![]() * Package install remove prior unfinished installs Depending on how spack is terminated in the middle of building a package it may leave a partially installed package in the install prefix. Originally Spack treated the package as being installed if the prefix was present, in which case the user would have to manually remove the installation prefix before restarting an install. This commit adds a more thorough check to ensure that a package is actually installed. If the installation prefix is present but Spack determines that the install did not complete, it removes the installation prefix and starts a new install; if the user has enabled --keep-prefix, then Spack reverts to its old behavior. * Added test for partial install handling * Added test for restoring DB * Style fixes * Restoring 2.6 compatibility * Relocated repair logic to separate function * If --keep-prefix is set, package installs will continue an install from an existing prefix if one is present * check metadata consistency when continuing partial install * Added --force option to make spack reinstall a package (and all dependencies) from scratch * Updated bash completion; removed '-f' shorthand for '--force' for install command * dont use multiple write modes for completion file |
||
---|---|---|
bin | ||
etc/spack/defaults | ||
lib/spack | ||
share/spack | ||
var/spack | ||
.codecov.yml | ||
.coveragerc | ||
.flake8 | ||
.gitignore | ||
.mailmap | ||
.travis.yml | ||
LICENSE | ||
pytest.ini | ||
README.md |
Spack is a package management tool designed to support multiple versions and configurations of software on a wide variety of platforms and environments. It was designed for large supercomputing centers, where many users and application teams share common installations of software on clusters with exotic architectures, using libraries that do not have a standard ABI. Spack is non-destructive: installing a new version does not break existing installations, so many configurations can coexist on the same system.
Most importantly, Spack is simple. It offers a simple spec syntax so that users can specify versions and configuration options concisely. Spack is also simple for package authors: package files are written in pure Python, and specs allow package authors to write a single build script for many different builds of the same package.
See the Feature Overview for examples and highlights.
To install spack and install your first package, make sure you have Python (2 or 3). Then:
$ git clone https://github.com/llnl/spack.git
$ cd spack/bin
$ ./spack install libelf
Documentation
Full documentation for Spack is the first place to look.
We've also got a Spack 101 Tutorial, so you can learn Spack yourself, or teach users at your own site.
See also:
- Technical paper and slides on Spack's design and implementation.
- Short presentation from the Getting Scientific Software Installed BOF session at Supercomputing 2015.
Get Involved!
Spack is an open source project. Questions, discussion, and contributions are welcome. Contributions can be anything from new packages to bugfixes, or even new core features.
Mailing list
If you are interested in contributing to spack, the first step is to join the mailing list. We're using a Google Group for this, and you can join it here:
Contributions
Contributing to Spack is relatively easy. Just send us a
pull request.
When you send your request, make develop
the destination branch on the
Spack repository.
Your PR must pass Spack's unit tests and documentation tests, and must be PEP 8 compliant. We enforce these guidelines with Travis CI. To run these tests locally, and for helpful tips on git, see our Contribution Guide.
Spack uses a rough approximation of the Git
Flow
branching model. The develop
branch contains the latest
contributions, and master
is always tagged and points to the
latest stable release.
Authors
Many thanks go to Spack's contributors.
Spack was originally written by Todd Gamblin, tgamblin@llnl.gov.
Citing Spack
If you are referencing Spack in a publication, please cite the following paper:
- Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R. de Supinski, and W. Scott Futral. The Spack Package Manager: Bringing Order to HPC Software Chaos. In Supercomputing 2015 (SC’15), Austin, Texas, November 15-20 2015. LLNL-CONF-669890.
Release
Spack is released under an LGPL license. For more details see the LICENSE file.
LLNL-CODE-647188