spack/lib/spack/docs/tutorial_advanced_packaging.rst
Massimiliano Culpo 9ddc98e46a Separate setting build environment and run environment in packages (#11115)
* Methods setting the environment now do it separately for build and run

Before this commit the `*_environment` methods were setting
modifications to both the build-time and run-time environment
simultaneously. This might cause issues as the two environments
inherently rely on different preconditions:

1. The build-time environment is set before building a package, thus
the package prefix doesn't exist and can't be inspected

2. The run-time environment instead is set assuming the target package
has been already installed

Here we split each of these functions into two: one setting the
build-time environment, one the run-time.

We also adopt a fallback strategy that inspects for old methods and
executes them as before, but prints a deprecation warning to tty. This
permits to port packages to use the new methods in a distributed way,
rather than having to modify all the packages at once.

* Added a test that fails if any package uses the old API

Marked the test xfail for now as we have a lot of packages in that
state.

* Added a test to check that a package modified by a PR is up to date

This test can be used any time we deprecate a method call to ensure
that during the first modification of the package we update also
the deprecated calls.

* Updated documentation
2019-10-17 10:17:21 -07:00

516 lines
21 KiB
ReStructuredText

.. Copyright 2013-2019 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _advanced-packaging-tutorial:
============================
Advanced Topics in Packaging
============================
Spack tries to automatically configure packages with information from
dependencies such that all you need to do is to list the dependencies
(i.e., with the ``depends_on`` directive) and the build system (for example
by deriving from :code:`CmakePackage`).
However, there are many special cases. Often you need to retrieve details
about dependencies to set package-specific configuration options, or to
define package-specific environment variables used by the package's build
system. This tutorial covers how to retrieve build information from
dependencies, and how you can automatically provide important information to
dependents in your package.
----------------------
Setup for the tutorial
----------------------
.. note::
We do not recommend doing this section of the tutorial in a
production Spack instance.
The tutorial uses custom package definitions with missing sections that
will be filled in during the tutorial. These package definitions are stored
in a separate package repository, which can be enabled with:
.. code-block:: console
$ spack repo add --scope=site var/spack/repos/tutorial
This section of the tutorial may also require a newer version of
gcc. If you have not already installed gcc@7.2.0 and added it to your
configuration, you can do so with:
.. code-block:: console
$ spack install gcc@7.2.0 %gcc@5.4.0
$ spack compiler add --scope=site `spack location -i gcc@7.2.0 %gcc@5.4.0`
If you are using the tutorial docker image, all dependency packages
will have been installed. Otherwise, to install these packages you can use
the following commands:
.. code-block:: console
$ spack install openblas
$ spack install netlib-lapack
$ spack install mpich
Now, you are ready to set your preferred ``EDITOR`` and continue with
the rest of the tutorial.
.. note::
Several of these packages depend on an MPI implementation. You can use
OpenMPI if you install it from scratch, but this is slow (>10 min.).
A binary cache of MPICH may be provided, in which case you can force
the package to use it and install quickly. All tutorial examples with
packages that depend on MPICH include the spec syntax for building with it
.. _adv_pkg_tutorial_start:
---------------------------------------
Modifying a package's build environment
---------------------------------------
Spack sets up several environment variables like ``PATH`` by default to aid in
building a package, but many packages make use of environment variables which
convey specific information about their dependencies (e.g., ``MPICC``).
This section covers how to update your Spack packages so that package-specific
environment variables are defined at build-time.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Set environment variables in dependent packages at build-time
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Dependencies can set environment variables that are required when their
dependents build. For example, when a package depends on a python extension
like py-numpy, Spack's ``python`` package will add it to ``PYTHONPATH``
so it is available at build time; this is required because the default setup
that spack does is not sufficient for python to import modules.
Any package can override the
:py:func:`setup_dependent_build_environment <spack.package.PackageBase.setup_dependent_build_environment>`
method to setup the build environment for a dependent.
This method takes as an argument a :py:class:`EnvironmentModifications <spack.util.environment.EnvironmentModifications>`
object which includes convenience methods to update the environment. For
example, an MPI implementation can set ``MPICC`` for packages that depend on it:
.. code-block:: python
def setup_dependent_build_environment(self, env, dependent_spec):
env.set('MPICC', join_path(self.prefix.bin, 'mpicc'))
In this case packages that depend on ``mpi`` will have ``MPICC`` defined in
their environment when they build. This section is focused on setting up the
build-time environment but it's worth noting that a similar method called
:py:func:`setup_dependent_run_environment <spack.package.PackageBase.setup_dependent_run_environment>`
can be used to code modifications that will be included in Spack's automatically-generated
module files.
We can practice by editing the ``mpich`` package to set the ``MPICC``
environment variable in the build-time environment of dependent packages.
.. code-block:: console
root@advanced-packaging-tutorial:/# spack edit mpich
Once you're finished, the method should look like this:
.. code-block:: python
def setup_dependent_build_environment(self, env, dependent_spec):
env.set('MPICC', join_path(self.prefix.bin, 'mpicc'))
env.set('MPICXX', join_path(self.prefix.bin, 'mpic++'))
env.set('MPIF77', join_path(self.prefix.bin, 'mpif77'))
env.set('MPIF90', join_path(self.prefix.bin, 'mpif90'))
env.set('MPICH_CC', spack_cc)
env.set('MPICH_CXX', spack_cxx)
env.set('MPICH_F77', spack_f77)
env.set('MPICH_F90', spack_fc)
env.set('MPICH_FC', spack_fc)
At this point we can, for instance, install ``netlib-scalapack`` with
``mpich``:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack install netlib-scalapack ^mpich
...
==> Created stage in /usr/local/var/spack/stage/netlib-scalapack-2.0.2-km7tsbgoyyywonyejkjoojskhc5knz3z
==> No patches needed for netlib-scalapack
==> Building netlib-scalapack [CMakePackage]
==> Executing phase: 'cmake'
==> Executing phase: 'build'
==> Executing phase: 'install'
==> Successfully installed netlib-scalapack
Fetch: 0.01s. Build: 3m 59.86s. Total: 3m 59.87s.
[+] /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/netlib-scalapack-2.0.2-km7tsbgoyyywonyejkjoojskhc5knz3z
and double check the environment logs to verify that every variable was
set to the correct value.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Set environment variables in your own package
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Packages can override the
:py:func:`setup_build_environment <spack.package.PackageBase.setup_build_environment>`
or the
:py:func:`setup_run_environment <spack.package.PackageBase.setup_run_environment>`
methods to modify their own build-time or run-time environment respectively.
An example of a package that overrides both methods is ``qt``:
.. code-block:: python
def setup_build_environment(self, env):
env.set('MAKEFLAGS', '-j{0}'.format(make_jobs))
def setup_run_environment(self, env):
env.set('QTDIR', self.prefix)
When ``qt`` builds, ``MAKEFLAGS`` will be defined in the environment. Likewise, when a
module file is created for ``qt`` it will contain commands to define ``QTDIR`` appropriately.
To contrast with ``qt``'s
:py:func:`setup_dependent_build_environment <spack.package.PackageBase.setup_dependent_build_environment>`
function:
.. code-block:: python
def setup_dependent_build_environment(self, env, dependent_spec):
env.set('QTDIR', self.prefix)
Let's see how it works by completing the ``elpa`` package:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack edit elpa
In the end your method should look like:
.. code-block:: python
def setup_build_environment(self, env):
spec = self.spec
env.set('CC', spec['mpi'].mpicc)
env.set('FC', spec['mpi'].mpifc)
env.set('CXX', spec['mpi'].mpicxx)
env.set('SCALAPACK_LDFLAGS', spec['scalapack'].libs.joined())
env.append_flags('LDFLAGS', spec['lapack'].libs.search_flags)
env.append_flags('LIBS', spec['lapack'].libs.link_flags)
At this point it's possible to proceed with the installation of ``elpa ^mpich``
------------------------------
Retrieving library information
------------------------------
Although Spack attempts to help packages locate their dependency libraries
automatically (e.g. by setting ``PKG_CONFIG_PATH`` and ``CMAKE_PREFIX_PATH``),
a package may have unique configuration options that are required to locate
libraries. When a package needs information about dependency libraries, the
general approach in Spack is to query the dependencies for the locations of
their libraries and set configuration options accordingly. By default most
Spack packages know how to automatically locate their libraries. This section
covers how to retrieve library information from dependencies and how to locate
libraries when the default logic doesn't work.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Accessing dependency libraries
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you need to access the libraries of a dependency, you can do so
via the ``libs`` property of the spec, for example in the ``arpack-ng``
package:
.. code-block:: python
def install(self, spec, prefix):
lapack_libs = spec['lapack'].libs.joined(';')
blas_libs = spec['blas'].libs.joined(';')
cmake(*[
'-DLAPACK_LIBRARIES={0}'.format(lapack_libs),
'-DBLAS_LIBRARIES={0}'.format(blas_libs)
], '.')
Note that ``arpack-ng`` is querying virtual dependencies, which Spack
automatically resolves to the installed implementation (e.g. ``openblas``
for ``blas``).
We've started work on a package for ``armadillo``. You should open it,
read through the comment that starts with ``# TUTORIAL:`` and complete
the ``cmake_args`` section:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack edit armadillo
If you followed the instructions in the package, when you are finished your
``cmake_args`` method should look like:
.. code-block:: python
def cmake_args(self):
spec = self.spec
return [
# ARPACK support
'-DARPACK_LIBRARY={0}'.format(spec['arpack-ng'].libs.joined(";")),
# BLAS support
'-DBLAS_LIBRARY={0}'.format(spec['blas'].libs.joined(";")),
# LAPACK support
'-DLAPACK_LIBRARY={0}'.format(spec['lapack'].libs.joined(";")),
# SuperLU support
'-DSuperLU_INCLUDE_DIR={0}'.format(spec['superlu'].prefix.include),
'-DSuperLU_LIBRARY={0}'.format(spec['superlu'].libs.joined(";")),
# HDF5 support
'-DDETECT_HDF5={0}'.format('ON' if '+hdf5' in spec else 'OFF')
]
As you can see, getting the list of libraries that your dependencies provide
is as easy as accessing the their ``libs`` attribute. Furthermore, the interface
remains the same whether you are querying regular or virtual dependencies.
At this point you can complete the installation of ``armadillo`` using ``openblas``
as a LAPACK provider (``armadillo ^openblas ^mpich``):
.. code-block:: console
root@advanced-packaging-tutorial:/# spack install armadillo ^openblas ^mpich
==> pkg-config is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/pkg-config-0.29.2-ae2hwm7q57byfbxtymts55xppqwk7ecj
...
==> superlu is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/superlu-5.2.1-q2mbtw2wo4kpzis2e2n227ip2fquxrno
==> Installing armadillo
==> Using cached archive: /usr/local/var/spack/cache/armadillo/armadillo-8.100.1.tar.xz
==> Staging archive: /usr/local/var/spack/stage/armadillo-8.100.1-n2eojtazxbku6g4l5izucwwgnpwz77r4/armadillo-8.100.1.tar.xz
==> Created stage in /usr/local/var/spack/stage/armadillo-8.100.1-n2eojtazxbku6g4l5izucwwgnpwz77r4
==> Applied patch undef_linux.patch
==> Building armadillo [CMakePackage]
==> Executing phase: 'cmake'
==> Executing phase: 'build'
==> Executing phase: 'install'
==> Successfully installed armadillo
Fetch: 0.01s. Build: 3.96s. Total: 3.98s.
[+] /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/armadillo-8.100.1-n2eojtazxbku6g4l5izucwwgnpwz77r4
Hopefully the installation went fine and the code we added expanded to the right list
of semicolon separated libraries (you are encouraged to open ``armadillo``'s
build logs to double check).
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Providing libraries to dependents
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Spack provides a default implementation for ``libs`` which often works
out of the box. A user can write a package definition without having to
implement a ``libs`` property and dependents can retrieve its libraries
as shown in the above section. However, the default implementation assumes that
libraries follow the naming scheme ``lib<package name>.so`` (or e.g.
``lib<package name>.a`` for static libraries). Packages which don't
follow this naming scheme must implement this function themselves, e.g.
``opencv``:
.. code-block:: python
@property
def libs(self):
shared = "+shared" in self.spec
return find_libraries(
"libopencv_*", root=self.prefix, shared=shared, recurse=True
)
This issue is common for packages which implement an interface (i.e.
virtual package providers in Spack). If we try to build another version of
``armadillo`` tied to ``netlib-lapack`` (``armadillo ^netlib-lapack ^mpich``)
we'll notice that this time the installation won't complete:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack install armadillo ^netlib-lapack ^mpich
==> pkg-config is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/pkg-config-0.29.2-ae2hwm7q57byfbxtymts55xppqwk7ecj
...
==> openmpi is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/openmpi-3.0.0-yo5qkfvumpmgmvlbalqcadu46j5bd52f
==> Installing arpack-ng
==> Using cached archive: /usr/local/var/spack/cache/arpack-ng/arpack-ng-3.5.0.tar.gz
==> Already staged arpack-ng-3.5.0-bloz7cqirpdxj33pg7uj32zs5likz2un in /usr/local/var/spack/stage/arpack-ng-3.5.0-bloz7cqirpdxj33pg7uj32zs5likz2un
==> No patches needed for arpack-ng
==> Building arpack-ng [Package]
==> Executing phase: 'install'
==> Error: RuntimeError: Unable to recursively locate netlib-lapack libraries in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/netlib-lapack-3.6.1-jjfe23wgt7nkjnp2adeklhseg3ftpx6z
RuntimeError: RuntimeError: Unable to recursively locate netlib-lapack libraries in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/netlib-lapack-3.6.1-jjfe23wgt7nkjnp2adeklhseg3ftpx6z
/usr/local/var/spack/repos/builtin/packages/arpack-ng/package.py:105, in install:
5 options.append('-DCMAKE_INSTALL_NAME_DIR:PATH=%s/lib' % prefix)
6
7 # Make sure we use Spack's blas/lapack:
>> 8 lapack_libs = spec['lapack'].libs.joined(';')
9 blas_libs = spec['blas'].libs.joined(';')
10
11 options.extend([
See build log for details:
/usr/local/var/spack/stage/arpack-ng-3.5.0-bloz7cqirpdxj33pg7uj32zs5likz2un/arpack-ng-3.5.0/spack-build-out.txt
Unlike ``openblas`` which provides a library named ``libopenblas.so``,
``netlib-lapack`` provides ``liblapack.so``, so it needs to implement
customized library search logic. Let's edit it:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack edit netlib-lapack
and follow the instructions in the ``# TUTORIAL:`` comment as before.
What we need to implement is:
.. code-block:: python
@property
def lapack_libs(self):
shared = True if '+shared' in self.spec else False
return find_libraries(
'liblapack', root=self.prefix, shared=shared, recursive=True
)
i.e., a property that returns the correct list of libraries for the LAPACK interface.
We use the name ``lapack_libs`` rather than ``libs`` because
``netlib-lapack`` can also provide ``blas``, and when it does it is provided
as a separate library file. Using this name ensures that when
dependents ask for ``lapack`` libraries, ``netlib-lapack`` will retrieve only
the libraries associated with the ``lapack`` interface. Now we can finally
install ``armadillo ^netlib-lapack ^mpich``:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack install armadillo ^netlib-lapack ^mpich
...
==> Building armadillo [CMakePackage]
==> Executing phase: 'cmake'
==> Executing phase: 'build'
==> Executing phase: 'install'
==> Successfully installed armadillo
Fetch: 0.01s. Build: 3.75s. Total: 3.76s.
[+] /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/armadillo-8.100.1-sxmpu5an4dshnhickh6ykchyfda7jpyn
Since each implementation of a virtual package is responsible for locating the
libraries associated with the interfaces it provides, dependents do not need
to include special-case logic for different implementations and for example
need only ask for :code:`spec['blas'].libs`.
----------------------
Other Packaging Topics
----------------------
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Attach attributes to other packages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Build tools usually also provide a set of executables that can be used
when another package is being installed. Spack gives you the opportunity
to monkey-patch dependent modules and attach attributes to them. This
helps make the packager experience as similar as possible to what would
have been the manual installation of the same package.
An example here is the ``automake`` package, which overrides
:py:func:`setup_dependent_package <spack.package.PackageBase.setup_dependent_package>`:
.. code-block:: python
def setup_dependent_package(self, module, dependent_spec):
# Automake is very likely to be a build dependency,
# so we add the tools it provides to the dependent module
executables = ['aclocal', 'automake']
for name in executables:
setattr(module, name, self._make_executable(name))
so that every other package that depends on it can use directly ``aclocal``
and ``automake`` with the usual function call syntax of :py:class:`Executable <spack.util.executable.Executable>`:
.. code-block:: python
aclocal('--force')
^^^^^^^^^^^^^^^^^^^^^^^
Extra query parameters
^^^^^^^^^^^^^^^^^^^^^^^
An advanced feature of the Spec's build-interface protocol is the support
for extra parameters after the subscript key. In fact, any of the keys used in the query
can be followed by a comma-separated list of extra parameters which can be
inspected by the package receiving the request to fine-tune a response.
Let's look at an example and try to install ``netcdf ^mpich``:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack install netcdf ^mpich
==> libsigsegv is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/libsigsegv-2.11-fypapcprssrj3nstp6njprskeyynsgaz
==> m4 is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/m4-1.4.18-r5envx3kqctwwflhd4qax4ahqtt6x43a
...
==> Error: AttributeError: 'list' object has no attribute 'search_flags'
AttributeError: AttributeError: 'list' object has no attribute 'search_flags'
/usr/local/var/spack/repos/builtin/packages/netcdf/package.py:207, in configure_args:
50 # used instead.
51 hdf5_hl = self.spec['hdf5:hl']
52 CPPFLAGS.append(hdf5_hl.headers.cpp_flags)
>> 53 LDFLAGS.append(hdf5_hl.libs.search_flags)
54
55 if '+parallel-netcdf' in self.spec:
56 config_args.append('--enable-pnetcdf')
See build log for details:
/usr/local/var/spack/stage/netcdf-4.4.1.1-gk2xxhbqijnrdwicawawcll4t3c7dvoj/netcdf-4.4.1.1/spack-build-out.txt
We can see from the error that ``netcdf`` needs to know how to link the *high-level interface*
of ``hdf5``, and thus passes the extra parameter ``hl`` after the request to retrieve it.
Clearly the implementation in the ``hdf5`` package is not complete, and we need to fix it:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack edit hdf5
If you followed the instructions correctly, the code added to the
``lib`` property should be similar to:
.. code-block:: python
:emphasize-lines: 1
query_parameters = self.spec.last_query.extra_parameters
key = tuple(sorted(query_parameters))
libraries = query2libraries[key]
shared = '+shared' in self.spec
return find_libraries(
libraries, root=self.prefix, shared=shared, recurse=True
)
where we highlighted the line retrieving the extra parameters. Now we can successfully
complete the installation of ``netcdf ^mpich``:
.. code-block:: console
root@advanced-packaging-tutorial:/# spack install netcdf ^mpich
==> libsigsegv is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/libsigsegv-2.11-fypapcprssrj3nstp6njprskeyynsgaz
==> m4 is already installed in /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/m4-1.4.18-r5envx3kqctwwflhd4qax4ahqtt6x43a
...
==> Installing netcdf
==> Using cached archive: /usr/local/var/spack/cache/netcdf/netcdf-4.4.1.1.tar.gz
==> Already staged netcdf-4.4.1.1-gk2xxhbqijnrdwicawawcll4t3c7dvoj in /usr/local/var/spack/stage/netcdf-4.4.1.1-gk2xxhbqijnrdwicawawcll4t3c7dvoj
==> Already patched netcdf
==> Building netcdf [AutotoolsPackage]
==> Executing phase: 'autoreconf'
==> Executing phase: 'configure'
==> Executing phase: 'build'
==> Executing phase: 'install'
==> Successfully installed netcdf
Fetch: 0.01s. Build: 24.61s. Total: 24.62s.
[+] /usr/local/opt/spack/linux-ubuntu16.04-x86_64/gcc-5.4.0/netcdf-4.4.1.1-gk2xxhbqijnrdwicawawcll4t3c7dvoj