![]() This PR allows users to configure explicit splicing replacement of an abstract spec in the concretizer. concretizer: splice: explicit: - target: mpi replacement: mpich/abcdef transitive: true This config block would mean "for any spec that concretizes to use mpi, splice in mpich/abcdef in place of the mpi it would naturally concretize to use. See #20262, #26873, #27919, and #46382 for PRs enabling splicing in the Spec object. This PR will be the first place the splice method is used in a user-facing manner. See https://spack.readthedocs.io/en/latest/spack.html#spack.spec.Spec.splice for more information on splicing. This will allow users to reuse generic public binaries while splicing in the performant local mpi implementation on their system. In the config file, the target may be any abstract spec. The replacement must be a spec that includes an abstract hash `/abcdef`. The transitive key is optional, defaulting to true if left out. Two important items to note: 1. When writing explicit splice config, the user is in charge of ensuring that the replacement specs they use are binary compatible with whatever targets they replace. In practice, this will likely require either specific knowledge of what packages will be installed by the user's workflow, or somewhat more specific abstract "target" specs for splicing, to ensure binary compatibility. 2. Explicit splices can cause the output of the concretizer not to satisfy the input. For example, using the config above and consider a package in a binary cache `hdf5/xyzabc` that depends on mvapich2. Then the command `spack install hdf5/xyzabc` will instead install the result of splicing `mpich/abcdef` into `hdf5/xyzabc` in place of whatever mvapich2 spec it previously depended on. When this occurs, a warning message is printed `Warning: explicit splice configuration has caused the the concretized spec {concrete_spec} not to satisfy the input spec {input_spec}". Highlighted technical details of implementation: 1. This PR required modifying the installer to have two separate types of Tasks, `RewireTask` and `BuildTask`. Spliced specs are queued as `RewireTask` and standard specs are queued as `BuildTask`. Each spliced spec retains a pointer to its build_spec for provenance. If a RewireTask is dequeued and the associated `build_spec` is neither available in the install_tree nor from a binary cache, the RewireTask is requeued with a new dependency on a BuildTask for the build_spec, and BuildTasks are queued for the build spec and its dependencies. 2. Relocation is modified so that a spack binary can be simultaneously installed and rewired. This ensures that installing the build_spec is not necessary when splicing from a binary cache. 3. The splicing model is modified to more accurately represent build dependencies -- that is, spliced specs do not have build dependencies, as spliced specs are never built. Their build_specs retain the build dependencies, as they may be built as part of installing the spliced spec. 4. There were vestiges of the compiler bootstrapping logic that were not removed in #46237 because I asked alalazo to leave them in to avoid making the rebase for this PR harder than it needed to be. Those last remains are removed in this PR. Co-authored-by: Nathan Hanford <hanford1@llnl.gov> Co-authored-by: Gregory Becker <becker33@llnl.gov> Co-authored-by: Tamara Dahlgren <dahlgren1@llnl.gov> |
||
---|---|---|
.devcontainer | ||
.github | ||
bin | ||
etc/spack/defaults | ||
lib/spack | ||
share/spack | ||
var/spack | ||
.codecov.yml | ||
.dockerignore | ||
.flake8 | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.readthedocs.yml | ||
CHANGELOG.md | ||
CITATION.cff | ||
COPYRIGHT | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
NOTICE | ||
pyproject.toml | ||
pytest.ini | ||
README.md | ||
SECURITY.md |
Spack is a multi-platform package manager that builds and installs multiple versions and configurations of software. It works on Linux, macOS, Windows, and many supercomputers. Spack is non-destructive: installing a new version of a package does not break existing installations, so many configurations of the same package can coexist.
Spack offers a simple "spec" syntax that allows users to specify versions and configuration options. Package files are written in pure Python, and specs allow package authors to write a single script for many different builds of the same package. With Spack, you can build your software all the ways you want to.
See the Feature Overview for examples and highlights.
To install spack and your first package, make sure you have Python & Git. Then:
$ git clone -c feature.manyFiles=true --depth=2 https://github.com/spack/spack.git
$ cd spack/bin
$ ./spack install zlib
Tip
-c feature.manyFiles=true
improves git's performance on repositories with 1,000+ files.
--depth=2
prunes the git history to reduce the size of the Spack installation.
Documentation
Full documentation is available, or
run spack help
or spack help --all
.
For a cheat sheet on Spack syntax, run spack help --spec
.
Tutorial
We maintain a hands-on tutorial. It covers basic to advanced usage, packaging, developer features, and large HPC deployments. You can do all of the exercises on your own laptop using a Docker container.
Feel free to use these materials to teach users at your organization about Spack.
Community
Spack is an open source project. Questions, discussion, and contributions are welcome. Contributions can be anything from new packages to bugfixes, documentation, or even new core features.
Resources:
- Slack workspace: spackpm.slack.com. To get an invitation, visit slack.spack.io.
- Matrix space: #spack-space:matrix.org: bridged to Slack.
- Github Discussions: for Q&A and discussions. Note the pinned discussions for announcements.
- X: @spackpm. Be sure to
@mention
us! - Mailing list: groups.google.com/d/forum/spack: only for announcements. Please use other venues for discussions.
Contributing
Contributing to Spack is relatively easy. Just send us a
pull request.
When you send your request, make develop
the destination branch on the
Spack repository.
Your PR must pass Spack's unit tests and documentation tests, and must be PEP 8 compliant. We enforce these guidelines with our CI process. To run these tests locally, and for helpful tips on git, see our Contribution Guide.
Spack's develop
branch has the latest contributions. Pull requests
should target develop
, and users who want the latest package versions,
features, etc. can use develop
.
Releases
For multi-user site deployments or other use cases that need very stable software installations, we recommend using Spack's stable releases.
Each Spack release series also has a corresponding branch, e.g.
releases/v0.14
has 0.14.x
versions of Spack, and releases/v0.13
has
0.13.x
versions. We backport important bug fixes to these branches but
we do not advance the package versions or make other changes that would
change the way Spack concretizes dependencies within a release branch.
So, you can base your Spack deployment on a release branch and git pull
to get fixes, without the package churn that comes with develop
.
The latest release is always available with the releases/latest
tag.
See the docs on releases for more details.
Code of Conduct
Please note that Spack has a Code of Conduct. By participating in the Spack community, you agree to abide by its rules.
Authors
Many thanks go to Spack's contributors.
Spack was created by Todd Gamblin, tgamblin@llnl.gov.
Citing Spack
If you are referencing Spack in a publication, please cite the following paper:
- Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R. de Supinski, and W. Scott Futral. The Spack Package Manager: Bringing Order to HPC Software Chaos. In Supercomputing 2015 (SC’15), Austin, Texas, November 15-20 2015. LLNL-CONF-669890.
On GitHub, you can copy this citation in APA or BibTeX format via the "Cite this repository"
button. Or, see the comments in CITATION.cff
for the raw BibTeX.
License
Spack is distributed under the terms of both the MIT license and the Apache License (Version 2.0). Users may choose either license, at their option.
All new contributions must be made under both the MIT and Apache-2.0 licenses.
See LICENSE-MIT, LICENSE-APACHE, COPYRIGHT, and NOTICE for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
LLNL-CODE-811652