spack/lib/spack/docs/build_settings.rst
Nathan Hanford af62a062cc
Installer: rewire spliced specs via RewireTask (#39136)
This PR allows users to configure explicit splicing replacement of an abstract spec in the concretizer.

concretizer:
  splice:
    explicit:
    - target: mpi
      replacement: mpich/abcdef
      transitive: true

This config block would mean "for any spec that concretizes to use mpi, splice in mpich/abcdef in place of the mpi it would naturally concretize to use. See #20262, #26873, #27919, and #46382 for PRs enabling splicing in the Spec object. This PR will be the first place the splice method is used in a user-facing manner. See https://spack.readthedocs.io/en/latest/spack.html#spack.spec.Spec.splice for more information on splicing.

This will allow users to reuse generic public binaries while splicing in the performant local mpi implementation on their system.

In the config file, the target may be any abstract spec. The replacement must be a spec that includes an abstract hash `/abcdef`. The transitive key is optional, defaulting to true if left out.

Two important items to note:

1. When writing explicit splice config, the user is in charge of ensuring that the replacement specs they use are binary compatible with whatever targets they replace. In practice, this will likely require either specific knowledge of what packages will be installed by the user's workflow, or somewhat more specific abstract "target" specs for splicing, to ensure binary compatibility.
2. Explicit splices can cause the output of the concretizer not to satisfy the input. For example, using the config above and consider a package in a binary cache `hdf5/xyzabc` that depends on mvapich2. Then the command `spack install hdf5/xyzabc` will instead install the result of splicing `mpich/abcdef` into `hdf5/xyzabc` in place of whatever mvapich2 spec it previously depended on. When this occurs, a warning message is printed `Warning: explicit splice configuration has caused the the concretized spec {concrete_spec} not to satisfy the input spec {input_spec}".

Highlighted technical details of implementation:

1. This PR required modifying the installer to have two separate types of Tasks, `RewireTask` and `BuildTask`. Spliced specs are queued as `RewireTask` and standard specs are queued as `BuildTask`. Each spliced spec retains a pointer to its build_spec for provenance. If a RewireTask is dequeued and the associated `build_spec` is neither available in the install_tree nor from a binary cache, the RewireTask is requeued with a new dependency on a BuildTask for the build_spec, and BuildTasks are queued for the build spec and its dependencies.
2. Relocation is modified so that a spack binary can be simultaneously installed and rewired. This ensures that installing the build_spec is not necessary when splicing from a binary cache.
3. The splicing model is modified to more accurately represent build dependencies -- that is, spliced specs do not have build dependencies, as spliced specs are never built. Their build_specs retain the build dependencies, as they may be built as part of installing the spliced spec.
4. There were vestiges of the compiler bootstrapping logic that were not removed in #46237 because I asked alalazo to leave them in to avoid making the rebase for this PR harder than it needed to be. Those last remains are removed in this PR.

Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Tamara Dahlgren <dahlgren1@llnl.gov>
2024-10-10 15:48:58 -07:00

240 lines
9.0 KiB
ReStructuredText

.. Copyright 2013-2024 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.
SPDX-License-Identifier: (Apache-2.0 OR MIT)
.. _concretizer-options:
==========================================
Concretization Settings (concretizer.yaml)
==========================================
The ``concretizer.yaml`` configuration file allows to customize aspects of the
algorithm used to select the dependencies you install. The default configuration
is the following:
.. literalinclude:: _spack_root/etc/spack/defaults/concretizer.yaml
:language: yaml
--------------------------------
Reuse already installed packages
--------------------------------
The ``reuse`` attribute controls how aggressively Spack reuses binary packages during concretization. The
attribute can either be a single value, or an object for more complex configurations.
In the former case ("single value") it allows Spack to:
1. Reuse installed packages and buildcaches for all the specs to be concretized, when ``true``
2. Reuse installed packages and buildcaches only for the dependencies of the root specs, when ``dependencies``
3. Disregard reusing installed packages and buildcaches, when ``false``
In case a finer control over which specs are reused is needed, then the value of this attribute can be
an object, with the following keys:
1. ``roots``: if ``true`` root specs are reused, if ``false`` only dependencies of root specs are reused
2. ``from``: list of sources from which reused specs are taken
Each source in ``from`` is itself an object:
.. list-table:: Attributes for a source or reusable specs
:header-rows: 1
* - Attribute name
- Description
* - type (mandatory, string)
- Can be ``local``, ``buildcache``, or ``external``
* - include (optional, list of specs)
- If present, reusable specs must match at least one of the constraint in the list
* - exclude (optional, list of specs)
- If present, reusable specs must not match any of the constraint in the list.
For instance, the following configuration:
.. code-block:: yaml
concretizer:
reuse:
roots: true
from:
- type: local
include:
- "%gcc"
- "%clang"
tells the concretizer to reuse all specs compiled with either ``gcc`` or ``clang``, that are installed
in the local store. Any spec from remote buildcaches is disregarded.
To reduce the boilerplate in configuration files, default values for the ``include`` and
``exclude`` options can be pushed up one level:
.. code-block:: yaml
concretizer:
reuse:
roots: true
include:
- "%gcc"
from:
- type: local
- type: buildcache
- type: local
include:
- "foo %oneapi"
In the example above we reuse all specs compiled with ``gcc`` from the local store
and remote buildcaches, and we also reuse ``foo %oneapi``. Note that the last source of
specs override the default ``include`` attribute.
For one-off concretizations, the are command line arguments for each of the simple "single value"
configurations. This means a user can:
.. code-block:: console
% spack install --reuse <spec>
to enable reuse for a single installation, or:
.. code-block:: console
spack install --fresh <spec>
to do a fresh install if ``reuse`` is enabled by default.
.. seealso::
FAQ: :ref:`Why does Spack pick particular versions and variants? <faq-concretizer-precedence>`
------------------------------------------
Selection of the target microarchitectures
------------------------------------------
The options under the ``targets`` attribute control which targets are considered during a solve.
Currently the options in this section are only configurable from the ``concretizer.yaml`` file
and there are no corresponding command line arguments to enable them for a single solve.
The ``granularity`` option can take two possible values: ``microarchitectures`` and ``generic``.
If set to:
.. code-block:: yaml
concretizer:
targets:
granularity: microarchitectures
Spack will consider all the microarchitectures known to ``archspec`` to label nodes for
compatibility. If instead the option is set to:
.. code-block:: yaml
concretizer:
targets:
granularity: generic
Spack will consider only generic microarchitectures. For instance, when running on an
Haswell node, Spack will consider ``haswell`` as the best target in the former case and
``x86_64_v3`` as the best target in the latter case.
The ``host_compatible`` option is a Boolean option that determines whether or not the
microarchitectures considered during the solve are constrained to be compatible with the
host Spack is currently running on. For instance, if this option is set to ``true``, a
user cannot concretize for ``target=icelake`` while running on an Haswell node.
---------------
Duplicate nodes
---------------
The ``duplicates`` attribute controls whether the DAG can contain multiple configurations of
the same package. This is mainly relevant for build dependencies, which may have their version
pinned by some nodes, and thus be required at different versions by different nodes in the same
DAG.
The ``strategy`` option controls how the solver deals with duplicates. If the value is ``none``,
then a single configuration per package is allowed in the DAG. This means, for instance, that only
a single ``cmake`` or a single ``py-setuptools`` version is allowed. The result would be a slightly
faster concretization, at the expense of making a few specs unsolvable.
If the value is ``minimal`` Spack will allow packages tagged as ``build-tools`` to have duplicates.
This allows, for instance, to concretize specs whose nodes require different, and incompatible, ranges
of some build tool. For instance, in the figure below the latest `py-shapely` requires a newer `py-setuptools`,
while `py-numpy` still needs an older version:
.. figure:: images/shapely_duplicates.svg
:scale: 70 %
:align: center
Up to Spack v0.20 ``duplicates:strategy:none`` was the default (and only) behavior. From Spack v0.21 the
default behavior is ``duplicates:strategy:minimal``.
--------
Splicing
--------
The ``splice`` key covers config attributes for splicing specs in the solver.
"Splicing" is a method for replacing a dependency with another spec
that provides the same package or virtual. There are two types of
splices, referring to different behaviors for shared dependencies
between the root spec and the new spec replacing a dependency:
"transitive" and "intransitive". A "transitive" splice is one that
resolves all conflicts by taking the dependency from the new node. An
"intransitive" splice is one that resolves all conflicts by taking the
dependency from the original root. From a theory perspective, hybrid
splices are possible but are not modeled by Spack.
All spliced specs retain a ``build_spec`` attribute that points to the
original Spec before any splice occurred. The ``build_spec`` for a
non-spliced spec is itself.
The figure below shows examples of transitive and intransitive splices:
.. figure:: images/splices.png
:align: center
The concretizer can be configured to explicitly splice particular
replacements for a target spec. Splicing will allow the user to make
use of generically built public binary caches, while swapping in
highly optimized local builds for performance critical components
and/or components that interact closely with the specific hardware
details of the system. The most prominent candidate for splicing is
MPI providers. MPI packages have relatively well-understood ABI
characteristics, and most High Performance Computing facilities deploy
highly optimized MPI packages tailored to their particular
hardware. The following config block configures Spack to replace
whatever MPI provider each spec was concretized to use with the
particular package of ``mpich`` with the hash that begins ``abcdef``.
.. code-block:: yaml
concretizer:
splice:
explicit:
- target: mpi
replacement: mpich/abcdef
transitive: false
.. warning::
When configuring an explicit splice, you as the user take on the
responsibility for ensuring ABI compatibility between the specs
matched by the target and the replacement you provide. If they are
not compatible, Spack will not warn you and your application will
fail to run.
The ``target`` field of an explicit splice can be any abstract
spec. The ``replacement`` field must be a spec that includes the hash
of a concrete spec, and the replacement must either be the same
package as the target, provide the virtual that is the target, or
provide a virtual that the target provides. The ``transitive`` field
is optional -- by default, splices will be transitive.
.. note::
With explicit splices configured, it is possible for Spack to
concretize to a spec that does not satisfy the input. For example,
with the config above ``hdf5 ^mvapich2`` will concretize to user
``mpich/abcdef`` instead of ``mvapich2`` as the MPI provider. Spack
will warn the user in this case, but will not fail the
concretization.