project = u"Spack"
copyright = u"2013-2021, Lawrence Livermore National Laboratory."
project = u'Spack'
copyright = u'2013-2018, Lawrence Livermore National Laboratory.'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
import spack
version = ".".join(str(s) for s in spack.spack_version_info[:2])
version = '.'.join(str(s) for s in spack.spack_version_info[:2])
# The full version, including alpha/beta/rc tags.
release = spack.spack_version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
# language = None
# Places to look for .po/.mo files for doc translations
# locale_dirs = []
# Sphinx gettext settings
gettext_compact = True
gettext_uuid = False
#language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
# today = ''
#today = ''
# Else, today_fmt is used as the format for a strftime call.
# today_fmt = '%B %d, %Y'
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ["_build", "_spack_root", ".spack-env"]
nitpicky = True
nitpick_ignore = [
# Python classes that intersphinx is unable to resolve
("py:class", "argparse.HelpFormatter"),
("py:class", "contextlib.contextmanager"),
("py:class", "module"),
("py:class", "_io.BufferedReader"),
("py:class", "unittest.case.TestCase"),
("py:class", "_frozen_importlib_external.SourceFileLoader"),
("py:class", "clingo.Control"),
("py:class", "six.moves.urllib.parse.ParseResult"),
# Spack classes that are private and we don't want to expose
("py:class", "spack.provider_index._IndexBase"),
("py:class", "spack.repo._PrependFileLoader"),
("py:class", "spack.build_systems._checks.BaseBuilder"),
# Spack classes that intersphinx is unable to resolve
("py:class", "spack.version.VersionBase"),
]
exclude_patterns = ['_build']
# The reST default role (used for this markup: `text`) to use for all documents.
# default_role = None
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
# add_function_parentheses = True
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
# add_module_names = True
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
# show_authors = False
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
# We use our own extension of the default style with a few modifications
from pygments.style import Style
from pygments.styles.default import DefaultStyle
from pygments.token import Comment, Generic, Text
class SpackStyle(DefaultStyle):
styles = DefaultStyle.styles.copy()
background_color = "#f4f4f8"
styles[Generic.Output] = "#355"
styles[Generic.Prompt] = "bold #346ec9"
import pkg_resources
dist = pkg_resources.Distribution(__file__)
sys.path.append(".") # make 'conf' module findable
ep = pkg_resources.EntryPoint.parse("spack = conf:SpackStyle", dist=dist)
dist._ep_map = {"pygments.styles": {"plugin1": ep}}
pkg_resources.working_set.add(dist)
pygments_style = "spack"
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
# modindex_common_prefix = []
#modindex_common_prefix = []
# -- Options for HTML output ---------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = "sphinx_rtd_theme"
html_theme = 'sphinx_rtd_theme'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
html_theme_options = {"logo_only": True}
html_theme_options = { 'logo_only' : True }
# Add any paths that contain custom themes here, relative to this directory.
# html_theme_path = ["_themes"]
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
# html_title = None
#html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
# html_short_title = None
#html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
html_logo = "_spack_root/share/spack/logo/spack-logo-white-text.svg"
html_logo = '../../../share/spack/logo/spack-logo-white-text.svg'
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
html_favicon = "_spack_root/share/spack/logo/favicon.ico"
html_favicon = '../../../share/spack/logo/favicon.ico'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
html_static_path = ['_static']
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
html_last_updated_fmt = "%b %d, %Y"
html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
# html_use_smartypants = True
#html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
# html_sidebars = {}
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
# html_additional_pages = {}
#html_additional_pages = {}
# If false, no module index is generated.
# html_domain_indices = True
#html_domain_indices = True
# If false, no index is generated.
# html_use_index = True
#html_use_index = True
# If true, the index is split into individual pages for each letter.
# html_split_index = False
#html_split_index = False
# If true, links to the reST sources are added to the pages.
# html_show_sourcelink = True
#html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
# html_show_sphinx = False
#html_show_sphinx = False
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
# html_show_copyright = True
#html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
# html_use_opensearch = ''
#html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
# html_file_suffix = None
#html_file_suffix = None
# Output file base name for HTML help builder.
htmlhelp_basename = "Spackdoc"
htmlhelp_basename = 'Spackdoc'
# -- Options for LaTeX output --------------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#'preamble': '',
# The paper size ('letterpaper' or 'a4paper').
#'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#'preamble': '',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass [howto/manual]).
latex_documents = [
("index", "Spack.tex", u"Spack Documentation", u"Todd Gamblin", "manual"),
('index', 'Spack.tex', u'Spack Documentation',
u'Todd Gamblin', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
# latex_logo = None
#latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
# latex_use_parts = False
#latex_use_parts = False
# If true, show page references after internal links.
# latex_show_pagerefs = False
#latex_show_pagerefs = False
# If true, show URL addresses after external links.
# latex_show_urls = False
#latex_show_urls = False
# Documents to append as an appendix to all manuals.
# latex_appendices = []
#latex_appendices = []
# If false, no module index is generated.
# latex_domain_indices = True
#latex_domain_indices = True
# -- Options for manual page output --------------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [("index", "spack", u"Spack Documentation", [u"Todd Gamblin"], 1)]
man_pages = [
('index', 'spack', u'Spack Documentation',
[u'Todd Gamblin'], 1)
]
# If true, show URL addresses after external links.
# man_show_urls = False
#man_show_urls = False
# -- Options for Texinfo output ------------------------------------------------
@@ -390,30 +337,16 @@ class SpackStyle(DefaultStyle):
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(
"index",
"Spack",
u"Spack Documentation",
u"Todd Gamblin",
"Spack",
"One line description of project.",
"Miscellaneous",
),
('index', 'Spack', u'Spack Documentation',
u'Todd Gamblin', 'Spack', 'One line description of project.',
'Miscellaneous'),
]
# Documents to append as an appendix to all manuals.
# texinfo_appendices = []
#texinfo_appendices = []
# If false, no module index is generated.
# texinfo_domain_indices = True
#texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
# texinfo_show_urls = 'footnote'
# -- Extension configuration -------------------------------------------------
# sphinx.ext.intersphinx
intersphinx_mapping = {
"python": ("https://docs.python.org/3", None),
}
#texinfo_show_urls = 'footnote'

View File

@@ -1,27 +1,27 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _config-yaml:
============================
Spack Settings (config.yaml)
============================
==============
Basic Settings
==============
Spack's basic configuration options are set in ``config.yaml``. You can
see the default settings by looking at
``etc/spack/defaults/config.yaml``:
.. literalinclude:: _spack_root/etc/spack/defaults/config.yaml
.. literalinclude:: ../../../etc/spack/defaults/config.yaml
:language: yaml
These settings can be overridden in ``etc/spack/config.yaml`` or
``~/.spack/config.yaml``. See :ref:`configuration-scopes` for details.
---------------------
``install_tree:root``
---------------------
--------------------
``install_tree``
--------------------
The location where Spack will install packages and their dependencies.
Default is ``$spack/opt/spack``.
@@ -30,34 +30,25 @@ Default is ``$spack/opt/spack``.
``install_hash_length`` and ``install_path_scheme``
---------------------------------------------------
The default Spack installation path can be very long and can create problems
for scripts with hardcoded shebangs. Additionally, when using the Intel
compiler, and if there is also a long list of dependencies, the compiler may
segfault. If you see the following:
The default Spack installation path can be very long and can create
problems for scripts with hardcoded shebangs. There are two parameters
to help with that. Firstly, the ``install_hash_length`` parameter can
set the length of the hash in the installation path from 1 to 32. The
default path uses the full 32 characters.
.. code-block:: console
: internal error: ** The compiler has encountered an unexpected problem.
** Segmentation violation signal raised. **
Access violation or stack overflow. Please contact Intel Support for assistance.
it may be because variables containing dependency specs may be too long. There
are two parameters to help with long path names. Firstly, the
``install_hash_length`` parameter can set the length of the hash in the
installation path from 1 to 32. The default path uses the full 32 characters.
Secondly, it is also possible to modify the entire installation
scheme. By default Spack uses
``{architecture}/{compiler.name}-{compiler.version}/{name}-{version}-{hash}``
Secondly, it is
also possible to modify the entire installation scheme. By default
Spack uses
``${ARCHITECTURE}/${COMPILERNAME}-${COMPILERVER}/${PACKAGE}-${VERSION}-${HASH}``
where the tokens that are available for use in this directive are the
same as those understood by the :meth:`~spack.spec.Spec.format`
method. Using this parameter it is possible to use a different package
layout or reduce the depth of the installation paths. For example
same as those understood by the ``Spec.format`` method. Using this parameter it
is possible to use a different package layout or reduce the depth of
the installation paths. For example
.. code-block:: yaml
config:
install_path_scheme: '{name}/{version}/{hash:7}'
install_path_scheme: '${PACKAGE}/${VERSION}/${HASH:7}'
would install packages into sub-directories using only the package
name, version and a hash length of 7 characters.
@@ -72,52 +63,62 @@ used to configure module names.
packages have been installed will prevent Spack from being
able to find the old installation directories.
--------------------
``module_roots``
--------------------
Controls where Spack installs generated module files. You can customize
the location for each type of module. e.g.:
.. code-block:: yaml
module_roots:
tcl: $spack/share/spack/modules
lmod: $spack/share/spack/lmod
dotkit: $spack/share/spack/dotkit
See :ref:`modules` for details.
--------------------
``build_stage``
--------------------
Spack is designed to run out of a user home directory, and on many
systems the home directory is a (slow) network file system. On most systems,
building in a temporary file system is faster. Usually, there is also more
space available in the temporary location than in the home directory. If the
username is not already in the path, Spack will append the value of ``$user`` to
the selected ``build_stage`` path.
.. warning:: We highly recommend specifying ``build_stage`` paths that
distinguish between staging and other activities to ensure
``spack clean`` does not inadvertently remove unrelated files.
Spack prepends ``spack-stage-`` to temporary staging directory names to
reduce this risk. Using a combination of ``spack`` and or ``stage`` in
each specified path, as shown in the default settings and documented
examples, will add another layer of protection.
building in a temporary file system results in faster builds than building
in the home directory. Usually, there is also more space available in
the temporary location than in the home directory. So, Spack tries to
create build stages in temporary space.
By default, Spack's ``build_stage`` is configured like this:
.. code-block:: yaml
build_stage:
- $tempdir/$user/spack-stage
- ~/.spack/stage
- $tempdir
- /nfs/tmp2/$user
- $spack/var/spack/stage
This can be an ordered list of paths that Spack should search when trying to
This is an ordered list of paths that Spack should search when trying to
find a temporary directory for the build stage. The list is searched in
order, and Spack will use the first directory to which it has write access.
Specifying `~/.spack/stage` first will ensure each user builds in their home
directory. The historic Spack stage path `$spack/var/spack/stage` will build
directly inside the Spack instance. See :ref:`config-file-variables` for more
on ``$tempdir`` and ``$spack``.
See :ref:`config-file-variables` for more on ``$tempdir`` and ``$spack``.
When Spack builds a package, it creates a temporary directory within the
``build_stage``. After the package is successfully installed, Spack deletes
the temporary directory it used to build. Unsuccessful builds are not
deleted, but you can manually purge them with :ref:`spack clean --stage
``build_stage``, and it creates a symbolic link to that directory in
``$spack/var/spack/stage``. This is used to track the stage.
After a package is successfully installed, Spack deletes the temporary
directory it used to build. Unsuccessful builds are not deleted, but you
can manually purge them with :ref:`spack clean --stage
<cmd-spack-clean>`.
.. note::
The build will fail if there is no writable directory in the ``build_stage``
list, where any user- and site-specific setting will be searched first.
The last item in the list is ``$spack/var/spack/stage``. If this is the
only writable directory in the ``build_stage`` list, Spack will build
*directly* in ``$spack/var/spack/stage`` and will not link to temporary
space.
--------------------
``source_cache``
@@ -179,38 +180,29 @@ set ``dirty`` to ``true`` to skip the cleaning step and make all builds
"dirty" by default. Be aware that this will reduce the reproducibility
of builds.
.. _build-jobs:
--------------
``build_jobs``
--------------
Unless overridden in a package or on the command line, Spack builds all
packages in parallel. The default parallelism is equal to the number of
cores available to the process, up to 16 (the default of ``build_jobs``).
For a build system that uses Makefiles, this ``spack install`` runs:
- ``make -j<build_jobs>``, when ``build_jobs`` is less than the number of
cores available
- ``make -j<ncores>``, when ``build_jobs`` is greater or equal to the
number of cores available
packages in parallel. For a build system that uses Makefiles, this means
running ``make -j<build_jobs>``, where ``build_jobs`` is the number of
threads to use.
The default parallelism is equal to the number of cores on your machine.
If you work on a shared login node or have a strict ulimit, it may be
necessary to set the default to a lower value. By setting ``build_jobs``
to 4, for example, commands like ``spack install`` will run ``make -j4``
instead of hogging every core. To build all software in serial,
set ``build_jobs`` to 1.
instead of hogging every core.
Note that specifying the number of jobs on the command line always takes
priority, so that ``spack install -j<n>`` always runs `make -j<n>`, even
when that exceeds the number of cores available.
To build all software in serial, set ``build_jobs`` to 1.
--------------------
``ccache``
--------------------
When set to ``true`` Spack will use ccache to cache compiles. This is
useful specifically in two cases: (1) when using ``spack dev-build``, and (2)
useful specifically in two cases: (1) when using ``spack setup``, and (2)
when building the same package with many different variants. The default is
``false``.
@@ -223,83 +215,3 @@ ccache`` to learn more about the default settings and how to change
them). Please note that we currently disable ccache's ``hash_dir``
feature to avoid an issue with the stage directory (see
https://github.com/LLNL/spack/pull/3761#issuecomment-294352232).
-----------------------
``shared_linking:type``
-----------------------
Control whether Spack embeds ``RPATH`` or ``RUNPATH`` attributes in ELF binaries
so that they can find their dependencies. Has no effect on macOS.
Two options are allowed:
1. ``rpath`` uses ``RPATH`` and forces the ``--disable-new-tags`` flag to be passed to the linker
2. ``runpath`` uses ``RUNPATH`` and forces the ``--enable-new-tags`` flag to be passed to the linker
``RPATH`` search paths have higher precedence than ``LD_LIBRARY_PATH``
and ld.so will search for libraries in transitive ``RPATHs`` of
parent objects.
``RUNPATH`` search paths have lower precedence than ``LD_LIBRARY_PATH``,
and ld.so will ONLY search for dependencies in the ``RUNPATH`` of
the loading object.
DO NOT MIX the two options within the same install tree.
-----------------------
``shared_linking:bind``
-----------------------
This is an *experimental option* that controls whether Spack embeds absolute paths
to needed shared libraries in ELF executables and shared libraries on Linux. Setting
this option to ``true`` has two advantages:
1. **Improved startup time**: when running an executable, the dynamic loader does not
have to perform a search for needed libraries, they are loaded directly.
2. **Reliability**: libraries loaded at runtime are those that were linked to. This
minimizes the risk of accidentally picking up system libraries.
In the current implementation, Spack sets the soname (shared object name) of
libraries to their install path upon installation. This has two implications:
1. binding does not apply to libraries installed *before* the option was enabled;
2. toggling the option off does *not* prevent binding of libraries installed when
the option was still enabled.
It is also worth noting that:
1. Applications relying on ``dlopen(3)`` will continue to work, even when they open
a library by name. This is because ``RPATH``\s are retained in binaries also
when ``bind`` is enabled.
2. ``LD_PRELOAD`` continues to work for the typical use case of overriding
symbols, such as preloading a library with a more efficient ``malloc``.
However, the preloaded library will be loaded *additionally to*, instead of
*in place of* another library with the same name --- this can be problematic
in very rare cases where libraries rely on a particular ``init`` or ``fini``
order.
.. note::
In some cases packages provide *stub libraries* that only contain an interface
for linking, but lack an implementation for runtime. An example of this is
``libcuda.so``, provided by the CUDA toolkit; it can be used to link against,
but the library needed at runtime is the one installed with the CUDA driver.
To avoid binding those libraries, they can be marked as non-bindable using
a property in the package:
.. code-block:: python
class Example(Package):
non_bindable_shared_objects = ["libinterface.so"]
----------------------
``terminal_title``
----------------------
By setting this option to ``true``, Spack will update the terminal's title to
provide information about its current progress as well as the current and
total package numbers.
To work properly, this requires your terminal to reset its title after
Spack has finished its work, otherwise Spack's status information will
remain in the terminal's title indefinitely. Most terminals should already
be set up this way and clear Spack's status information.

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -13,16 +13,12 @@ Spack has many configuration files. Here is a quick list of them, in
case you want to skip directly to specific docs:
* :ref:`compilers.yaml <compiler-config>`
* :ref:`concretizer.yaml <concretizer-options>`
* :ref:`config.yaml <config-yaml>`
* :ref:`mirrors.yaml <mirrors>`
* :ref:`modules.yaml <modules>`
* :ref:`packages.yaml <build-settings>`
* :ref:`repos.yaml <repositories>`
You can also add any of these as inline configuration in ``spack.yaml``
in an :ref:`environment <environment-configuration>`.
-----------
YAML Format
-----------
@@ -37,9 +33,11 @@ Here is an example ``config.yaml`` file:
config:
install_tree: $spack/opt/spack
module_roots:
lmod: $spack/share/spack/lmod
build_stage:
- $tempdir/$user/spack-stage
- ~/.spack/stage
- $tempdir
- /nfs/tmp2/$user
Each Spack configuration file is nested under a top-level section
corresponding to its name. So, ``config.yaml`` starts with ``config:``,
@@ -80,13 +78,6 @@ are six configuration scopes. From lowest to highest:
If multiple scopes are listed on the command line, they are ordered
from lowest to highest precedence.
#. **environment**: When using Spack :ref:`environments`, Spack reads
additional configuration from the environment file. See
:ref:`environment-configuration` for further details on these
scopes. Environment scopes can be referenced from the command line
as ``env:name`` (to reference environment ``foo``, use
``env:foo``).
#. **command line**: Build settings specified on the command line take
precedence over all other scopes.
@@ -201,11 +192,10 @@ with MPICH. You can create different configuration scopes for use with
Platform-specific Scopes
------------------------
For each scope above (excluding environment scopes), there can also be
platform-specific settings. For example, on most platforms, GCC is
the preferred compiler. However, on macOS (darwin), Clang often works
for more packages, and is set as the default compiler. This
configuration is set in
For each scope above, there can also be platform-specific settings.
For example, on most platforms, GCC is the preferred compiler.
However, on macOS (darwin), Clang often works for more packages,
and is set as the default compiler. This configuration is set in
``$(prefix)/etc/spack/defaults/darwin/packages.yaml``. It will take
precedence over settings in the ``defaults`` scope, but can still be
overridden by settings in ``system``, ``system/darwin``, ``site``,
@@ -251,9 +241,11 @@ your configurations look like this:
config:
install_tree: $spack/opt/spack
module_roots:
lmod: $spack/share/spack/lmod
build_stage:
- $tempdir/$user/spack-stage
- ~/.spack/stage
- $tempdir
- /nfs/tmp2/$user
.. code-block:: yaml
@@ -274,9 +266,11 @@ command:
$ spack config get config
config:
install_tree: /some/other/directory
module_roots:
lmod: $spack/share/spack/lmod
build_stage:
- $tempdir/$user/spack-stage
- ~/.spack/stage
- $tempdir
- /nfs/tmp2/$user
.. _config-overrides:
@@ -318,8 +312,8 @@ Let's revisit the ``config.yaml`` example one more time. The
:caption: $(prefix)/etc/spack/defaults/config.yaml
build_stage:
- $tempdir/$user/spack-stage
- ~/.spack/stage
- $tempdir
- /nfs/tmp2/$user
Suppose the user configuration adds its *own* list of ``build_stage``
@@ -329,7 +323,7 @@ paths:
:caption: ~/.spack/config.yaml
build_stage:
- /lustre-scratch/$user/spack
- /lustre-scratch/$user
- ~/mystage
@@ -339,16 +333,18 @@ higher-precedence scope is *prepended* to the defaults. ``spack config
get config`` shows the result:
.. code-block:: console
:emphasize-lines: 5-8
:emphasize-lines: 7-10
$ spack config get config
config:
install_tree: /some/other/directory
module_roots:
lmod: $spack/share/spack/lmod
build_stage:
- /lustre-scratch/$user/spack
- /lustre-scratch/$user
- ~/mystage
- $tempdir/$user/spack-stage
- ~/.spack/stage
- $tempdir
- /nfs/tmp2/$user
As in :ref:`config-overrides`, the higher-precedence scope can
@@ -360,20 +356,22 @@ user config looked like this:
:caption: ~/.spack/config.yaml
build_stage::
- /lustre-scratch/$user/spack
- /lustre-scratch/$user
- ~/mystage
The merged configuration would look like this:
.. code-block:: console
:emphasize-lines: 5-6
:emphasize-lines: 7-8
$ spack config get config
config:
install_tree: /some/other/directory
module_roots:
lmod: $spack/share/spack/lmod
build_stage:
- /lustre-scratch/$user/spack
- /lustre-scratch/$user
- ~/mystage
@@ -396,26 +394,12 @@ Spack-specific variables
Spack understands several special variables. These are:
* ``$env``: name of the currently active :ref:`environment <environments>`
* ``$spack``: path to the prefix of this Spack installation
* ``$tempdir``: default system temporary directory (as specified in
Python's `tempfile.tempdir
<https://docs.python.org/2/library/tempfile.html#tempfile.tempdir>`_
variable.
* ``$user``: name of the current user
* ``$user_cache_path``: user cache directory (``~/.spack`` unless
:ref:`overridden <local-config-overrides>`)
* ``$architecture``: the architecture triple of the current host, as
detected by Spack.
* ``$arch``: alias for ``$architecture``.
* ``$platform``: the platform of the current host, as detected by Spack.
* ``$operating_system``: the operating system of the current host, as
detected by the ``distro`` python module.
* ``$os``: alias for ``$operating_system``.
* ``$target``: the ISA target for the current host, as detected by
ArchSpec. E.g. ``skylake`` or ``neoverse-n1``.
* ``$target_family``. The target family for the current host, as
detected by ArchSpec. E.g. ``x86_64`` or ``aarch64``.
Note that, as with shell variables, you can write these as ``$varname``
or with braces to distinguish the variable from surrounding characters:
@@ -443,33 +427,6 @@ home directory, and ``~user`` will expand to a specified user's home
directory. The ``~`` must appear at the beginning of the path, or Spack
will not expand it.
.. _configuration_environment_variables:
-------------------------
Environment Modifications
-------------------------
Spack allows to prescribe custom environment modifications in a few places
within its configuration files. Every time these modifications are allowed
they are specified as a dictionary, like in the following example:
.. code-block:: yaml
environment:
set:
LICENSE_FILE: '/path/to/license'
unset:
- CPATH
- LIBRARY_PATH
append_path:
PATH: '/new/bin/dir'
The possible actions that are permitted are ``set``, ``unset``, ``append_path``,
``prepend_path`` and finally ``remove_path``. They all require a dictionary
of variable names mapped to the values used for the modification.
The only exception is ``unset`` that requires just a list of variable names.
No particular order is ensured on the execution of each of these modifications.
----------------------------
Seeing Spack's Configuration
----------------------------
@@ -502,10 +459,14 @@ account all scopes. For example, to see the fully merged
install_tree: $spack/opt/spack
template_dirs:
- $spack/templates
directory_layout: {architecture}/{compiler.name}-{compiler.version}/{name}-{version}-{hash}
directory_layout: ${ARCHITECTURE}/${COMPILERNAME}-${COMPILERVER}/${PACKAGE}-${VERSION}-${HASH}
module_roots:
tcl: $spack/share/spack/modules
lmod: $spack/share/spack/lmod
dotkit: $spack/share/spack/dotkit
build_stage:
- $tempdir/$user/spack-stage
- ~/.spack/stage
- $tempdir
- /nfs/tmp2/$user
- $spack/var/spack/stage
source_cache: $spack/var/spack/cache
misc_cache: ~/.spack/cache
@@ -549,10 +510,14 @@ down the problem:
./my-scope/config.yaml:2 install_tree: /path/to/some/tree
/home/myuser/spack/etc/spack/defaults/config.yaml:23 template_dirs:
/home/myuser/spack/etc/spack/defaults/config.yaml:24 - $spack/templates
/home/myuser/spack/etc/spack/defaults/config.yaml:28 directory_layout: {architecture}/{compiler.name}-{compiler.version}/{name}-{version}-{hash}
/home/myuser/spack/etc/spack/defaults/config.yaml:28 directory_layout: ${ARCHITECTURE}/${COMPILERNAME}-${COMPILERVER}/${PACKAGE}-${VERSION}-${HASH}
/home/myuser/spack/etc/spack/defaults/config.yaml:32 module_roots:
/home/myuser/spack/etc/spack/defaults/config.yaml:33 tcl: $spack/share/spack/modules
/home/myuser/spack/etc/spack/defaults/config.yaml:34 lmod: $spack/share/spack/lmod
/home/myuser/spack/etc/spack/defaults/config.yaml:35 dotkit: $spack/share/spack/dotkit
/home/myuser/spack/etc/spack/defaults/config.yaml:49 build_stage:
/home/myuser/spack/etc/spack/defaults/config.yaml:50 - $tempdir/$user/spack-stage
/home/myuser/spack/etc/spack/defaults/config.yaml:51 - ~/.spack/stage
/home/myuser/spack/etc/spack/defaults/config.yaml:50 - $tempdir
/home/myuser/spack/etc/spack/defaults/config.yaml:51 - /nfs/tmp2/$user
/home/myuser/spack/etc/spack/defaults/config.yaml:52 - $spack/var/spack/stage
/home/myuser/spack/etc/spack/defaults/config.yaml:57 source_cache: $spack/var/spack/cache
/home/myuser/spack/etc/spack/defaults/config.yaml:62 misc_cache: ~/.spack/cache
@@ -560,43 +525,7 @@ down the problem:
You can see above that the ``build_jobs`` and ``debug`` settings are
built in and are not overridden by a configuration file. The
``verify_ssl`` setting comes from the ``--insecure`` option on the
``verify_ssl`` setting comes from the ``--insceure`` option on the
command line. ``dirty`` and ``install_tree`` come from the custom
scopes ``./my-scope`` and ``./my-scope-2``, and all other configuration
options come from the default configuration files that ship with Spack.
.. _local-config-overrides:
------------------------------
Overriding Local Configuration
------------------------------
Spack's ``system`` and ``user`` scopes provide ways for administrators and users to set
global defaults for all Spack instances, but for use cases where one wants a clean Spack
installation, these scopes can be undesirable. For example, users may want to opt out of
global system configuration, or they may want to ignore their own home directory
settings when running in a continuous integration environment.
Spack also, by default, keeps various caches and user data in ``~/.spack``, but
users may want to override these locations.
Spack provides three environment variables that allow you to override or opt out of
configuration locations:
* ``SPACK_USER_CONFIG_PATH``: Override the path to use for the
``user`` scope (``~/.spack`` by default).
* ``SPACK_SYSTEM_CONFIG_PATH``: Override the path to use for the
``system`` scope (``/etc/spack`` by default).
* ``SPACK_DISABLE_LOCAL_CONFIG``: set this environment variable to completely disable
**both** the system and user configuration directories. Spack will only consider its
own defaults and ``site`` configuration locations.
And one that allows you to move the default cache location:
* ``SPACK_USER_CACHE_PATH``: Override the default path to use for user data
(misc_cache, tests, reports, etc.)
With these settings, if you want to isolate Spack in a CI environment, you can do this::
export SPACK_DISABLE_LOCAL_CONFIG=true
export SPACK_USER_CACHE_PATH=/tmp/spack

View File

@@ -1,604 +0,0 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _containers:
================
Container Images
================
Spack :ref:`environments` are a great tool to create container images, but
preparing one that is suitable for production requires some more boilerplate
than just:
.. code-block:: docker
COPY spack.yaml /environment
RUN spack -e /environment install
Additional actions may be needed to minimize the size of the
container, or to update the system software that is installed in the base
image, or to set up a proper entrypoint to run the image. These tasks are
usually both necessary and repetitive, so Spack comes with a command
to generate recipes for container images starting from a ``spack.yaml``.
--------------------
A Quick Introduction
--------------------
Consider having a Spack environment like the following:
.. code-block:: yaml
spack:
specs:
- gromacs+mpi
- mpich
Producing a ``Dockerfile`` from it is as simple as moving to the directory
where the ``spack.yaml`` file is stored and giving the following command:
.. code-block:: console
$ spack containerize > Dockerfile
The ``Dockerfile`` that gets created uses multi-stage builds and
other techniques to minimize the size of the final image:
.. code-block:: docker
# Build stage with Spack pre-installed and ready to be used
FROM spack/ubuntu-bionic:latest as builder
# What we want to install and how we want to install it
# is specified in a manifest file (spack.yaml)
RUN mkdir /opt/spack-environment \
&& (echo "spack:" \
&& echo " specs:" \
&& echo " - gromacs+mpi" \
&& echo " - mpich" \
&& echo " concretizer:" \
&& echo " unify: true" \
&& echo " config:" \
&& echo " install_tree: /opt/software" \
&& echo " view: /opt/view") > /opt/spack-environment/spack.yaml
# Install the software, remove unnecessary deps
RUN cd /opt/spack-environment && spack env activate . && spack install --fail-fast && spack gc -y
# Strip all the binaries
RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
xargs file -i | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: '{print $1}' | xargs strip -s
# Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh
# Bare OS image to run the installed executables
FROM ubuntu:18.04
COPY --from=builder /opt/spack-environment /opt/spack-environment
COPY --from=builder /opt/software /opt/software
COPY --from=builder /opt/view /opt/view
COPY --from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_environment.sh
ENTRYPOINT ["/bin/bash", "--rcfile", "/etc/profile", "-l"]
The image itself can then be built and run in the usual way, with any of the
tools suitable for the task. For instance, if we decided to use ``docker``:
.. code-block:: bash
$ spack containerize > Dockerfile
$ docker build -t myimage .
[ ... ]
$ docker run -it myimage
The various components involved in the generation of the recipe and their
configuration are discussed in details in the sections below.
.. _container_spack_images:
--------------------------
Spack Images on Docker Hub
--------------------------
Docker images with Spack preinstalled and ready to be used are
built when a release is tagged, or nightly on ``develop``. The images
are then pushed both to `Docker Hub <https://hub.docker.com/u/spack>`_
and to `GitHub Container Registry <https://github.com/orgs/spack/packages?repo_name=spack>`_.
The OS that are currently supported are summarized in the table below:
.. _containers-supported-os:
.. list-table:: Supported operating systems
:header-rows: 1
* - Operating System
- Base Image
- Spack Image
* - Ubuntu 18.04
- ``ubuntu:18.04``
- ``spack/ubuntu-bionic``
* - Ubuntu 20.04
- ``ubuntu:20.04``
- ``spack/ubuntu-focal``
* - Ubuntu 22.04
- ``ubuntu:22.04``
- ``spack/ubuntu-jammy``
* - CentOS 7
- ``centos:7``
- ``spack/centos7``
* - CentOS Stream
- ``quay.io/centos/centos:stream``
- ``spack/centos-stream``
* - openSUSE Leap
- ``opensuse/leap``
- ``spack/leap15``
* - Amazon Linux 2
- ``amazonlinux:2``
- ``spack/amazon-linux``
All the images are tagged with the corresponding release of Spack:
.. image:: images/ghcr_spack.png
with the exception of the ``latest`` tag that points to the HEAD
of the ``develop`` branch. These images are available for anyone
to use and take care of all the repetitive tasks that are necessary
to setup Spack within a container. The container recipes generated
by Spack use them as default base images for their ``build`` stage,
even though handles to use custom base images provided by users are
available to accommodate complex use cases.
---------------------------------
Creating Images From Environments
---------------------------------
Any Spack Environment can be used for the automatic generation of container
recipes. Sensible defaults are provided for things like the base image or the
version of Spack used in the image.
If a finer tuning is needed it can be obtained by adding the relevant metadata
under the ``container`` attribute of environments:
.. code-block:: yaml
spack:
specs:
- gromacs+mpi
- mpich
container:
# Select the format of the recipe e.g. docker,
# singularity or anything else that is currently supported
format: docker
# Sets the base images for the stages where Spack builds the
# software or where the software gets installed after being built..
images:
os: "centos:7"
spack: develop
# Whether or not to strip binaries
strip: true
# Additional system packages that are needed at runtime
os_packages:
final:
- libgomp
# Extra instructions
extra_instructions:
final: |
RUN echo 'export PS1="\[$(tput bold)\]\[$(tput setaf 1)\][gromacs]\[$(tput setaf 2)\]\u\[$(tput sgr0)\]:\w $ "' >> ~/.bashrc
# Labels for the image
labels:
app: "gromacs"
mpi: "mpich"
A detailed description of the options available can be found in the
:ref:`container_config_options` section.
-------------------
Setting Base Images
-------------------
The ``images`` subsection is used to select both the image where
Spack builds the software and the image where the built software
is installed. This attribute can be set in different ways and
which one to use depends on the use case at hand.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use Official Spack Images From Dockerhub
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To generate a recipe that uses an official Docker image from the
Spack organization to build the software and the corresponding official OS image
to install the built software, all the user has to do is specify:
1. An operating system under ``images:os``
2. A Spack version under ``images:spack``
Any combination of these two values that can be mapped to one of the images
discussed in :ref:`container_spack_images` is allowed. For instance, the
following ``spack.yaml``:
.. code-block:: yaml
spack:
specs:
- gromacs+mpi
- mpich
container:
images:
os: centos:7
spack: 0.15.4
uses ``spack/centos7:0.15.4`` and ``centos:7`` for the stages where the
software is respectively built and installed:
.. code-block:: docker
# Build stage with Spack pre-installed and ready to be used
FROM spack/centos7:0.15.4 as builder
# What we want to install and how we want to install it
# is specified in a manifest file (spack.yaml)
RUN mkdir /opt/spack-environment \
&& (echo "spack:" \
&& echo " specs:" \
&& echo " - gromacs+mpi" \
&& echo " - mpich" \
&& echo " concretizer:" \
&& echo " unify: true" \
&& echo " config:" \
&& echo " install_tree: /opt/software" \
&& echo " view: /opt/view") > /opt/spack-environment/spack.yaml
[ ... ]
# Bare OS image to run the installed executables
FROM centos:7
COPY --from=builder /opt/spack-environment /opt/spack-environment
COPY --from=builder /opt/software /opt/software
COPY --from=builder /opt/view /opt/view
COPY --from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_environment.sh
ENTRYPOINT ["/bin/bash", "--rcfile", "/etc/profile", "-l"]
This is the simplest available method of selecting base images, and we advise
to use it whenever possible. There are cases though where using Spack official
images is not enough to fit production needs. In these situations users can
extend the recipe to start with the bootstrapping of Spack at a certain pinned
version or manually select which base image to start from in the recipe,
as we'll see next.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use a Bootstrap Stage for Spack
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In some cases users may want to pin the commit sha that is used for Spack, to ensure later
reproducibility, or start from a fork of the official Spack repository to try a bugfix or
a feature in the early stage of development. This is possible by being just a little more
verbose when specifying information about Spack in the ``spack.yaml`` file:
.. code-block:: yaml
images:
os: amazonlinux:2
spack:
# URL of the Spack repository to be used in the container image
url: <to-use-a-fork>
# Either a commit sha, a branch name or a tag
ref: <sha/tag/branch>
# If true turn a branch name or a tag into the corresponding commit
# sha at the time of recipe generation
resolve_sha: <true/false>
``url`` specifies the URL from which to clone Spack and defaults to https://github.com/spack/spack.
The ``ref`` attribute can be either a commit sha, a branch name or a tag. The default value in
this case is to use the ``develop`` branch, but it may change in the future to point to the latest stable
release. Finally ``resolve_sha`` transform branch names or tags into the corresponding commit
shas at the time of recipe generation, to allow for a greater reproducibility of the results
at a later time.
The list of operating systems that can be used to bootstrap Spack can be
obtained with:
.. command-output:: spack containerize --list-os
.. note::
The ``resolve_sha`` option uses ``git rev-parse`` under the hood and thus it requires
to checkout the corresponding Spack repository in a temporary folder before generating
the recipe. Recipe generation may take longer when this option is set to true because
of this additional step.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use Custom Images Provided by Users
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Consider, as an example, building a production grade image for a CUDA
application. The best strategy would probably be to build on top of
images provided by the vendor and regard CUDA as an external package.
Spack doesn't currently provide an official image with CUDA configured
this way, but users can build it on their own and then configure the
environment to explicitly pull it. This requires users to:
1. Specify the image used to build the software under ``images:build``
2. Specify the image used to install the built software under ``images:final``
A ``spack.yaml`` like the following:
.. code-block:: yaml
spack:
specs:
- gromacs@2019.4+cuda build_type=Release
- mpich
- fftw precision=float
packages:
cuda:
buildable: False
externals:
- spec: cuda%gcc
prefix: /usr/local/cuda
container:
images:
build: custom/cuda-10.1-ubuntu18.04:latest
final: nvidia/cuda:10.1-base-ubuntu18.04
produces, for instance, the following ``Dockerfile``:
.. code-block:: docker
# Build stage with Spack pre-installed and ready to be used
FROM custom/cuda-10.1-ubuntu18.04:latest as builder
# What we want to install and how we want to install it
# is specified in a manifest file (spack.yaml)
RUN mkdir /opt/spack-environment \
&& (echo "spack:" \
&& echo " specs:" \
&& echo " - gromacs@2019.4+cuda build_type=Release" \
&& echo " - mpich" \
&& echo " - fftw precision=float" \
&& echo " packages:" \
&& echo " cuda:" \
&& echo " buildable: false" \
&& echo " externals:" \
&& echo " - spec: cuda%gcc" \
&& echo " prefix: /usr/local/cuda" \
&& echo " concretizer:" \
&& echo " unify: true" \
&& echo " config:" \
&& echo " install_tree: /opt/software" \
&& echo " view: /opt/view") > /opt/spack-environment/spack.yaml
# Install the software, remove unnecessary deps
RUN cd /opt/spack-environment && spack env activate . && spack install --fail-fast && spack gc -y
# Strip all the binaries
RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
xargs file -i | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: '{print $1}' | xargs strip -s
# Modifications to the environment that are necessary to run
RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh
# Bare OS image to run the installed executables
FROM nvidia/cuda:10.1-base-ubuntu18.04
COPY --from=builder /opt/spack-environment /opt/spack-environment
COPY --from=builder /opt/software /opt/software
COPY --from=builder /opt/view /opt/view
COPY --from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_environment.sh
ENTRYPOINT ["/bin/bash", "--rcfile", "/etc/profile", "-l"]
where the base images for both stages are completely custom.
This second mode of selection for base images is more flexible than just
choosing an operating system and a Spack version, but is also more demanding.
Users may need to generate by themselves their base images and it's also their
responsibility to ensure that:
1. Spack is available in the ``build`` stage and set up correctly to install the required software
2. The artifacts produced in the ``build`` stage can be executed in the ``final`` stage
Therefore we don't recommend its use in cases that can be otherwise
covered by the simplified mode shown first.
----------------------------
Singularity Definition Files
----------------------------
In addition to producing recipes in ``Dockerfile`` format Spack can produce
Singularity Definition Files by just changing the value of the ``format``
attribute:
.. code-block:: console
$ cat spack.yaml
spack:
specs:
- hdf5~mpi
container:
format: singularity
$ spack containerize > hdf5.def
$ sudo singularity build hdf5.sif hdf5.def
The minimum version of Singularity required to build a SIF (Singularity Image Format)
image from the recipes generated by Spack is ``3.5.3``.
.. _container_config_options:
-----------------------
Configuration Reference
-----------------------
The tables below describe all the configuration options that are currently supported
to customize the generation of container recipes:
.. list-table:: General configuration options for the ``container`` section of ``spack.yaml``
:header-rows: 1
* - Option Name
- Description
- Allowed Values
- Required
* - ``format``
- The format of the recipe
- ``docker`` or ``singularity``
- Yes
* - ``images:os``
- Operating system used as a base for the image
- See :ref:`containers-supported-os`
- Yes, if using constrained selection of base images
* - ``images:spack``
- Version of Spack use in the ``build`` stage
- Valid tags for ``base:image``
- Yes, if using constrained selection of base images
* - ``images:spack:url``
- Repository from which Spack is cloned
- Any fork of Spack
- No
* - ``images:spack:ref``
- Reference for the checkout of Spack
- Either a commit sha, a branch name or a tag
- No
* - ``images:spack:resolve_sha``
- Resolve branches and tags in ``spack.yaml`` to commits in the generated recipe
- True or False (default: False)
- No
* - ``images:build``
- Image to be used in the ``build`` stage
- Any valid container image
- Yes, if using custom selection of base images
* - ``images:final``
- Image to be used in the ``build`` stage
- Any valid container image
- Yes, if using custom selection of base images
* - ``strip``
- Whether to strip binaries
- ``true`` (default) or ``false``
- No
* - ``os_packages:command``
- Tool used to manage system packages
- ``apt``, ``yum``
- Only with custom base images
* - ``os_packages:update``
- Whether or not to update the list of available packages
- True or False (default: True)
- No
* - ``os_packages:build``
- System packages needed at build-time
- Valid packages for the current OS
- No
* - ``os_packages:final``
- System packages needed at run-time
- Valid packages for the current OS
- No
* - ``extra_instructions:build``
- Extra instructions (e.g. `RUN`, `COPY`, etc.) at the end of the ``build`` stage
- Anything understood by the current ``format``
- No
* - ``extra_instructions:final``
- Extra instructions (e.g. `RUN`, `COPY`, etc.) at the end of the ``final`` stage
- Anything understood by the current ``format``
- No
* - ``labels``
- Labels to tag the image
- Pairs of key-value strings
- No
.. list-table:: Configuration options specific to Singularity
:header-rows: 1
* - Option Name
- Description
- Allowed Values
- Required
* - ``singularity:runscript``
- Content of ``%runscript``
- Any valid script
- No
* - ``singularity:startscript``
- Content of ``%startscript``
- Any valid script
- No
* - ``singularity:test``
- Content of ``%test``
- Any valid script
- No
* - ``singularity:help``
- Description of the image
- Description string
- No
--------------
Best Practices
--------------
^^^
MPI
^^^
Due to the dependency on Fortran for OpenMPI, which is the spack default
implementation, consider adding ``gfortran`` to the ``apt-get install`` list.
Recent versions of OpenMPI will require you to pass ``--allow-run-as-root``
to your ``mpirun`` calls if started as root user inside Docker.
For execution on HPC clusters, it can be helpful to import the docker
image into Singularity in order to start a program with an *external*
MPI. Otherwise, also add ``openssh-server`` to the ``apt-get install`` list.
^^^^
CUDA
^^^^
Starting from CUDA 9.0, Nvidia provides minimal CUDA images based on
Ubuntu. Please see `their instructions <https://hub.docker.com/r/nvidia/cuda/>`_.
Avoid double-installing CUDA by adding, e.g.
.. code-block:: yaml
packages:
cuda:
externals:
- spec: "cuda@9.0.176%gcc@5.4.0 arch=linux-ubuntu16-x86_64"
prefix: /usr/local/cuda
buildable: False
to your ``spack.yaml``.
Users will either need ``nvidia-docker`` or e.g. Singularity to *execute*
device kernels.
^^^^^^^^^^^^^^^^^^^^^^^^^
Docker on Windows and OSX
^^^^^^^^^^^^^^^^^^^^^^^^^
On Mac OS and Windows, docker runs on a hypervisor that is not allocated much
memory by default, and some spack packages may fail to build due to lack of
memory. To work around this issue, consider configuring your docker installation
to use more of your host memory. In some cases, you can also ease the memory
pressure on parallel builds by limiting the parallelism in your config.yaml.
.. code-block:: yaml
config:
build_jobs: 2

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -27,28 +27,17 @@ correspond to one feature/bugfix/extension/etc. One can create PRs with
changes relevant to different ideas, however reviewing such PRs becomes tedious
and error prone. If possible, try to follow the **one-PR-one-package/feature** rule.
--------
Branches
--------
Spack's ``develop`` branch has the latest contributions. Nearly all pull
requests should start from ``develop`` and target ``develop``.
There is a branch for each major release series. Release branches
originate from ``develop`` and have tags for each point release in the
series. For example, ``releases/v0.14`` has tags for ``0.14.0``,
``0.14.1``, ``0.14.2``, etc. versions of Spack. We backport important bug
fixes to these branches, but we do not advance the package versions or
make other changes that would change the way Spack concretizes
dependencies. Currently, the maintainers manage these branches by
cherry-picking from ``develop``. See :ref:`releases` for more
information.
Spack uses a rough approximation of the `Git Flow <http://nvie.com/posts/a-successful-git-branching-model/>`_
branching model. The develop branch contains the latest contributions, and
master is always tagged and points to the latest stable release. Therefore, when
you send your request, make ``develop`` the destination branch on the
`Spack repository <https://github.com/spack/spack>`_.
----------------------
Continuous Integration
----------------------
Spack uses `Github Actions <https://docs.github.com/en/actions>`_ for Continuous Integration
Spack uses `Travis CI <https://travis-ci.org/spack/spack>`_ for Continuous Integration
testing. This means that every time you submit a pull request, a series of tests will
be run to make sure you didn't accidentally introduce any bugs into Spack. **Your PR
will not be accepted until it passes all of these tests.** While you can certainly wait
@@ -57,25 +46,24 @@ locally to speed up the review process.
.. note::
Oftentimes, CI will fail for reasons other than a problem with your PR.
Oftentimes, Travis will fail for reasons other than a problem with your PR.
For example, apt-get, pip, or homebrew will fail to download one of the
dependencies for the test suite, or a transient bug will cause the unit tests
to timeout. If any job fails, click the "Details" link and click on the test(s)
to timeout. If Travis fails, click the "Details" link and click on the test(s)
that is failing. If it doesn't look like it is failing for reasons related to
your PR, you have two options. If you have write permissions for the Spack
repository, you should see a "Restart workflow" button on the right-hand side. If
repository, you should see a "Restart job" button on the right-hand side. If
not, you can close and reopen your PR to rerun all of the tests. If the same
test keeps failing, there may be a problem with your PR. If you notice that
every recent PR is failing with the same error message, it may be that an issue
occurred with the CI infrastructure or one of Spack's dependencies put out a
new release that is causing problems. If this is the case, please file an issue.
every recent PR is failing with the same error message, it may be that Travis
is down or one of Spack's dependencies put out a new release that is causing
problems. If this is the case, please file an issue.
We currently test against Python 2.7 and 3.6-3.10 on both macOS and Linux and
If you take a look in ``$SPACK_ROOT/.travis.yml``, you'll notice that we test
against Python 2.6, 2.7, and 3.4-3.7 on both macOS and Linux. We currently
perform 3 types of tests:
.. _cmd-spack-unit-test:
^^^^^^^^^^
Unit Tests
^^^^^^^^^^
@@ -96,109 +84,62 @@ To run *all* of the unit tests, use:
.. code-block:: console
$ spack unit-test
$ spack test
These tests may take several minutes to complete. If you know you are
only modifying a single Spack feature, you can run subsets of tests at a
time. For example, this would run all the tests in
``lib/spack/spack/test/architecture.py``:
These tests may take several minutes to complete. If you know you are only
modifying a single Spack feature, you can run a single unit test at a time:
.. code-block:: console
$ spack unit-test lib/spack/spack/test/architecture.py
$ spack test architecture
And this would run the ``test_platform`` test from that file:
This allows you to develop iteratively: make a change, test that change, make
another change, test that change, etc. To get a list of all available unit
tests, run:
.. command-output:: spack test --list
A more detailed list of available unit tests can be found by running
``spack test --long-list``.
By default, ``pytest`` captures the output of all unit tests. If you add print
statements to a unit test and want to see the output, simply run:
.. code-block:: console
$ spack unit-test lib/spack/spack/test/architecture.py::test_platform
$ spack test -s -k architecture
This allows you to develop iteratively: make a change, test that change,
make another change, test that change, etc. We use `pytest
<http://pytest.org/>`_ as our tests framework, and these types of
arguments are just passed to the ``pytest`` command underneath. See `the
pytest docs
<http://doc.pytest.org/en/latest/usage.html#specifying-tests-selecting-tests>`_
for more details on test selection syntax.
``spack unit-test`` has a few special options that can help you
understand what tests are available. To get a list of all available
unit test files, run:
.. command-output:: spack unit-test --list
:ellipsis: 5
To see a more detailed list of available unit tests, use ``spack
unit-test --list-long``:
.. command-output:: spack unit-test --list-long
:ellipsis: 10
And to see the fully qualified names of all tests, use ``--list-names``:
.. command-output:: spack unit-test --list-names
:ellipsis: 5
You can combine these with ``pytest`` arguments to restrict which tests
you want to know about. For example, to see just the tests in
``architecture.py``:
.. command-output:: spack unit-test --list-long lib/spack/spack/test/architecture.py
You can also combine any of these options with a ``pytest`` keyword
search. See the `pytest usage docs
<https://docs.pytest.org/en/stable/usage.html#specifying-tests-selecting-tests>`_:
for more details on test selection syntax. For example, to see the names of all tests that have "spec"
or "concretize" somewhere in their names:
.. command-output:: spack unit-test --list-names -k "spec and concretize"
By default, ``pytest`` captures the output of all unit tests, and it will
print any captured output for failed tests. Sometimes it's helpful to see
your output interactively, while the tests run (e.g., if you add print
statements to a unit tests). To see the output *live*, use the ``-s``
argument to ``pytest``:
.. code-block:: console
$ spack unit-test -s --list-long lib/spack/spack/test/architecture.py::test_platform
Unit tests are crucial to making sure bugs aren't introduced into
Spack. If you are modifying core Spack libraries or adding new
functionality, please add new unit tests for your feature, and consider
strengthening existing tests. You will likely be asked to do this if you
submit a pull request to the Spack project on GitHub. Check out the
`pytest docs <http://pytest.org/>`_ and feel free to ask for guidance on
how to write tests!
Unit tests are crucial to making sure bugs aren't introduced into Spack. If you
are modifying core Spack libraries or adding new functionality, please consider
adding new unit tests or strengthening existing tests.
.. note::
You may notice the ``share/spack/qa/run-unit-tests`` script in the
repository. This script is designed for CI. It runs the unit
tests and reports coverage statistics back to Codecov. If you want to
run the unit tests yourself, we suggest you use ``spack unit-test``.
There is also a ``run-unit-tests`` script in ``share/spack/qa`` that
runs the unit tests. Afterwards, it reports back to Codecov with the
percentage of Spack that is covered by unit tests. This script is
designed for Travis CI. If you want to run the unit tests yourself, we
suggest you use ``spack test``.
^^^^^^^^^^^^
Style Tests
Flake8 Tests
^^^^^^^^^^^^
Spack uses `Flake8 <http://flake8.pycqa.org/en/latest/>`_ to test for
`PEP 8 <https://www.python.org/dev/peps/pep-0008/>`_ conformance and
`mypy <https://mypy.readthedocs.io/en/stable/>` for type checking. PEP 8 is
`PEP 8 <https://www.python.org/dev/peps/pep-0008/>`_ conformance. PEP 8 is
a series of style guides for Python that provide suggestions for everything
from variable naming to indentation. In order to limit the number of PRs that
were mostly style changes, we decided to enforce PEP 8 conformance. Your PR
needs to comply with PEP 8 in order to be accepted, and if it modifies the
spack library it needs to successfully type-check with mypy as well.
needs to comply with PEP 8 in order to be accepted.
Testing for compliance with spack's style is easy. Simply run the ``spack style``
Testing for PEP 8 compliance is easy. Simply run the ``spack flake8``
command:
.. code-block:: console
$ spack style
$ spack flake8
``spack style`` has a couple advantages over running the tools by hand:
``spack flake8`` has a couple advantages over running ``flake8`` by hand:
#. It only tests files that you have modified since branching off of
``develop``.
@@ -209,9 +150,7 @@ command:
checks. For example, URLs are often longer than 80 characters, so we
exempt them from line length checks. We also exempt lines that start
with "homepage", "url", "version", "variant", "depends_on", and
"extends" in ``package.py`` files. This is now also possible when directly
running flake8 if you can use the ``spack`` formatter plugin included with
spack.
"extends" in ``package.py`` files.
More approved flake8 exemptions can be found
`here <https://github.com/spack/spack/blob/develop/.flake8>`_.
@@ -244,15 +183,36 @@ However, if you aren't compliant with PEP 8, flake8 will complain:
Most of the error messages are straightforward, but if you don't understand what
they mean, just ask questions about them when you submit your PR. The line numbers
will change if you add or delete lines, so simply run ``spack style`` again
will change if you add or delete lines, so simply run ``spack flake8`` again
to update them.
.. tip::
Try fixing flake8 errors in reverse order. This eliminates the need for
multiple runs of ``spack style`` just to re-compute line numbers and
makes it much easier to fix errors directly off of the CI output.
multiple runs of ``spack flake8`` just to re-compute line numbers and
makes it much easier to fix errors directly off of the Travis output.
.. warning::
Flake8 and ``pep8-naming`` require a number of dependencies in order
to run. If you installed ``py-flake8`` and ``py-pep8-naming``, the
easiest way to ensure the right packages are on your ``PYTHONPATH`` is
to run::
spack activate py-flake8
spack activate pep8-naming
so that all of the dependencies are symlinked to a central
location. If you see an error message like:
.. code-block:: console
Traceback (most recent call last):
File: "/usr/bin/flake8", line 5, in <module>
from pkg_resources import load_entry_point
ImportError: No module named pkg_resources
that means Flake8 couldn't find setuptools in your ``PYTHONPATH``.
^^^^^^^^^^^^^^^^^^^
Documentation Tests
@@ -263,7 +223,8 @@ documentation. In order to prevent things like broken links and missing imports,
we added documentation tests that build the documentation and fail if there
are any warning or error messages.
Building the documentation requires several dependencies:
Building the documentation requires several dependencies, all of which can be
installed with Spack:
* sphinx
* sphinxcontrib-programoutput
@@ -273,25 +234,20 @@ Building the documentation requires several dependencies:
* mercurial
* subversion
All of these can be installed with Spack, e.g.
.. code-block:: console
$ spack install py-sphinx py-sphinxcontrib-programoutput py-sphinx-rtd-theme graphviz git mercurial subversion
.. warning::
Sphinx has `several required dependencies <https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/py-sphinx/package.py>`_.
If you're using a ``python`` from Spack and you installed
``py-sphinx`` and friends, you need to make them available to your
``python``. The easiest way to do this is to run:
If you installed ``py-sphinx`` with Spack, make sure to add all of these
dependencies to your ``PYTHONPATH``. The easiest way to do this is to run:
.. code-block:: console
$ spack load py-sphinx py-sphinx-rtd-theme py-sphinxcontrib-programoutput
$ spack activate py-sphinx
$ spack activate py-sphinx-rtd-theme
$ spack activate py-sphinxcontrib-programoutput
so that all of the dependencies are added to PYTHONPATH. If you see an error message
like:
so that all of the dependencies are symlinked to a central location.
If you see an error message like:
.. code-block:: console
@@ -306,13 +262,22 @@ Once all of the dependencies are installed, you can try building the documentati
.. code-block:: console
$ cd path/to/spack/lib/spack/docs/
$ cd "$SPACK_ROOT/lib/spack/docs"
$ make clean
$ make
If you see any warning or error messages, you will have to correct those before
your PR is accepted.
.. note::
There is also a ``run-doc-tests`` script in ``share/spack/qa``. The only
difference between running this script and running ``make`` by hand is that
the script will exit immediately if it encounters an error or warning. This
is necessary for Travis CI. If you made a lot of documentation changes, it is
much quicker to run ``make`` by hand so that you can see all of the warnings
at once.
If you are editing the documentation, you should obviously be running the
documentation tests. But even if you are simply adding a new package, your
changes could cause the documentation tests to fail:
@@ -367,13 +332,13 @@ coverage. This helps us tell what percentage of lines of code in Spack are
covered by unit tests. Although code covered by unit tests can still contain
bugs, it is much less error prone than code that is not covered by unit tests.
Codecov provides `browser extensions <https://github.com/codecov/sourcegraph-codecov>`_
for Google Chrome and Firefox. These extensions integrate with GitHub
Codecov provides `browser extensions <https://github.com/codecov/browser-extension>`_
for Google Chrome, Firefox, and Opera. These extensions integrate with GitHub
and allow you to see coverage line-by-line when viewing the Spack repository.
If you are new to Spack, a great way to get started is to write unit tests to
increase coverage!
Unlike with CI on Github Actions Codecov tests are not required to pass in order for your
Unlike with Travis, Codecov tests are not required to pass in order for your
PR to be merged. If you modify core Spack libraries, we would greatly
appreciate unit tests that cover these changed lines. Otherwise, we have no
way of knowing whether or not your changes introduce a bug. If you make

View File

@@ -1,4 +1,4 @@
.. Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
.. Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
@@ -106,20 +106,11 @@ with a high level view of Spack's directory structure:
external/ <- external libs included in Spack distro
llnl/ <- some general-use libraries
spack/ <- spack module; contains Python code
build_systems/ <- modules for different build systems
cmd/ <- each file in here is a spack subcommand
compilers/ <- compiler description files
container/ <- module for spack containerize
hooks/ <- hook modules to run at different points
modules/ <- modules for lmod, tcl, etc.
operating_systems/ <- operating system modules
platforms/ <- different spack platforms
reporters/ <- reporters like cdash, junit
schema/ <- schemas to validate data structures
solver/ <- the spack solver
test/ <- unit test modules
util/ <- common code
spack/ <- spack module; contains Python code
cmd/ <- each file in here is a spack subcommand
compilers/ <- compiler description files
test/ <- unit test modules
util/ <- common code
Spack is designed so that it could live within a `standard UNIX
directory hierarchy <http://linux.die.net/man/7/hier>`_, so ``lib``,
@@ -149,21 +140,25 @@ grouped by functionality.
Package-related modules
^^^^^^^^^^^^^^^^^^^^^^^
:mod:`spack.package_base`
Contains the :class:`~spack.package_base.PackageBase` class, which
is the superclass for all packages in Spack.
:mod:`spack.package`
Contains the :class:`Package <spack.package.Package>` class, which
is the superclass for all packages in Spack. Methods on ``Package``
implement all phases of the :ref:`package lifecycle
<package-lifecycle>` and manage the build process.
:mod:`spack.util.naming`
Contains functions for mapping between Spack package names,
Python module names, and Python class names. Functions like
:func:`~spack.util.naming.mod_to_class` handle mapping package
module names to class names.
:mod:`spack.packages`
Contains all of the packages in Spack and methods for managing them.
Functions like :func:`packages.get <spack.packages.get>` and
:func:`class_name_for_package_name
<packages.class_name_for_package_name>` handle mapping package module
names to class names and dynamically instantiating packages by name
from module files.
:mod:`spack.directives`
*Directives* are functions that can be called inside a package definition
to modify the package, like :func:`~spack.directives.depends_on`
and :func:`~spack.directives.provides`. See :ref:`dependencies`
and :ref:`virtual-dependencies`.
:mod:`spack.relations`
*Relations* are relationships between packages, like
:func:`depends_on <spack.relations.depends_on>` and :func:`provides
<spack.relations.provides>`. See :ref:`dependencies` and
:ref:`virtual-dependencies`.
:mod:`spack.multimethod`
Implementation of the :func:`@when <spack.multimethod.when>`
@@ -175,27 +170,31 @@ Spec-related modules
^^^^^^^^^^^^^^^^^^^^
:mod:`spack.spec`
Contains :class:`~spack.spec.Spec` and :class:`~spack.spec.SpecParser`.
Also implements most of the logic for normalization and concretization
of specs.
Contains :class:`Spec <spack.spec.Spec>` and :class:`SpecParser
<spack.spec.SpecParser>`. Also implements most of the logic for
normalization and concretization of specs.
:mod:`spack.parse`
Contains some base classes for implementing simple recursive descent
parsers: :class:`~spack.parse.Parser` and :class:`~spack.parse.Lexer`.
Used by :class:`~spack.spec.SpecParser`.
parsers: :class:`Parser <spack.parse.Parser>` and :class:`Lexer
<spack.parse.Lexer>`. Used by :class:`SpecParser
<spack.spec.SpecParser>`.
:mod:`spack.concretize`
Contains :class:`~spack.concretize.Concretizer` implementation,
which allows site administrators to change Spack's :ref:`concretization-policies`.
Contains :class:`DefaultConcretizer
<spack.concretize.DefaultConcretizer>` implementation, which allows
site administrators to change Spack's :ref:`concretization-policies`.
:mod:`spack.version`
Implements a simple :class:`~spack.version.Version` class with simple
comparison semantics. Also implements :class:`~spack.version.VersionRange`
and :class:`~spack.version.VersionList`. All three are comparable with each
other and offer union and intersection operations. Spack uses these classes
to compare versions and to manage version constraints on specs. Comparison
semantics are similar to the ``LooseVersion`` class in ``distutils`` and to
the way RPM compares version strings.
Implements a simple :class:`Version <spack.version.Version>` class
with simple comparison semantics. Also implements
:class:`VersionRange <spack.version.VersionRange>` and
:class:`VersionList <spack.version.VersionList>`. All three are
comparable with each other and offer union and intersection
operations. Spack uses these classes to compare versions and to
manage version constraints on specs. Comparison semantics are
similar to the ``LooseVersion`` class in ``distutils`` and to the
way RPM compares version strings.
:mod:`spack.compilers`
Submodules contains descriptors for all valid compilers in Spack.
@@ -207,6 +206,15 @@ Spec-related modules
but compilers aren't fully integrated with the build process
yet.
:mod:`spack.architecture`
:func:`architecture.sys_type <spack.architecture.sys_type>` is used
to determine the host architecture while building.
.. warning::
Not yet implemented. Should eventually have architecture
descriptions for cross-compiling.
^^^^^^^^^^^^^^^^^
Build environment
^^^^^^^^^^^^^^^^^
@@ -214,7 +222,7 @@ Build environment
:mod:`spack.stage`
Handles creating temporary directories for builds.
:mod:`spack.build_environment`
:mod:`spack.compilation`
This contains utility functions used by the compiler wrapper script,
``cc``.
@@ -239,6 +247,9 @@ Unit tests
Implements Spack's test suite. Add a module and put its name in
the test suite in ``__init__.py`` to add more unit tests.
:mod:`spack.test.mock_packages`
This is a fake package hierarchy used to mock up packages for
Spack's test suite.
^^^^^^^^^^^^^
Other Modules
@@ -249,7 +260,7 @@ Other Modules
tarball URLs.
:mod:`spack.error`
:class:`~spack.error.SpackError`, the base class for
:class:`SpackError <spack.error.SpackError>`, the base class for
Spack's exception hierarchy.
:mod:`llnl.util.tty`
@@ -282,6 +293,11 @@ Most spack commands look something like this:
The information in Package files is used at all stages in this
process.
Conceptually, packages are overloaded. They contain:
-------------
Stage objects
-------------
.. _writing-commands:
@@ -329,173 +345,6 @@ Whenever you add/remove/rename a command or flags for an existing command,
make sure to update Spack's `Bash tab completion script
<https://github.com/adamjstewart/spack/blob/develop/share/spack/spack-completion.bash>`_.
-------------
Writing Hooks
-------------
A hook is a callback that makes it easy to design functions that run
for different events. We do this by way of defining hook types, and then
inserting them at different places in the spack code base. Whenever a hook
type triggers by way of a function call, we find all the hooks of that type,
and run them.
Spack defines hooks by way of a module at ``lib/spack/spack/hooks`` where we can define
types of hooks in the ``__init__.py``, and then python files in that folder
can use hook functions. The files are automatically parsed, so if you write
a new file for some integration (e.g., ``lib/spack/spack/hooks/myintegration.py``
you can then write hook functions in that file that will be automatically detected,
and run whenever your hook is called. This section will cover the basic kind
of hooks, and how to write them.
^^^^^^^^^^^^^^
Types of Hooks
^^^^^^^^^^^^^^
The following hooks are currently implemented to make it easy for you,
the developer, to add hooks at different stages of a spack install or similar.
If there is a hook that you would like and is missing, you can propose to add a new one.
"""""""""""""""""""""
``pre_install(spec)``
"""""""""""""""""""""
A ``pre_install`` hook is run within an install subprocess, directly before
the install starts. It expects a single argument of a spec, and is run in
a multiprocessing subprocess. Note that if you see ``pre_install`` functions associated with packages these are not hooks
as we have defined them here, but rather callback functions associated with
a package install.
""""""""""""""""""""""
``post_install(spec)``
""""""""""""""""""""""
A ``post_install`` hook is run within an install subprocess, directly after
the install finishes, but before the build stage is removed. If you
write one of these hooks, you should expect it to accept a spec as the only
argument. This is run in a multiprocessing subprocess. This ``post_install`` is
also seen in packages, but in this context not related to the hooks described
here.
""""""""""""""""""""""""""
``on_install_start(spec)``
""""""""""""""""""""""""""
This hook is run at the beginning of ``lib/spack/spack/installer.py``,
in the install function of a ``PackageInstaller``,
and importantly is not part of a build process, but before it. This is when
we have just newly grabbed the task, and are preparing to install. If you
write a hook of this type, you should provide the spec to it.
.. code-block:: python
def on_install_start(spec):
"""On start of an install, we want to...
"""
print('on_install_start')
""""""""""""""""""""""""""""
``on_install_success(spec)``
""""""""""""""""""""""""""""
This hook is run on a successful install, and is also run inside the build
process, akin to ``post_install``. The main difference is that this hook
is run outside of the context of the stage directory, meaning after the
build stage has been removed and the user is alerted that the install was
successful. If you need to write a hook that is run on success of a particular
phase, you should use ``on_phase_success``.
""""""""""""""""""""""""""""
``on_install_failure(spec)``
""""""""""""""""""""""""""""
This hook is run given an install failure that happens outside of the build
subprocess, but somewhere in ``installer.py`` when something else goes wrong.
If you need to write a hook that is relevant to a failure within a build
process, you would want to instead use ``on_phase_failure``.
"""""""""""""""""""""""""""
``on_install_cancel(spec)``
"""""""""""""""""""""""""""
The same, but triggered if a spec install is cancelled for any reason.
"""""""""""""""""""""""""""""""""""""""""""""""
``on_phase_success(pkg, phase_name, log_file)``
"""""""""""""""""""""""""""""""""""""""""""""""
This hook is run within the install subprocess, and specifically when a phase
successfully finishes. Since we are interested in the package, the name of
the phase, and any output from it, we require:
- **pkg**: the package variable, which also has the attached spec at ``pkg.spec``
- **phase_name**: the name of the phase that was successful (e.g., configure)
- **log_file**: the path to the file with output, in case you need to inspect or otherwise interact with it.
"""""""""""""""""""""""""""""""""""""""""""""
``on_phase_error(pkg, phase_name, log_file)``
"""""""""""""""""""""""""""""""""""""""""""""
In the case of an error during a phase, we might want to trigger some event
with a hook, and this is the purpose of this particular hook. Akin to
``on_phase_success`` we require the same variables - the package that failed,
the name of the phase, and the log file where we might find errors.
^^^^^^^^^^^^^^^^^^^^^^
Adding a New Hook Type
^^^^^^^^^^^^^^^^^^^^^^
Adding a new hook type is very simple! In ``lib/spack/spack/hooks/__init__.py``
you can simply create a new ``HookRunner`` that is named to match your new hook.
For example, let's say you want to add a new hook called ``post_log_write``
to trigger after anything is written to a logger. You would add it as follows:
.. code-block:: python
# pre/post install and run by the install subprocess
pre_install = HookRunner('pre_install')
post_install = HookRunner('post_install')
# hooks related to logging
post_log_write = HookRunner('post_log_write') # <- here is my new hook!
You then need to decide what arguments my hook would expect. Since this is
related to logging, let's say that you want a message and level. That means
that when you add a python file to the ``lib/spack/spack/hooks``
folder with one or more callbacks intended to be triggered by this hook. You might
use my new hook as follows:
.. code-block:: python
def post_log_write(message, level):
"""Do something custom with the messsage and level every time we write
to the log
"""
print('running post_log_write!')
To use the hook, we would call it as follows somewhere in the logic to do logging.
In this example, we use it outside of a logger that is already defined:
.. code-block:: python
import spack.hooks
# We do something here to generate a logger and message
spack.hooks.post_log_write(message, logger.level)
This is not to say that this would be the best way to implement an integration
with the logger (you'd probably want to write a custom logger, or you could
have the hook defined within the logger) but serves as an example of writing a hook.
----------
Unit tests
----------
@@ -504,38 +353,6 @@ Unit tests
Unit testing
------------
---------------------
Developer environment
---------------------
.. warning::
This is an experimental feature. It is expected to change and you should
not use it in a production environment.
When installing a package, we currently have support to export environment
variables to specify adding debug flags to the build. By default, a package
install will build without any debug flag. However, if you want to add them,
you can export:
.. code-block:: console
export SPACK_ADD_DEBUG_FLAGS=true
spack install zlib
If you want to add custom flags, you should export an additional variable:
.. code-block:: console
export SPACK_ADD_DEBUG_FLAGS=true
export SPACK_DEBUG_FLAGS="-g"
spack install zlib
These environment variables will eventually be integrated into spack so
they are set from the command line.
------------------
Developer commands
------------------
@@ -546,35 +363,11 @@ Developer commands
``spack doc``
^^^^^^^^^^^^^
.. _cmd-spack-style:
.. _cmd-spack-test:
^^^^^^^^^^^^^^^
``spack style``
^^^^^^^^^^^^^^^
spack style exists to help the developer user to check imports and style with
mypy, flake8, isort, and (soon) black. To run all style checks, simply do:
.. code-block:: console
$ spack style
To run automatic fixes for isort you can do:
.. code-block:: console
$ spack style --fix
You do not need any of these Python packages installed on your system for
the checks to work! Spack will bootstrap install them from packages for
your use.
^^^^^^^^^^^^^^^^^^^
``spack unit-test``
^^^^^^^^^^^^^^^^^^^
See the :ref:`contributor guide section <cmd-spack-unit-test>` on
``spack unit-test``.
^^^^^^^^^^^^^^
``spack test``
^^^^^^^^^^^^^^
.. _cmd-spack-python:
@@ -602,89 +395,23 @@ other Spack modules:
True
>>>
If you prefer using an IPython interpreter, given that IPython is installed
you can specify the interpreter with ``-i``:
.. code-block:: console
$ spack python -i ipython
Python 3.8.3 (default, May 19 2020, 18:47:26)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.17.0 -- An enhanced Interactive Python. Type '?' for help.
Spack version 0.16.0
Python 3.8.3, Linux x86_64
In [1]:
With either interpreter you can run a single command:
You can also run a single command:
.. code-block:: console
$ spack python -c 'import distro; distro.linux_distribution()'
('Ubuntu', '18.04', 'Bionic Beaver')
$ spack python -i ipython -c 'import distro; distro.linux_distribution()'
Out[1]: ('Ubuntu', '18.04', 'Bionic Beaver')
('Fedora', '25', 'Workstation Edition')
or a file:
.. code-block:: console
$ spack python ~/test_fetching.py
$ spack python -i ipython ~/test_fetching.py
just like you would with the normal ``python`` command.
.. _cmd-spack-url:
^^^^^^^^^^^^^^^
``spack blame``
^^^^^^^^^^^^^^^
Spack blame is a way to quickly see contributors to packages or files
in the spack repository. You should provide a target package name or
file name to the command. Here is an example asking to see contributions
for the package "python":
.. code-block:: console
$ spack blame python
LAST_COMMIT LINES % AUTHOR EMAIL
2 weeks ago 3 0.3 Mickey Mouse <cheddar@gmouse.org>
a month ago 927 99.7 Minnie Mouse <swiss@mouse.org>
2 weeks ago 930 100.0
By default, you will get a table view (shown above) sorted by date of contribution,
with the most recent contribution at the top. If you want to sort instead
by percentage of code contribution, then add ``-p``:
.. code-block:: console
$ spack blame -p python
And to see the git blame view, add ``-g`` instead:
.. code-block:: console
$ spack blame -g python
Finally, to get a json export of the data, add ``--json``:
.. code-block:: console
$ spack blame --json python
^^^^^^^^^^^^^
``spack url``
^^^^^^^^^^^^^
@@ -761,423 +488,10 @@ supply ``--profile`` to Spack on the command line, before any subcommands.
``spack --profile`` output looks like this:
.. command-output:: spack --profile graph hdf5
.. command-output:: spack --profile graph dyninst
:ellipsis: 25
The bottom of the output shows the top most time consuming functions,
slowest on top. The profiling support is from Python's built-in tool,
`cProfile
<https://docs.python.org/2/library/profile.html#module-cProfile>`_.
.. _releases:
--------
Releases
--------
This section documents Spack's release process. It is intended for
project maintainers, as the tasks described here require maintainer
privileges on the Spack repository. For others, we hope this section at
least provides some insight into how the Spack project works.
.. _release-branches:
^^^^^^^^^^^^^^^^
Release branches
^^^^^^^^^^^^^^^^
There are currently two types of Spack releases: :ref:`major releases
<major-releases>` (``0.17.0``, ``0.18.0``, etc.) and :ref:`point releases
<point-releases>` (``0.17.1``, ``0.17.2``, ``0.17.3``, etc.). Here is a
diagram of how Spack release branches work::
o branch: develop (latest version, v0.19.0.dev0)
|
o
| o branch: releases/v0.18, tag: v0.18.1
o |
| o tag: v0.18.0
o |
| o
|/
o
|
o
| o branch: releases/v0.17, tag: v0.17.2
o |
| o tag: v0.17.1
o |
| o tag: v0.17.0
o |
| o
|/
o
The ``develop`` branch has the latest contributions, and nearly all pull
requests target ``develop``. The ``develop`` branch will report that its
version is that of the next **major** release with a ``.dev0`` suffix.
Each Spack release series also has a corresponding branch, e.g.
``releases/v0.18`` has ``0.18.x`` versions of Spack, and
``releases/v0.17`` has ``0.17.x`` versions. A major release is the first
tagged version on a release branch. Minor releases are back-ported from
develop onto release branches. This is typically done by cherry-picking
bugfix commits off of ``develop``.
To avoid version churn for users of a release series, minor releases
**should not** make changes that would change the concretization of
packages. They should generally only contain fixes to the Spack core.
However, sometimes priorities are such that new functionality needs to
be added to a minor release.
Both major and minor releases are tagged. As a convenience, we also tag
the latest release as ``releases/latest``, so that users can easily check
it out to get the latest stable version. See :ref:`updating-latest-release`
for more details.
.. note::
Older spack releases were merged **back** into develop so that we could
do fancy things with tags, but since tarballs and many git checkouts do
not have tags, this proved overly complex and confusing.
We have since converted to using `PEP 440 <https://peps.python.org/pep-0440/>`_
compliant versions. `See here <https://github.com/spack/spack/pull/25267>`_ for
details.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Scheduling work for releases
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We schedule work for releases by creating `GitHub projects
<https://github.com/spack/spack/projects>`_. At any time, there may be
several open release projects. For example, below are two releases (from
some past version of the page linked above):
.. image:: images/projects.png
This image shows one release in progress for ``0.15.1`` and another for
``0.16.0``. Each of these releases has a project board containing issues
and pull requests. GitHub shows a status bar with completed work in
green, work in progress in purple, and work not started yet in gray, so
it's fairly easy to see progress.
Spack's project boards are not firm commitments so we move work between
releases frequently. If we need to make a release and some tasks are not
yet done, we will simply move them to the next minor or major release, rather
than delaying the release to complete them.
For more on using GitHub project boards, see `GitHub's documentation
<https://docs.github.com/en/github/managing-your-work-on-github/about-project-boards>`_.
.. _major-releases:
^^^^^^^^^^^^^^^^^^^^^
Making major releases
^^^^^^^^^^^^^^^^^^^^^
Assuming a project board has already been created and all required work
completed, the steps to make the major release are:
#. Create two new project boards:
* One for the next major release
* One for the next point release
#. Move any optional tasks that are not done to one of the new project boards.
In general, small bugfixes should go to the next point release. Major
features, refactors, and changes that could affect concretization should
go in the next major release.
#. Create a branch for the release, based on ``develop``:
.. code-block:: console
$ git checkout -b releases/v0.15 develop
For a version ``vX.Y.Z``, the branch's name should be
``releases/vX.Y``. That is, you should create a ``releases/vX.Y``
branch if you are preparing the ``X.Y.0`` release.
#. Remove the ``dev0`` development release segment from the version tuple in
``lib/spack/spack/__init__.py``.
The version number itself should already be correct and should not be
modified.
#. Update ``CHANGELOG.md`` with major highlights in bullet form.
Use proper markdown formatting, like `this example from 0.15.0
<https://github.com/spack/spack/commit/d4bf70d9882fcfe88507e9cb444331d7dd7ba71c>`_.
#. Push the release branch to GitHub.
#. Make sure CI passes on the release branch, including:
* Regular unit tests
* Build tests
* The E4S pipeline at `gitlab.spack.io <https://gitlab.spack.io>`_
If CI is not passing, submit pull requests to ``develop`` as normal
and keep rebasing the release branch on ``develop`` until CI passes.
#. Make sure the entire documentation is up to date. If documentation
is outdated submit pull requests to ``develop`` as normal
and keep rebasing the release branch on ``develop``.
#. Bump the major version in the ``develop`` branch.
Create a pull request targeting the ``develop`` branch, bumping the major
version in ``lib/spack/spack/__init__.py`` with a ``dev0`` release segment.
For instance when you have just released ``v0.15.0``, set the version
to ``(0, 16, 0, 'dev0')`` on ``develop``.
#. Follow the steps in :ref:`publishing-releases`.
#. Follow the steps in :ref:`updating-latest-release`.
#. Follow the steps in :ref:`announcing-releases`.
.. _point-releases:
^^^^^^^^^^^^^^^^^^^^^
Making point releases
^^^^^^^^^^^^^^^^^^^^^
Assuming a project board has already been created and all required work
completed, the steps to make the point release are:
#. Create a new project board for the next point release.
#. Move any optional tasks that are not done to the next project board.
#. Check out the release branch (it should already exist).
For the ``X.Y.Z`` release, the release branch is called ``releases/vX.Y``.
For ``v0.15.1``, you would check out ``releases/v0.15``:
.. code-block:: console
$ git checkout releases/v0.15
#. If a pull request to the release branch named ``Backports vX.Y.Z`` is not already
in the project, create it. This pull request ought to be created as early as
possible when working on a release project, so that we can build the release
commits incrementally, and identify potential conflicts at an early stage.
#. Cherry-pick each pull request in the ``Done`` column of the release
project board onto the ``Backports vX.Y.Z`` pull request.
This is **usually** fairly simple since we squash the commits from the
vast majority of pull requests. That means there is only one commit
per pull request to cherry-pick. For example, `this pull request
<https://github.com/spack/spack/pull/15777>`_ has three commits, but
they were squashed into a single commit on merge. You can see the
commit that was created here:
.. image:: images/pr-commit.png
You can easily cherry pick it like this (assuming you already have the
release branch checked out):
.. code-block:: console
$ git cherry-pick 7e46da7
For pull requests that were rebased (or not squashed), you'll need to
cherry-pick each associated commit individually.
.. warning::
It is important to cherry-pick commits in the order they happened,
otherwise you can get conflicts while cherry-picking. When
cherry-picking look at the merge date,
**not** the number of the pull request or the date it was opened.
Sometimes you may **still** get merge conflicts even if you have
cherry-picked all the commits in order. This generally means there
is some other intervening pull request that the one you're trying
to pick depends on. In these cases, you'll need to make a judgment
call regarding those pull requests. Consider the number of affected
files and or the resulting differences.
1. If the dependency changes are small, you might just cherry-pick it,
too. If you do this, add the task to the release board.
2. If the changes are large, then you may decide that this fix is not
worth including in a point release, in which case you should remove
the task from the release project.
3. You can always decide to manually back-port the fix to the release
branch if neither of the above options makes sense, but this can
require a lot of work. It's seldom the right choice.
#. When all the commits from the project board are cherry-picked into
the ``Backports vX.Y.Z`` pull request, you can push a commit to:
1. Bump the version in ``lib/spack/spack/__init__.py``.
2. Update ``CHANGELOG.md`` with a list of the changes.
This is typically a summary of the commits you cherry-picked onto the
release branch. See `the changelog from 0.14.1
<https://github.com/spack/spack/commit/ff0abb9838121522321df2a054d18e54b566b44a>`_.
#. Merge the ``Backports vX.Y.Z`` PR with the **Rebase and merge** strategy. This
is needed to keep track in the release branch of all the commits that were
cherry-picked.
#. Make sure CI passes on the release branch, including:
* Regular unit tests
* Build tests
* The E4S pipeline at `gitlab.spack.io <https://gitlab.spack.io>`_
If CI does not pass, you'll need to figure out why, and make changes
to the release branch until it does. You can make more commits, modify
or remove cherry-picked commits, or cherry-pick **more** from
``develop`` to make this happen.
#. Follow the steps in :ref:`publishing-releases`.
#. Follow the steps in :ref:`updating-latest-release`.
#. Follow the steps in :ref:`announcing-releases`.
#. Submit a PR to update the CHANGELOG in the `develop` branch
with the addition of this point release.
.. _publishing-releases:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Publishing a release on GitHub
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#. Create the release in GitHub.
* Go to
`github.com/spack/spack/releases <https://github.com/spack/spack/releases>`_
and click ``Draft a new release``.
* Set ``Tag version`` to the name of the tag that will be created.
The name should start with ``v`` and contain *all three*
parts of the version (e.g. ``v0.15.0`` or ``v0.15.1``).
* Set ``Target`` to the ``releases/vX.Y`` branch (e.g., ``releases/v0.15``).
* Set ``Release title`` to ``vX.Y.Z`` to match the tag (e.g., ``v0.15.1``).
* Paste the latest release markdown from your ``CHANGELOG.md`` file as the text.
* Save the draft so you can keep coming back to it as you prepare the release.
#. When you are ready to finalize the release, click ``Publish release``.
#. Immediately after publishing, go back to
`github.com/spack/spack/releases
<https://github.com/spack/spack/releases>`_ and download the
auto-generated ``.tar.gz`` file for the release. It's the ``Source
code (tar.gz)`` link.
#. Click ``Edit`` on the release you just made and attach the downloaded
release tarball as a binary. This does two things:
#. Makes sure that the hash of our releases does not change over time.
GitHub sometimes annoyingly changes the way they generate tarballs
that can result in the hashes changing if you rely on the
auto-generated tarball links.
#. Gets download counts on releases visible through the GitHub API.
GitHub tracks downloads of artifacts, but *not* the source
links. See the `releases
page <https://api.github.com/repos/spack/spack/releases>`_ and search
for ``download_count`` to see this.
#. Go to `readthedocs.org <https://readthedocs.org/projects/spack>`_ and
activate the release tag.
This builds the documentation and makes the released version
selectable in the versions menu.
.. _updating-latest-release:
^^^^^^^^^^^^^^^^^^^^^^^^^^
Updating `releases/latest`
^^^^^^^^^^^^^^^^^^^^^^^^^^
If the new release is the **highest** Spack release yet, you should
also tag it as ``releases/latest``. For example, suppose the highest
release is currently ``0.15.3``:
* If you are releasing ``0.15.4`` or ``0.16.0``, then you should tag
it with ``releases/latest``, as these are higher than ``0.15.3``.
* If you are making a new release of an **older** major version of
Spack, e.g. ``0.14.4``, then you should not tag it as
``releases/latest`` (as there are newer major versions).
To tag ``releases/latest``, do this:
.. code-block:: console
$ git checkout releases/vX.Y # vX.Y is the new release's branch
$ git tag --force releases/latest
$ git push --force --tags
The ``--force`` argument to ``git tag`` makes ``git`` overwrite the existing
``releases/latest`` tag with the new one.
.. _announcing-releases:
^^^^^^^^^^^^^^^^^^^^
Announcing a release
^^^^^^^^^^^^^^^^^^^^
We announce releases in all of the major Spack communication channels.
Publishing the release takes care of GitHub. The remaining channels are
Twitter, Slack, and the mailing list. Here are the steps:
#. Announce the release on Twitter.
* Compose the tweet on the ``@spackpm`` account per the
``spack-twitter`` slack channel.
* Be sure to include a link to the release's page on GitHub.
You can base the tweet on `this
example <https://twitter.com/spackpm/status/1231761858182307840>`_.
#. Announce the release on Slack.
* Compose a message in the ``#general`` Slack channel
(`spackpm.slack.com <https://spackpm.slack.com>`_).
* Preface the message with ``@channel`` to notify even those
people not currently logged in.
* Be sure to include a link to the tweet above.
The tweet will be shown inline so that you do not have to retype
your release announcement.
#. Announce the release on the Spack mailing list.
* Compose an email to the Spack mailing list.
* Be sure to include a link to the release's page on GitHub.
* It is also helpful to include some information directly in the
email.
You can base your announcement on this `example
email <https://groups.google.com/forum/#!topic/spack/WT4CT9i_X4s>`_.
Once you've completed the above steps, congratulations, you're done!
You've finished making the release!

Some files were not shown because too many files have changed in this diff Show More