spack/lib/spack/spack/graph.py
2017-06-24 22:22:55 -07:00

590 lines
20 KiB
Python

##############################################################################
# Copyright (c) 2013-2016, Lawrence Livermore National Security, LLC.
# Produced at the Lawrence Livermore National Laboratory.
#
# This file is part of Spack.
# Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved.
# LLNL-CODE-647188
#
# For details, see https://github.com/llnl/spack
# Please also see the NOTICE and LICENSE files for our notice and the LGPL.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License (as
# published by the Free Software Foundation) version 2.1, February 1999.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
# conditions of the GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
##############################################################################
"""Functions for graphing DAGs of dependencies.
This file contains code for graphing DAGs of software packages
(i.e. Spack specs). There are two main functions you probably care
about:
graph_ascii() will output a colored graph of a spec in ascii format,
kind of like the graph git shows with "git log --graph", e.g.::
o mpileaks
|\
| |\
| o | callpath
|/| |
| |\|
| |\ \
| | |\ \
| | | | o adept-utils
| |_|_|/|
|/| | | |
o | | | | mpi
/ / / /
| | o | dyninst
| |/| |
|/|/| |
| | |/
| o | libdwarf
|/ /
o | libelf
/
o boost
graph_dot() will output a graph of a spec (or multiple specs) in dot
format.
Note that ``graph_ascii`` assumes a single spec while ``graph_dot``
can take a number of specs as input.
"""
from heapq import *
from six import iteritems
from llnl.util.lang import *
from llnl.util.tty.color import *
from spack.spec import *
__all__ = ['topological_sort', 'graph_ascii', 'AsciiGraph', 'graph_dot']
def topological_sort(spec, reverse=False, deptype=None):
"""Topological sort for specs.
Return a list of dependency specs sorted topologically. The spec
argument is not modified in the process.
"""
deptype = canonical_deptype(deptype)
if not reverse:
parents = lambda s: s.dependents()
children = lambda s: s.dependencies()
else:
parents = lambda s: s.dependencies()
children = lambda s: s.dependents()
# Work on a copy so this is nondestructive.
spec = spec.copy(deps=deptype)
nodes = spec.index(deptype=deptype)
topo_order = []
par = dict((name, parents(nodes[name])) for name in nodes.keys())
remaining = [name for name in nodes.keys() if not parents(nodes[name])]
heapify(remaining)
while remaining:
name = heappop(remaining)
topo_order.append(name)
node = nodes[name]
for dep in children(node):
par[dep.name].remove(node)
if not par[dep.name]:
heappush(remaining, dep.name)
if any(par.get(s.name, []) for s in spec.traverse()):
raise ValueError("Spec has cycles!")
else:
return topo_order
def find(seq, predicate):
"""Find index in seq for which predicate is True.
Searches the sequence and returns the index of the element for
which the predicate evaluates to True. Returns -1 if the
predicate does not evaluate to True for any element in seq.
"""
for i, elt in enumerate(seq):
if predicate(elt):
return i
return -1
# Names of different graph line states. We record previous line
# states so that we can easily determine what to do when connecting.
states = ('node', 'collapse', 'merge-right', 'expand-right', 'back-edge')
NODE, COLLAPSE, MERGE_RIGHT, EXPAND_RIGHT, BACK_EDGE = states
class AsciiGraph(object):
def __init__(self):
# These can be set after initialization or after a call to
# graph() to change behavior.
self.node_character = 'o'
self.debug = False
self.indent = 0
self.deptype = alldeps
# These are colors in the order they'll be used for edges.
# See llnl.util.tty.color for details on color characters.
self.colors = 'rgbmcyRGBMCY'
# Internal vars are used in the graph() function and are
# properly initialized there.
self._name_to_color = None # Node name to color
self._out = None # Output stream
self._frontier = None # frontier
self._nodes = None # dict from name -> node
self._prev_state = None # State of previous line
self._prev_index = None # Index of expansion point of prev line
def _indent(self):
self._out.write(self.indent * ' ')
def _write_edge(self, string, index, sub=0):
"""Write a colored edge to the output stream."""
# Ignore empty frontier entries (they're just collapsed)
if not self._frontier[index]:
return
name = self._frontier[index][sub]
edge = "@%s{%s}" % (self._name_to_color[name], string)
self._out.write(edge)
def _connect_deps(self, i, deps, label=None):
"""Connect dependencies to existing edges in the frontier.
``deps`` are to be inserted at position i in the
frontier. This routine determines whether other open edges
should be merged with <deps> (if there are other open edges
pointing to the same place) or whether they should just be
inserted as a completely new open edge.
Open edges that are not fully expanded (i.e. those that point
at multiple places) are left intact.
Parameters:
label -- optional debug label for the connection.
Returns: True if the deps were connected to another edge
(i.e. the frontier did not grow) and False if the deps were
NOT already in the frontier (i.e. they were inserted and the
frontier grew).
"""
if len(deps) == 1 and deps in self._frontier:
j = self._frontier.index(deps)
# convert a right connection into a left connection
if i < j:
self._frontier.pop(j)
self._frontier.insert(i, deps)
return self._connect_deps(j, deps, label)
collapse = True
if self._prev_state == EXPAND_RIGHT:
# Special case where previous line expanded and i is off by 1.
self._back_edge_line([], j, i + 1, True,
label + "-1.5 " + str((i + 1, j)))
collapse = False
else:
# Previous node also expanded here, so i is off by one.
if self._prev_state == NODE and self._prev_index < i:
i += 1
if i - j > 1:
# We need two lines to connect if distance > 1
self._back_edge_line([], j, i, True,
label + "-1 " + str((i, j)))
collapse = False
self._back_edge_line([j], -1, -1, collapse,
label + "-2 " + str((i, j)))
return True
elif deps:
self._frontier.insert(i, deps)
return False
def _set_state(self, state, index, label=None):
if state not in states:
raise ValueError("Invalid graph state!")
self._prev_state = state
self._prev_index = index
if self.debug:
self._out.write(" " * 20)
self._out.write("%-20s" % (
str(self._prev_state) if self._prev_state else ''))
self._out.write("%-20s" % (str(label) if label else ''))
self._out.write("%s" % self._frontier)
def _back_edge_line(self, prev_ends, end, start, collapse, label=None):
"""Write part of a backwards edge in the graph.
Writes single- or multi-line backward edges in an ascii graph.
For example, a single line edge::
| | | | o |
| | | |/ / <-- single-line edge connects two nodes.
| | | o |
Or a multi-line edge (requires two calls to back_edge)::
| | | | o |
| |_|_|/ / <-- multi-line edge crosses vertical edges.
|/| | | |
o | | | |
Also handles "pipelined" edges, where the same line contains
parts of multiple edges::
o start
| |_|_|_|/|
|/| | |_|/| <-- this line has parts of 2 edges.
| | |/| | |
o o
Arguments:
prev_ends -- indices in frontier of previous edges that need
to be finished on this line.
end -- end of the current edge on this line.
start -- start index of the current edge.
collapse -- whether the graph will be collapsing (i.e. whether
to slant the end of the line or keep it straight)
label -- optional debug label to print after the line.
"""
def advance(to_pos, edges):
"""Write edges up to <to_pos>."""
for i in range(self._pos, to_pos):
for e in edges():
self._write_edge(*e)
self._pos += 1
flen = len(self._frontier)
self._pos = 0
self._indent()
for p in prev_ends:
advance(p, lambda: [("| ", self._pos)])
advance(p + 1, lambda: [("|/", self._pos)])
if end >= 0:
advance(end + 1, lambda: [("| ", self._pos)])
advance(start - 1, lambda: [("|", self._pos), ("_", end)])
else:
advance(start - 1, lambda: [("| ", self._pos)])
if start >= 0:
advance(start, lambda: [("|", self._pos), ("/", end)])
if collapse:
advance(flen, lambda: [(" /", self._pos)])
else:
advance(flen, lambda: [("| ", self._pos)])
self._set_state(BACK_EDGE, end, label)
self._out.write("\n")
def _node_line(self, index, name):
"""Writes a line with a node at index."""
self._indent()
for c in range(index):
self._write_edge("| ", c)
self._out.write("%s " % self.node_character)
for c in range(index + 1, len(self._frontier)):
self._write_edge("| ", c)
self._out.write(" %s" % name)
self._set_state(NODE, index)
self._out.write("\n")
def _collapse_line(self, index):
"""Write a collapsing line after a node was added at index."""
self._indent()
for c in range(index):
self._write_edge("| ", c)
for c in range(index, len(self._frontier)):
self._write_edge(" /", c)
self._set_state(COLLAPSE, index)
self._out.write("\n")
def _merge_right_line(self, index):
"""Edge at index is same as edge to right. Merge directly with '\'"""
self._indent()
for c in range(index):
self._write_edge("| ", c)
self._write_edge("|", index)
self._write_edge("\\", index + 1)
for c in range(index + 1, len(self._frontier)):
self._write_edge("| ", c)
self._set_state(MERGE_RIGHT, index)
self._out.write("\n")
def _expand_right_line(self, index):
self._indent()
for c in range(index):
self._write_edge("| ", c)
self._write_edge("|", index)
self._write_edge("\\", index + 1)
for c in range(index + 2, len(self._frontier)):
self._write_edge(" \\", c)
self._set_state(EXPAND_RIGHT, index)
self._out.write("\n")
def write(self, spec, color=None, out=None):
"""Write out an ascii graph of the provided spec.
Arguments:
spec -- spec to graph. This only handles one spec at a time.
Optional arguments:
out -- file object to write out to (default is sys.stdout)
color -- whether to write in color. Default is to autodetect
based on output file.
"""
if out is None:
out = sys.stdout
if color is None:
color = out.isatty()
self._out = ColorStream(out, color=color)
# We'll traverse the spec in topo order as we graph it.
topo_order = topological_sort(spec, reverse=True, deptype=self.deptype)
# Work on a copy to be nondestructive
spec = spec.copy()
self._nodes = spec.index()
# Colors associated with each node in the DAG.
# Edges are colored by the node they point to.
self._name_to_color = dict((name, self.colors[i % len(self.colors)])
for i, name in enumerate(topo_order))
# Frontier tracks open edges of the graph as it's written out.
self._frontier = [[spec.name]]
while self._frontier:
# Find an unexpanded part of frontier
i = find(self._frontier, lambda f: len(f) > 1)
if i >= 0:
# Expand frontier until there are enough columns for all
# children.
# Figure out how many back connections there are and
# sort them so we do them in order
back = []
for d in self._frontier[i]:
b = find(self._frontier[:i], lambda f: f == [d])
if b != -1:
back.append((b, d))
# Do all back connections in sorted order so we can
# pipeline them and save space.
if back:
back.sort()
prev_ends = []
collapse_l1 = False
for j, (b, d) in enumerate(back):
self._frontier[i].remove(d)
if i - b > 1:
collapse_l1 = any(not e for e in self._frontier)
self._back_edge_line(
prev_ends, b, i, collapse_l1, 'left-1')
del prev_ends[:]
prev_ends.append(b)
# Check whether we did ALL the deps as back edges,
# in which case we're done.
pop = not self._frontier[i]
collapse_l2 = pop
if collapse_l1:
collapse_l2 = False
if pop:
self._frontier.pop(i)
self._back_edge_line(
prev_ends, -1, -1, collapse_l2, 'left-2')
elif len(self._frontier[i]) > 1:
# Expand forward after doing all back connections
if (i + 1 < len(self._frontier) and
len(self._frontier[i + 1]) == 1 and
self._frontier[i + 1][0] in self._frontier[i]):
# We need to connect to the element to the right.
# Keep lines straight by connecting directly and
# avoiding unnecessary expand/contract.
name = self._frontier[i + 1][0]
self._frontier[i].remove(name)
self._merge_right_line(i)
else:
# Just allow the expansion here.
name = self._frontier[i].pop(0)
deps = [name]
self._frontier.insert(i, deps)
self._expand_right_line(i)
self._frontier.pop(i)
self._connect_deps(i, deps, "post-expand")
# Handle any remaining back edges to the right
j = i + 1
while j < len(self._frontier):
deps = self._frontier.pop(j)
if not self._connect_deps(j, deps, "back-from-right"):
j += 1
else:
# Nothing to expand; add dependencies for a node.
name = topo_order.pop()
node = self._nodes[name]
# Find the named node in the frontier and draw it.
i = find(self._frontier, lambda f: name in f)
self._node_line(i, name)
# Replace node with its dependencies
self._frontier.pop(i)
deps = node.dependencies(self.deptype)
if deps:
deps = sorted((d.name for d in deps), reverse=True)
self._connect_deps(i, deps, "new-deps") # anywhere.
elif self._frontier:
self._collapse_line(i)
def graph_ascii(spec, node='o', out=None, debug=False,
indent=0, color=None, deptype=None):
graph = AsciiGraph()
graph.debug = debug
graph.indent = indent
graph.node_character = node
if deptype:
graph.deptype = canonical_deptype(deptype)
graph.write(spec, color=color, out=out)
def graph_dot(specs, deptype=None, static=False, out=None):
"""Generate a graph in dot format of all provided specs.
Print out a dot formatted graph of all the dependencies between
package. Output can be passed to graphviz, e.g.:
spack graph --dot qt | dot -Tpdf > spack-graph.pdf
"""
if out is None:
out = sys.stdout
if deptype is None:
deptype = alldeps
out.write('digraph G {\n')
out.write(' labelloc = "b"\n')
out.write(' rankdir = "TB"\n')
out.write(' ranksep = "5"\n')
out.write('node[\n')
out.write(' fontname=Monaco,\n')
out.write(' penwidth=2,\n')
out.write(' fontsize=12,\n')
out.write(' margin=.1,\n')
out.write(' shape=box,\n')
out.write(' fillcolor=lightblue,\n')
out.write(' style="rounded,filled"]\n')
out.write('\n')
def q(string):
return '"%s"' % string
if not specs:
raise ValueError("Must provide specs ot graph_dot")
# Static graph includes anything a package COULD depend on.
if static:
names = set.union(*[s.package.possible_dependencies() for s in specs])
specs = [Spec(name) for name in names]
labeled = set()
def label(key, label):
if key not in labeled:
out.write(' "%s" [label="%s"]\n' % (key, label))
labeled.add(key)
deps = set()
for spec in specs:
if static:
out.write(' "%s" [label="%s"]\n' % (spec.name, spec.name))
# Skip virtual specs (we'll find out about them from concrete ones.
if spec.virtual:
continue
# Add edges for each depends_on in the package.
for dep_name, dep in iteritems(spec.package.dependencies):
deps.add((spec.name, dep_name))
# If the package provides something, add an edge for that.
for provider in set(s.name for s in spec.package.provided):
deps.add((provider, spec.name))
else:
def key_label(s):
return s.dag_hash(), "%s/%s" % (s.name, s.dag_hash(7))
for s in spec.traverse(deptype=deptype):
skey, slabel = key_label(s)
out.write(' "%s" [label="%s"]\n' % (skey, slabel))
for d in s.dependencies(deptype=deptype):
dkey, _ = key_label(d)
deps.add((skey, dkey))
out.write('\n')
for pair in deps:
out.write(' "%s" -> "%s"\n' % pair)
out.write('}\n')