
* Creating a spack package for LLNL's LBANN (Livermore Big Artificial Neural Network) training toolkit. * Recipe for building LBANN toolkit. Contains limited feature set and is optimized for building with GNU gcc and OpenBLAS. * Removed unnecessary dependencies based on reviewers feedback. * Added support for the int64 data type in the Elemental library. This is required for supporting indices for large matrices. * Added a variant to force a sequential weight matrix initialization. This is slow, but provides an initialization that is independent of model parallelism. * Added a guard to prevent building Elemental with the Intel compiler for versions that have known bugs.
84 lines
3.4 KiB
Python
84 lines
3.4 KiB
Python
##############################################################################
|
|
# Copyright (c) 2013-2016, Lawrence Livermore National Security, LLC.
|
|
# Produced at the Lawrence Livermore National Laboratory.
|
|
#
|
|
# This file is part of Spack.
|
|
# Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved.
|
|
# LLNL-CODE-647188
|
|
#
|
|
# For details, see https://github.com/llnl/spack
|
|
# Please also see the LICENSE file for our notice and the LGPL.
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU Lesser General Public License (as
|
|
# published by the Free Software Foundation) version 2.1, February 1999.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but
|
|
# WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
|
|
# conditions of the GNU Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this program; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
##############################################################################
|
|
from spack import *
|
|
|
|
|
|
class Lbann(CMakePackage):
|
|
"""LBANN: Livermore Big Artificial Neural Network Toolkit. A distributed
|
|
memory, HPC-optimized, model and data parallel training toolkit for deep
|
|
neural networks."""
|
|
|
|
homepage = "http://software.llnl.gov/lbann/"
|
|
url = "https://github.com/LLNL/lbann/archive/v0.91.tar.gz"
|
|
|
|
version('develop', git='https://github.com/LLNL/lbann.git', branch="develop")
|
|
version('0.91', '83b0ec9cd0b7625d41dfb06d2abd4134')
|
|
|
|
variant('debug', default=False, description='Builds a debug version of the libraries')
|
|
variant('gpu', default=False, description='Builds with support for GPUs via CUDA and cuDNN')
|
|
variant('opencv', default=True, description='Builds with support for image processing routines with OpenCV')
|
|
variant('seq_init', default=False, description='Force serial initialization of weight matrices.')
|
|
|
|
depends_on('elemental +openmp_blas +scalapack +shared +int64')
|
|
depends_on('elemental +openmp_blas +scalapack +shared +int64 +debug', when='+debug')
|
|
depends_on('cuda', when='+gpu')
|
|
depends_on('mpi')
|
|
depends_on('opencv@2.4.13', when='+opencv')
|
|
depends_on('protobuf@3.0.2')
|
|
|
|
def build_type(self):
|
|
if '+debug' in self.spec:
|
|
return 'Debug'
|
|
else:
|
|
return 'Release'
|
|
|
|
def cmake_args(self):
|
|
spec = self.spec
|
|
# Environment variables
|
|
CPPFLAGS = []
|
|
CPPFLAGS.append('-DLBANN_SET_EL_RNG')
|
|
if '~seq_init' in spec:
|
|
CPPFLAGS.append('-DLBANN_PARALLEL_RANDOM_MATRICES')
|
|
|
|
args = [
|
|
'-DCMAKE_INSTALL_MESSAGE=LAZY',
|
|
'-DCMAKE_CXX_FLAGS=%s' % ' '.join(CPPFLAGS),
|
|
'-DWITH_CUDA:BOOL=%s' % ('+gpu' in spec),
|
|
'-DWITH_CUDNN:BOOL=%s' % ('+gpu' in spec),
|
|
'-DWITH_TBINF=OFF',
|
|
'-DWITH_VTUNE=OFF',
|
|
'-DElemental_DIR={0}'.format(self.spec['elemental'].prefix),
|
|
'-DELEMENTAL_MATH_LIBS={0}'.format(
|
|
self.spec['elemental'].elemental_libs),
|
|
'-DVERBOSE=0',
|
|
'-DLBANN_HOME=.',
|
|
'-DLBANN_VER=spack']
|
|
|
|
if '+opencv' in self.spec:
|
|
args.extend(['-DOpenCV_DIR:STRING={0}'.format(
|
|
self.spec['opencv'].prefix)])
|
|
|
|
return args
|